成大在线免费视频,亚洲精品免费一级视频,日韩亚洲欧美大陆,又黄又爽免费国产视频

<style id="t465f"></style>
<legend id="t465f"><u id="t465f"><thead id="t465f"></thead></u></legend>

<acronym id="t465f"></acronym>

<sub id="t465f"><ol id="t465f"><nobr id="t465f"></nobr></ol></sub>
<sub id="t465f"></sub>

高中數(shù)學教學設計

時間:2023-08-30 07:00:58 教學資源 投訴 投稿

高中數(shù)學教學設計15篇(合集)

  作為一名老師,可能需要進行教學設計編寫工作,教學設計一般包括教學目標、教學重難點、教學方法、教學步驟與時間分配等環(huán)節(jié)。那么你有了解過教學設計嗎?下面是小編為大家收集的高中數(shù)學教學設計 ,歡迎閱讀與收藏。

高中數(shù)學教學設計15篇(合集)

高中數(shù)學教學設計 1

  教學目標

  1.明確等差數(shù)列的定義.

  2.掌握等差數(shù)列的通項公式,會解決知道中的三個,求另外一個的問題

  3.培養(yǎng)學生觀察、歸納能力.

  教學重點

  1. 等差數(shù)列的概念;

  2. 等差數(shù)列的通項公式

  教學難點

  等差數(shù)列“等差”特點的理解、把握和應用

  教具準備

  投影片1張

  教學過程

  (I)復習回顧

  師:上兩節(jié)課我們共同學習了數(shù)列的定義及給出數(shù)列的兩種方法通項公式和遞推公式。這兩個公式從不同的角度反映數(shù)列的特點,下面看一些例子。(放投影片)

  (Ⅱ)講授新課

  師:看這些數(shù)列有什么共同的特點?

  1,2,3,4,5,6; ①

  10,8,6,4,2,…; ②

  生:積極思考,找上述數(shù)列共同特點。

  對于數(shù)列①(1≤n≤6);(2≤n≤6)

  對于數(shù)列②-2n(n≥1)(n≥2)

  對于數(shù)列③(n≥1)(n≥2)

  共同特點:從第2項起,第一項與它的前一項的差都等于同一個常數(shù)。

  師:也就是說,這些數(shù)列均具有相鄰兩項之差“相等”的特點。具有這種特點的數(shù)列,我們把它叫做等差數(shù)。

  一、定義:

  等差數(shù)列:一般地,如果一個數(shù)列從第2項起,每一項與空的前一項的差等于同一個常數(shù),那么這個數(shù)列就叫做等差數(shù)列,這個常數(shù)叫做等差數(shù)列的公差,通常用字母d表示。

  如:上述3個數(shù)列都是等差數(shù)列,它們的公差依次是1,-2, 。

  二、等差數(shù)列的`通項公式

  師:等差數(shù)列定義是由一數(shù)列相鄰兩項之間關系而得。若一等差數(shù)列的首項是,公差是d,則據(jù)其定義可得:

  若將這n-1個等式相加,則可得:

  即:即:即:……

  由此可得:師:看來,若已知一數(shù)列為等差數(shù)列,則只要知其首項和公差d,便可求得其通項。

  如數(shù)列①(1≤n≤6)

  數(shù)列②:(n≥1)

  數(shù)列③:(n≥1)

  由上述關系還可得:即:則:=如:三、例題講解

  例1:(1)求等差數(shù)列8,5,2…的第20項

  (2)-401是不是等差數(shù)列-5,-9,-13…的項?如果是,是第幾項?

  解:(1)由n=20,得(2)由得數(shù)列通項公式為:由題意可知,本題是要回答是否存在正整數(shù)n,使得-401=-5-4(n-1)成立解之得n=100,即-401是這個數(shù)列的第100項。

  (Ⅲ)課堂練習

  生:(口答)課本P118練習3

  (書面練習)課本P117練習1

  師:組織學生自評練習(同桌討論)

  (Ⅳ)課時小結(jié)

  師:本節(jié)主要內(nèi)容為:①等差數(shù)列定義。

  即(n≥2)

 、诘炔顢(shù)列通項公式 (n≥1)

  推導出公式:(V)課后作業(yè)

  一、課本P118習題3.2 1,2

  二、1.預習內(nèi)容:課本P116例2P117例4

  2.預習提綱:

 、偃绾螒玫炔顢(shù)列的定義及通項公式解決一些相關問題?

 、诘炔顢(shù)列有哪些性質(zhì)?

高中數(shù)學教學設計 2

  教學準備

  教學目標

  解三角形及應用舉例

  教學重難點

  解三角形及應用舉例

  教學過程

  一.基礎知識精講

  掌握三角形有關的定理

  利用正弦定理,可以解決以下兩類問題:

  (1)已知兩角和任一邊,求其他兩邊和一角;

  (2)已知兩邊和其中一邊的對角,求另一邊的對角(從而進一步求出其他的邊和角);利用余弦定理,可以解決以下兩類問題:

  (1)已知三邊,求三角;

  (2)已知兩邊和它們的夾角,求第三邊和其他兩角。

  掌握正弦定理、余弦定理及其變形形式,利用三角公式解一些有關三角形中的三角函數(shù)問題.

  二.問題討論

  思維點撥:已知兩邊和其中一邊的對角解三角形問題,用正弦定理解,但需注意解的`情況的討論.

  思維點撥::三角形中的三角變換,應靈活運用正、余弦定理.在求值時,要利用三角函數(shù)的有關性質(zhì).

  例6:在某海濱城市附近海面有一臺風,據(jù)檢測,當前臺風中心位于城市O(如圖)的東偏南方向300 km的海面P處,并以20 km / h的速度向西偏北的方向移動,臺風侵襲的范圍為圓形區(qū)域,當前半徑為60 km,并以10 km / h的速度不斷增加,問幾小時后該城市開始受到臺風的侵襲。

  一. 小結(jié):

  1.利用正弦定理,可以解決以下兩類問題:

  (1)已知兩角和任一邊,求其他兩邊和一角;

  (2)已知兩邊和其中一邊的對角,求另一邊的對角(從而進一步求出其他的邊和角);

  2.利用余弦定理,可以解決以下兩類問題:

  (1)已知三邊,求三角;

  (2)已知兩邊和它們的夾角,求第三邊和其他兩角。

  3.邊角互化是解三角形問題常用的手段.

  三.作業(yè):P80闖關訓練

高中數(shù)學教學設計 3

  一、探究式教學模式概述

  1、探究式教學模式的含義。探究式教學就是學生在教師引導下,像科學家發(fā)現(xiàn)真理那樣以類似科學探究的方式來展開學習活動,通過自己大腦的獨立思考和探究,去弄清事物發(fā)展變化的起因和內(nèi)在聯(lián)系,從中探索出知識規(guī)律的教學模式。它的基本特征是教師不把跟教學內(nèi)容有關的內(nèi)容和認知策略直接告訴學生,而是創(chuàng)造一種適宜的認知和合作環(huán)境,讓學生通過探究形成認知策略,從而對教學目標進行一種全方位的學習,實現(xiàn)學生從被動學習到主動學習,培養(yǎng)學生的科學探究能力、創(chuàng)新意識和科學精神。可見,探究式教學主張把學習知識的過程和探究知識的過程統(tǒng)一起來,充分發(fā)揮學生學習的自主性和參與性。

  2、堂探究式教學的實質(zhì)。課堂探究式教學的實質(zhì)是使學生通過類似科學家科學探究的過程來理解科學探究概念和科學規(guī)律的本質(zhì),并培養(yǎng)學生的科學探究能力。具體地說,它包括兩個相互聯(lián)系的方面:一是有一個以“學”為中心的探究性學習環(huán)境。在這個環(huán)境中有豐富的教學資源,而且這些資源是圍繞某個知識主題來展開的。這個學習環(huán)境具有民主和諧的課堂氣氛,它使學生很少感到有壓力,能自主尋找所需要的信息,提出自己的設想,并以自己的方式檢驗其設想。二是教師可以給學生提供必要的幫助和指導,使學生在研究中能明確方向。這說明探究式教學的本質(zhì)特征是不直接把與教學目標有關的概念和認知策略告訴學生,取而代之的是教師創(chuàng)造出一種智力交流和社會交往的環(huán)境,讓學生通過探究自己發(fā)現(xiàn)規(guī)律。

  3、探究式教學模式的特征。

 。1)問題性。問題性是探究式教學模式的關鍵。能否提出對學生具有挑戰(zhàn)性和吸引力的問題,使學生產(chǎn)生問題意識,是探究教學成功與否的關鍵所在。恰當?shù)膯栴}會激起學生強烈的學習愿望,并引發(fā)學生的求異思維和創(chuàng)造思維,F(xiàn)代教育心理學研究提出:“學生的學習過程和科學家的探索過程在本質(zhì)上是一樣的,都是一個發(fā)現(xiàn)問題、分析問題、解決問題的過程!彼耘囵B(yǎng)學生的問題意識是探究式教學的重要使命。

  (2)過程性。過程性是探究式教學模式的重點。愛因斯坦說:“結(jié)論總以完成的形式出現(xiàn),讀者體會不到探索和發(fā)現(xiàn)的喜悅,感覺不到思想形成的生動過程,也就很難達到清楚、全面理解的境界!碧骄渴浇虒W模式正是考慮到這些人的認知特點來組織教學的,它強調(diào)學生探索知識的經(jīng)歷和獲得新知識的親身感悟。

 。3)開放性。開放性是探究式教學模式的難點。探究式教學模式總是綜合合作學習、發(fā)現(xiàn)學習、自主學習等學習方式的長處,培養(yǎng)學生良好的學習態(tài)度和學習方法,提倡和發(fā)展多樣化的學習方式。探究式教學模式要面對大量開放性的問題,教學資源和探究的結(jié)論面對生活、生產(chǎn)和科研是開放的,這一切都為教師的教與學生的學帶來了機遇與挑戰(zhàn)。

  二、教學設計案例

  1、教學內(nèi)容:數(shù)字排列中3、9的探究式教學。

  2、教學目標。

 。1)知識與技能:掌握數(shù)字排列的知識,能靈活運用所學知識。

 。2)過程與方法:在探究過程中掌握分析問題的方法和邏輯推理的方法。

  (3)情感態(tài)度與價值觀:培養(yǎng)學生觀察、分析、推理、歸納等綜合能力,讓學生體會到認識客觀規(guī)律的一般過程。

  3、教學方法:談話探究法,討論探究法。

  4、教學過程。

 。1)創(chuàng)設情境。教師:在高中數(shù)學第十章的教學中,有關數(shù)字排列的問題占有重要位置。我們曾經(jīng)做過的有關數(shù)字排列的題目,如“由若干個數(shù)字排列成偶數(shù)”、“能被5整除的數(shù)”等問題,只要使排列成的數(shù)的個位數(shù)字為偶數(shù),則這個數(shù)就是偶數(shù),當排列成的數(shù)的個位數(shù)字為0或5時,則這個數(shù)就能被5整除。那么能被3整除的數(shù),能被9整除的數(shù)有何特點?

  (2)提出問題。

  問題1:在用1、2、3、4、5、6六個數(shù)字組成沒有重復數(shù)字的四位數(shù)中,是9的倍數(shù)的共有()

  A、36個B、18個C、12個D、24個

  問題2:在用0、1、2、3、4、5這六個數(shù)字組成沒有重復數(shù)字的自然數(shù)中,有多少個能被6整除的五位數(shù)?

 。3)探究思考。點評:乍一看問題1,對于由若干個數(shù)字排列成9的倍數(shù)的問題,如:81、72、63、54、45、36、27、18、9這些能夠被9整除的數(shù)的個位數(shù)字依次是1、2、3、4、5、6、7、8、9。因此,要考察能被9整除的數(shù),不能只考慮個位數(shù)字了。于是,需另辟蹊徑,探究能被9整除的數(shù)的`特點,尋求解決問題的途徑。

  教師:同學們觀察81、72、63、54、45、36、27、18、9這些數(shù),甚至再寫出幾個能被9整除的數(shù),如981、1872等,看看它們有何特點?

  學生:它們都滿足“各位數(shù)字之和能被9整除”。

  教師:此結(jié)論的正確性如何?

  學生:老師,我們證明此結(jié)論的正確性,好嗎?

  教師:好。

  學生:證明:不妨以n是一個四位數(shù)為例證之。

  設n=1000a+100b+10c+d(a,b,c,d∈N)依條件,有a+b+c+d=9m(m∈N)

  則n=1000a+100b+10c+d

  =(999a+a)+(99b+b)+(9c+c)+d

  =(999a+99b+9c)+(a+b+c+d)

  =9(111a+11b+c)+9m

  =9(111a+11b+c+m)

  ∵ a,b,c,m∈N

  ∴ 111a+11b+c+m∈N

  所以n能被9整除

  同理可證定理的后半部分。

  教師:看來上述結(jié)論正確。所以得到如下定理。

  定理:如果一個自然數(shù)n各個數(shù)位上的數(shù)字之和能被9整除,那么這個數(shù)n就能夠被9整除;如果一個自然數(shù)n各個數(shù)位上的數(shù)字之和能被3整除,那么這個數(shù)n就能夠被3整除。

  教師:利用該定理可解決“能被3、9整除”的數(shù)字排列問題,請同學們先解答問題1。

  學生:嘗試1+4+5+6=16,1+3+4+5=13,2+3+4+5=14,2+4+5+6=17,1+2+3+4=10,1+2+5+6=14。

  教師:啟發(fā)學生觀察這些數(shù)字有何特點?提問學生。

  學生:可以看出只要從1、2、3、4、5、6這六個數(shù)中,選取的四個數(shù)字中含1(或2),或者同時含1、2,選取的四個數(shù)字之和都不是9的倍數(shù)。

  教師:請學生們繼續(xù)嘗試選取其他數(shù)字試一試。

  學生:3+4+5+6=18是9的倍數(shù)。

  教師:因此用1、2、3、4、5、6六個數(shù)字組成沒有重復數(shù)字的四位數(shù)中,是9的倍數(shù)的數(shù),就是由3、4、5、6進行全排列所得,共有=24(個)。

  故應選D。

  (4)學以致用。

  問題2:在用0、1、2、3、4、5這六個數(shù)字組成沒有重復數(shù)字的自然數(shù)中,有多少個能被6整除的五位數(shù)?

  教師:從上面的定理知:如果一個自然數(shù)n各個數(shù)位上的數(shù)字之和能被3整除,那么這個數(shù)n就能夠被3整除。同學們對問題2有何想法?

  學生討論:

  學生1:被6整除的五位數(shù)必須既能被2整除,又能被3整除,故能被6整除的五位數(shù),即為各位數(shù)字之和能被3整除的五位偶數(shù)。

  學生2:由于1+2+3+4+5=15,能被3整除,所以選取的5個數(shù)字可分兩類:一類是5個數(shù)字中無0,另一類是5個數(shù)字中有0(但不含3)。

  學生3:第一類:5個數(shù)字中無0的五位偶數(shù)有。

  第二類:5個數(shù)字中含有0不含3的五位偶數(shù)有兩類,第一,0在個位有個;第二,個位是2或4有,所以共有+ 。

  學生4:由分類計數(shù)原理得:能被6整除的無重復數(shù)字的五位數(shù)共有+ + =108(個)。

 。5)概括強化。

  重點:了解數(shù)字排列問題的特點,理解掌握數(shù)字排列中3、9問題的規(guī)律。

  難點:數(shù)字排列知識的靈活應用。

  關鍵:證明的思路以及定理的得出。

  新學知識與已知知識之間的區(qū)別和聯(lián)系:已知知識“由若干個數(shù)字排列成偶數(shù)”、“能被5整除的數(shù)”等問題,只要使排列成的數(shù)的個位數(shù)字為偶數(shù),則這個數(shù)就是偶數(shù),當排列成的數(shù)的個位數(shù)字為0或5時,則這個數(shù)就能被5整除”。新學知識“如果一個自然數(shù)n各個數(shù)位上的數(shù)字之和能被9整除,那么這個數(shù)n就能夠被9整除;如果一個自然數(shù)n各個數(shù)位上的數(shù)字之和能被3整除,那么這個數(shù)n就能夠被3整除。都是數(shù)字排列知識,要學會靈活應用。

 。6)作業(yè)。請同學們自擬練習題,以求達到熟練解決此類問題的目的。

  總之,探究式教學模式是針對傳統(tǒng)教學的種種弊端提出來的,新課程改革強調(diào)改變課程過于注重知識的傳授和過于強調(diào)接受式學習的狀況,倡導學生主動參與樂于探究、勤于動手,讓學生經(jīng)歷科學探究過程,學習科學研究方法,并強調(diào)獲得知識、技能的過程成為學會學習和形成價值觀的過程,以培養(yǎng)學生的探究精神、創(chuàng)新意識和實踐能力。

高中數(shù)學教學設計 4

  一.教材分析。

  ( 1)教材的地位與作用:《等比數(shù)列的前n項和》選自《普通高中課程標準數(shù)學教科書·數(shù)學

  ( 5),是數(shù)列這一章中的一個重要內(nèi)容,它不僅在現(xiàn)實生活中有著廣泛的實際應用,如儲蓄、分期付款的有關計算等等,而且公式推導過程中所滲透的類比、化歸、分類討論、整體變換和方程等思

  想方法,都是學生今后學習和工作中必備的數(shù)學素養(yǎng)。

  (2)從知識的體系來看:“等比數(shù)列的前n項和”是“等差數(shù)列及其前n項和”與“等比數(shù)列”內(nèi)容的延續(xù)、不僅加深對函數(shù)思想的理解,也為以后學數(shù)列的求和,數(shù)學歸納法等做好鋪墊

  二.學情分析。

  ( 1)學生的已有的知識結(jié)構(gòu):掌握了等差數(shù)列的概念,等差數(shù)列的通項公式和求和公式與方法,等比數(shù)列的概念與通項公式。

  ( 2)教學對象:高二理科班的學生,學習興趣比較濃,表現(xiàn)欲較強,邏輯思維能力也初步形成,具有一定的分析問題和解決問題的能力,但由于年齡的原因,思維盡管活躍、敏捷,卻缺乏冷靜、深刻,因而片面、不夠嚴謹。

  (3)從學生的認知角度來看:學生很容易把本節(jié)內(nèi)容與等差數(shù)列前n項和從公式的形成、特點等方面進行類比,這是積極因素,應因勢利導。不利因素是:本節(jié)公式的推導與等差數(shù)列前n項和公式的推導有著本質(zhì)的不同,這對學生的思維是一個突破,另外,對于q = 1這一特殊情況,學生往往容易忽視,尤其是在后面使用的過程中容易出錯。

  三.教學目標。

  根據(jù)教學大綱的要求、本節(jié)教材的特點和本班學生的認知規(guī)律,本節(jié)課的教學目標確定為:(1)知識技能目標————理解并掌握等比數(shù)列前n項和公式的推導過程、公式的特點,在此基礎上,并能初步應用公式解決與之有關的問題。

  (2)過程與方法目標————通過對公式推導方法的探索與發(fā)現(xiàn),向?qū)W生滲透特殊到一般、類比與轉(zhuǎn)化、分類討論等數(shù)學思想,培養(yǎng)學生觀察、比較、抽象、概括等邏輯思維能力和逆向思維的能力.

  (3)情感,態(tài)度與價值觀————培養(yǎng)學生勇于探索、敢于創(chuàng)新的精神,從探索中獲得成功的體驗,感受數(shù)學的奇異美、結(jié)構(gòu)的對稱美、形式的簡潔美。

  四.重點,難點分析。

  教學重點:公式的推導、公式的特點和公式的運用。

  教學難點:公式的推導方法及公式應用中q與1的關系。

  五.教法與學法分析.

  培養(yǎng)學生學會學習、學會探究是全面發(fā)展學生能力的重要前提,是高中新課程改革的`主要任務。如何培養(yǎng)學生學會學習、學會探究呢?建構(gòu)主義認為:“知識不是被動吸收的,而是由認知主體主動建構(gòu)的!边@個觀點從教學的角度來理解就是:知識不是通過教師傳授得到的,而是學生在一定的情境中,運用已有的學習經(jīng)驗,并通過與他人(在教師指導和學習伙伴的幫助下)協(xié)作,主動建構(gòu)而

  獲得的,建構(gòu)主義教學模式強調(diào)以學生為中心,視學生為認知的主體,教師只對學生的意義建構(gòu)起幫助和促進作用。因此,本節(jié)課采用了啟發(fā)式和探究式相結(jié)合的教學方法,讓老師的主導性和學生的主體性有機結(jié)合,使學生能夠愉快地自覺學習,通過學生自己觀察、分析、探索等步驟,自己發(fā)現(xiàn)解決問題的方法,比較論證后得到一般性結(jié)論,形成完整的數(shù)學模型,再運用所得理論和方法去解決問題。一句話:還課堂以生命力,還學生以活力。

  六.課堂設計

  (一)創(chuàng)設情境,提出問題。(時間設定:3分鐘)

  [利用投影展示]在古印度,有個名叫西薩的人,發(fā)明了國際象棋,當時的印度國王大為贊賞,對他說:我可以滿足你的任何要求。西薩說:請給我棋盤的64個方格上,第一格放1粒小麥,第二格放2粒,第三格放4粒,往后每一格都是前一格的兩倍,直至第64格。國王令宮廷數(shù)學家計算,結(jié)果出來后,國王大吃一驚。為什么呢?

  [設計這個情境目的是在引入課題的同時激發(fā)學生的興趣,調(diào)動學習的積極性.故事內(nèi)容緊扣本節(jié)課的主題與重點]

  提出問題1:同學們,你們知道西薩要的是多少粒小麥嗎?

高中數(shù)學教學設計 5

  提出問題:

  新課程認為知識不是單方面通過教師傳授得到的,而是學生在一定的情境中,運用已有的學習經(jīng)驗,并通過與他人(教師指導和同學的幫助)協(xié)作,主動建構(gòu)而獲得的。它強調(diào)以學生為中心,視學生為認知的主體,教師只對學生的意義建構(gòu)起幫助和促進作用。通過多年教學實踐和對新課程的認識,我認為若遵循這個原則進行數(shù)學課堂教學,學生的學習將是一種高效的活動。

  教材中的地位:

  本節(jié)內(nèi)容是在指數(shù)范圍擴充到實數(shù)的基礎上引入指數(shù)函數(shù)的,而指數(shù)函數(shù)是高中研究的第一種具體函數(shù)。是在初中已經(jīng)初步探討了正比例函數(shù),反比例函數(shù),一次函數(shù),二次函數(shù)的圖像和性質(zhì)的基礎上,在進一步學習了函數(shù)的概念及有關性質(zhì)的前提下,去研究學習的。重點是指數(shù)函數(shù)的圖像及性質(zhì),難點在于弄清楚底數(shù)a對于函數(shù)變化的影響。這節(jié)課主要是學生利用描點法畫出函數(shù)的圖像,并描述出函數(shù)的圖像特征,從而指出函數(shù)的性質(zhì)。使學生從形到數(shù)的熟悉,體驗研究函數(shù)的過程與思路,實現(xiàn)意識的深化。

  設計背景:

  在新教材的教學中,我慢慢體會到新教材滲透的、螺旋式上升的基本理念,知識點的形成過程經(jīng)歷從具體的實例引入,形成概念,再次運用于實際問題或具體數(shù)學問題的過程,它的應用性,實用性更明顯的體現(xiàn)出來。學數(shù)學重在培養(yǎng)學生的思維品質(zhì),經(jīng)過多年的數(shù)學學習,學生還是害怕學數(shù)學,尤其高中的數(shù)學,它對于學生來說顯得很抽象。所以如果再讓讓學生感到數(shù)學離我們的生活太遠,那么將很難激發(fā)他們的學習愛好。所以在教學中我盡力抓住知識的本質(zhì),以實際問題引入新知識。另外,就本章來說,指數(shù)函數(shù)是學習函數(shù)概念及基本性質(zhì)之后研究的第一個重要的函數(shù),讓學生學會研究一個新的具體函數(shù)的方法比學會本身的知識更重要。在這個過程中,所有的知識都是生疏的,在大腦中沒有形成基本的框架結(jié)構(gòu),需要老師的引導,使他們逐漸建立。數(shù)學中任何知識的形成都體現(xiàn)出它的思想與方法,因而授課中注重讓學生領悟其中的思想,運用其中的方法去學習新的知識,是非常重要的。

  教學目標:

  一、知識:

  理解指數(shù)函數(shù)的定義,能初步把握指數(shù)函數(shù)的圖像,性質(zhì)及其簡單應用。

  二、過程與方法:

  由實例引入指數(shù)函數(shù)的概念,利用描點作圖的方法做出指數(shù)函數(shù)的圖像,(有條件的話借助計算機演示驗證指數(shù)函數(shù)圖像)由圖像研究指數(shù)函數(shù)的性質(zhì)。利用性質(zhì)解決實際問題。

  三、能力:

  1.通過指數(shù)函數(shù)的圖像和性質(zhì)的研究,培養(yǎng)學生觀察,分析和歸納的能力,進一步體會數(shù)形結(jié)合的思想方法。

  2.通過對指數(shù)函數(shù)的研究,使學生能把握函數(shù)研究的基本方法。

  教學過程:

  由實際問題引入:

  問題1:某種細胞分裂時,由1個分裂成2個,2個分裂成4個,?1個這樣的細胞分裂x次后,得到的細胞的個數(shù)y與x之間的關系是什么?

  分裂次數(shù)與細胞個數(shù)

  1,2;2,2×2=22;3,2×2×2=23;????;x,2×2×……×2=2x

  歸納:y=2x

  問題2:某種放射性物質(zhì)不斷變化為其它物質(zhì),每經(jīng)過1年剩留的這種物質(zhì)是原來的84%,那么經(jīng)過x年后剩留量y與x的關系是什么?

  經(jīng)過1年,剩留量y=1×84%=;經(jīng)過2年,剩留量y=×=?經(jīng)過x年,剩留量y=

  尋找異同:

  你能從以上的兩個例子中得到的關系式里找到什么異同點嗎?

  共同點:變量x與y構(gòu)成函數(shù)關系式,是指數(shù)的形式,自變量在指數(shù)位置,底數(shù)是常數(shù);不同點:底數(shù)的取值不同。

  那么,今天我們來學習新的一個基本函數(shù):指數(shù)函數(shù)

  得到指數(shù)函數(shù)的定義:定義:形如y=ax(a>0且a≠1)的函數(shù)叫做指數(shù)函數(shù)。

  在以前我們學過的函數(shù)中,一次函數(shù)用形如y=kx+b(k≠0)的形式表示,反比例函數(shù)用形如y=k/x(k≠0)表示,二次函數(shù)y=ax2+bx+c(a≠0)表示。對于其一

  般形式上的系數(shù)都有相應的限制。問:為什么指數(shù)函數(shù)對底數(shù)有這樣的要求呢?若a=0,當x>0時,恒等于0,沒有研究價值;當x≤0時,無意義。

  若a

  若a=1,則=1,是一個常量,也沒有研究的必要。

  所以有規(guī)定且a>0且a≠1。

  由定義,我們可以對指數(shù)函數(shù)有一初步熟悉。

  進一步理解函數(shù)的定義:

  指數(shù)函數(shù)的定義域:在我們學過的指數(shù)運算中,指數(shù)可以是有理數(shù),當指數(shù)是無理數(shù)時,也是一個確定的實數(shù),對于無理數(shù),學過的有理指數(shù)冪的性質(zhì)和運算法則都適用,所以指數(shù)函數(shù)的定義域為R。

  研究函數(shù)的途徑:由函數(shù)的圖像的性質(zhì),從形與數(shù)兩方面研究。

  學習函數(shù)的一個很重要的目標就是應用,那么首先要對函數(shù)作一研究,研究函數(shù)的圖像及性質(zhì),然后利用其圖像性質(zhì)去解決數(shù)學問題和實際問題。根據(jù)以往的經(jīng)驗,你會從那幾個角度考慮?(圖像的分布范圍,圖像的變化趨勢)圖像的分布情況與函數(shù)的定義域,值域有關,函數(shù)的變化趨勢體現(xiàn)函數(shù)的單調(diào)性。引導學生從定義域,值域,單調(diào)性,奇偶性,與坐標軸的交點情況著手開始。

  首先我們做出指數(shù)函數(shù)的圖像,我們研究一般性的事物,常用的方法是:由特殊到一般。

  我們以具體函數(shù)入手,讓學生以小組形式取不同底數(shù)的指數(shù)函數(shù)畫它們的圖像,將學生畫的函數(shù)圖像展示,(畫函數(shù)的圖像的步驟是:列表,描點,連線。)。最后,老師在黑板(電腦)上演示列表,描點,連線的過程,并且,畫出取不同的值時,函數(shù)的圖像。

  要求學生描述出指數(shù)函數(shù)圖像的'特征,并試著描述出性質(zhì)。

  數(shù)學發(fā)展的歷史表明,每一個重要的數(shù)學概念的形成和發(fā)展,其中都有豐富的經(jīng)歷,新課程較好的體現(xiàn)了這點。對新課程背景下的學生而言,數(shù)學的知識應該是一個數(shù)學化的過程,即通過對常識材料進行細致的觀察、思考,借助于分析、比較、綜合、抽象、概括等思維活動,對常識材料進行去粗取精、去偽存真的精加工。該案例正是從數(shù)學研究和數(shù)學實驗的過程中進行設計。雖然學生的思維不一定真實的重演了人類對數(shù)學知識探索的全過程,但確確實實通過實驗、觀察、比較、分析、歸納、抽象、概括等思維活動,在探索中將數(shù)學數(shù)學化,從而才使學生對數(shù)學學習產(chǎn)生了樂趣,對數(shù)學的研究方法有了一定的了解。

  雖然學生要學的數(shù)學是歷史上前人已建構(gòu)好了的,但對他們而言,仍是全新的、未知的,需要用他們自己的學習活動來再現(xiàn)類似的過程。該案例正是從創(chuàng)設問題情景作為教學設計的重要的內(nèi)容之一。教師應該把教學設計成學生動手操作、觀察猜想、揭示規(guī)律等一系列過程,側(cè)重于學生的探索、分析與思考,側(cè)重于過程的探究及在此過程中所形成的一般數(shù)學能力。

  教師的地位應由主導者轉(zhuǎn)變?yōu)橐龑д撸菇虒W活動真正成為學生的活動。在教學過程中,把學習的主動權(quán)交給學生,在時間和空間上保證學生在教師的指導下,學生能自己獨立自主的探究學習。使教學活動始終處于學生的“最近發(fā)展區(qū)”,使每一個學生通過自己的努力,在自己原有的基礎上都有所獲,都有提高。總之,通過案例研究,不斷研究新教材、新理念,不斷調(diào)整教學策略優(yōu)化課堂教學,培養(yǎng)學生探究學習與創(chuàng)新學習能力將是我們在數(shù)學教學中要繼續(xù)探究的課題。

高中數(shù)學教學設計 6

  一、教學內(nèi)容分析

  圓錐曲線的定義反映了圓錐曲線的本質(zhì)屬性,它是無數(shù)次實踐后的高度抽象,恰當?shù)乩枚x解題,許多時候能以簡馭繁。因此,在學習了橢圓、雙曲線、拋物線的定義及標準方程、幾何性質(zhì)后,再一次強調(diào)定義,學會利用圓錐曲線定義來熟練的解題”。

  二、學生學習情況分析

  我所任教班級的學生參與課堂教學活動的積極性強,思維活躍,但計算能力較差,推理能力較弱,使用數(shù)學語言的表達能力也略顯不足。

  三、設計思想

  由于這部分知識較為抽象,如果離開感性認識,容易使學生陷入困境,降低學習熱情。在教學時,借助多媒體動畫,引導學生主動發(fā)現(xiàn)問題、解決問題,主動參與教學,在輕松愉快的環(huán)境中發(fā)現(xiàn)、獲取新知,提高教學效率。

  四、教學目標

  1、深刻理解并熟練掌握圓錐曲線的定義,能靈活應用定義解決問題;熟練掌握焦點坐標、頂點坐標、焦距、離心率、準線方程、漸近線、焦半徑等概念和求法;能結(jié)合平面幾何的基本知識求解圓錐曲線的方程。

  2、通過對練習,強化對圓錐曲線定義的理解,提高分析、解決問題的能力;通過對問題的不斷引申,精心設問,引導學生學習解題的一般方法。

  3、借助多媒體輔助教學,激發(fā)學習數(shù)學的興趣。

  五、教學重點與難點:

  教學重點

  1、對圓錐曲線定義的理解

  2、利用圓錐曲線的定義求“最值”

  3、“定義法”求軌跡方程

  教學難點:

  巧用圓錐曲線定義解題

  六、教學過程設計

  【設計思路】

  (一)開門見山,提出問題

  一上課,我就直截了當?shù)亟o出例題1:

  (1)已知A(-2,0),B(2,0)動點M滿足|MA|+|MB|=2,則點M的軌跡是()。

  (A)橢圓(B)雙曲線(C)線段(D)不存在

  (2)已知動點M(x,y)滿足(x1)2(y2)2|3x4y|,則點M的軌跡是()。

  (A)橢圓(B)雙曲線(C)拋物線(D)兩條相交直線

  【設計意圖】

  定義是揭示概念內(nèi)涵的邏輯方法,熟悉不同概念的不同定義方式,是學習和研究數(shù)學的`一個必備條件,而通過一個階段的學習之后,學生們對圓錐曲線的定義已有了一定的認識,他們是否能真正掌握它們的本質(zhì),是我本節(jié)課首先要弄清楚的問題。

  為了加深學生對圓錐曲線定義理解,我以圓錐曲線的定義的運用為主線,精心準備了兩道練習題。

  【學情預設】

  估計多數(shù)學生能夠很快回答出正確答案,但是部分學生對于圓錐曲線的定義可能并未真正理解,因此,在學生們回答后,我將要求學生接著說出:若想答案是其他選項的話,條件要怎么改?這對于已學完圓錐曲線這部分知識的學生來說,并不是什么難事。但問題(2)就可能讓學生們費一番周折——如果有學生提出:可以利用變形來解決問題,那么我就可以循著他的思路,先對原等式做變形:(x1)2(y2)25

  這樣,很快就能得出正確結(jié)果。如若不然,我將啟發(fā)他們從等式兩端的式子|3x4y|5入手,考慮通過適當?shù)淖冃危D(zhuǎn)化為學生們熟知的兩個距離公式。

  在對學生們的解答做出判斷后,我將把問題引申為:該雙曲線的中心坐標是,實軸長為,焦距為。以深化對概念的理解。

  (二)理解定義、解決問題

  例2:

  (1)已知動圓A過定圓B:x2y26x70的圓心,且與定圓C:xy6x910相內(nèi)切,求△ABC面積的最大值。

  (2)在(1)的條件下,給定點P(-2,2),求|PA|

  【設計意圖】

  運用圓錐曲線定義中的數(shù)量關系進行轉(zhuǎn)化,使問題化歸為幾何中求最大(小)值的模式,是解析幾何問題中的一種常見題型,也是學生們比較容易混淆的一類問題。例2的設置就是為了方便學生的辨析。

  【學情預設】

  根據(jù)以往的經(jīng)驗,多數(shù)學生看上去都能順利解答本題,但真正能完整解答的可能并不多。事實上,解決本題的關鍵在于能準確寫出點A的軌跡,有了練習題1的鋪墊,這個問題對學生們來講就顯得頗為簡單,因此面對例2(1),多數(shù)學生應該能準確給出解答,但是對于例2(2)這樣相對比較陌生的問題,學生就無從下手。我提醒學生把3/5和離心率聯(lián)系起來,這樣就容易和第二定義聯(lián)系起來,從而找到解決本題的突破口。

  (三)自主探究、深化認識

  如果時間允許,練習題將為學生們提供一次數(shù)學猜想、試驗的機會。

  練習:

  設點Q是圓C:(x1)2225|AB|的最小值。3y225上動點,點A(1,0)是圓內(nèi)一點,AQ的垂直平分線與CQ交于點M,求點M的軌跡方程。

  引申:若將點A移到圓C外,點M的軌跡會是什么?

  【設計意圖】練習題設置的目的是為學生課外自主探究學習提供平臺,當然,如果課堂上時間允許的話,

  可借助“多媒體課件”,引導學生對自己的結(jié)論進行驗證。

  【知識鏈接】

  (一)圓錐曲線的定義

  1、圓錐曲線的第一定義

  2、圓錐曲線的統(tǒng)一定義

  (二)圓錐曲線定義的應用舉例

  1、雙曲線1的兩焦點為F1、F2,P為曲線上一點,若P到左焦點F1的距離為12,求P到右準線的距離。

  2、|PF1||PF2|2P為等軸雙曲線x2y2a2上一點,F(xiàn)1、F2為兩焦點,O為雙曲線的中心,求的|PO|取值范圍。

  3、在拋物線y22px上有一點A(4,m),A點到拋物線的焦點F的距離為5,求拋物線的方程和點A的坐標。

  4、例題:

  (1)已知點F是橢圓1的右焦點,M是這橢圓上的動點,A(2,2)是一個定點,求|MA|+|MF|的最小值。

  (2)已知A(,3)為一定點,F(xiàn)為雙曲線1的右焦點,M在雙曲線右支上移動,當|AM||MF|最小時,求M點的坐標。

  (3)已知點P(-2,3)及焦點為F的拋物線y,在拋物線上求一點M,使|PM|+|FM|最小。

  5、已知A(4,0),B(2,2)是橢圓1內(nèi)的點,M是橢圓上的動點,求|MA|+|MB|的最小值與最大值。

  七、教學反思

  1、本課將借助于,將使全體學生參與活動成為可能,使原來令人難以理解的抽象的數(shù)學理論變得形象,生動且通俗易懂,同時,運用“多媒體課件”輔助教學,節(jié)省了板演的時間,從而給學生留出更多的時間自悟、自練、自查,充分發(fā)揮學生的主體作用,這充分顯示出“多媒體課件”與探究合作式教學理念的有機結(jié)合的教學優(yōu)勢。

  2、利用兩個例題及其引申,通過一題多變,層層深入的探索,以及對猜測結(jié)果的檢測研究,培養(yǎng)學生思維能力,使學生從學會一個問題的求解到掌握一類問題的解決方法,循序漸進的讓學生把握這類問題的解法;將學生容易混淆的兩類求“最值問題”并為一道題,方便學生進行比較、分析。雖然從表面上看,我這一堂課的教學容量不大,但事實上,學生們的思維運動量并不會小。

  總之,如何更好地選擇符合學生具體情況,滿足教學目標的例題與練習、靈活把握課堂教學節(jié)奏仍是我今后工作中的一個重要研究課題,而要能真正進行素質(zhì)教育,培養(yǎng)學生的創(chuàng)新意識,自己首先必須更新觀念——在教學中適度使用多媒體技術(shù),讓學生有參與教學實踐的機會,能夠使學生在學習新知識的同時,激發(fā)起求知的欲望,在尋求解決問題的辦法的過程中獲得自信和成功的體驗,于不知不覺中改善了他們的思維品質(zhì),提高了數(shù)學思維能力。

高中數(shù)學教學設計 7

  一、學習目標與任務

  1、學習目標描述

  知識目標

  (A)理解和掌握圓錐曲線的第一定義和第二定義,并能應用第一定義和第二定義來解題。

  (B)了解圓錐曲線與現(xiàn)實生活中的聯(lián)系,并能初步利用圓錐曲線的知識進行知識延伸和知識創(chuàng)新。

  能力目標

  (A)通過學生的操作和協(xié)作探討,培養(yǎng)學生的實踐能力和分析問題、解決問題的能力。

  (B)通過知識的再現(xiàn)培養(yǎng)學生的創(chuàng)新能力和創(chuàng)新意識。

  (C)專題網(wǎng)站中提供各層次的例題和習題,解決各層次學生的學習過程中的各種的需要,從而培養(yǎng)學生應用知識的能力。

  德育目標

  讓學生體會知識產(chǎn)生的全過程,培養(yǎng)學生運動變化的辯證唯物主義思想。

  2、學習內(nèi)容與學習任務說明

  本節(jié)課的內(nèi)容是圓錐曲線的第一定義和圓錐曲線的統(tǒng)一定義,以及利用圓錐曲線的定義來解決軌跡問題和最值問題。

  學習重點:圓錐曲線的第一定義和統(tǒng)一定義。

  學習難點:圓錐曲線第一定義和統(tǒng)一定義的應用。

  明確本課的重點和難點,以學習任務驅(qū)動為方式,以圓錐曲線定義和定義應用為中心,主動操作實驗、大膽分析問題和解決問題。

  抓住本節(jié)課的重點和難點,采取的基于學科專題網(wǎng)站下的三者結(jié)合的教學模式,突出重點、突破難點。

  充分利用《圓錐曲線》專題網(wǎng)站內(nèi)的內(nèi)容,在著重學習內(nèi)容的基礎上,內(nèi)延外拓,培養(yǎng)學生的創(chuàng)新精神和克服困難的信心。

  二、學習者特征分析

 。ㄕf明學生的學習特點、學習習慣、學習交往特點等)

  l本課的學習對象為高二下學期學生,他們經(jīng)過近兩年的高中學習,已經(jīng)有一定的學習基礎和分析問題、解決問題的能力,基本的計算機操作較為熟練。

  高二年下學期學生由于高考的壓力,他們保持著傳統(tǒng)教學的學習習慣,在

  l課堂上的主體作用的體現(xiàn)不是太充分,但是如果他們還是樂于嘗試、勇于探索的。

  高二年的學生在學習交往上“個別化學習”和“協(xié)作討論學習”并存,也就是說學生是具有一定的群體性小組交流能力與協(xié)同討論學習能力的,還是能完成上課時教師布置的協(xié)作學習任務的。

  三、學習環(huán)境選擇與學習資源設計

  1.學習環(huán)境選擇(打√)

 。1)Web教室(√)(2)局域網(wǎng)(3)城域網(wǎng)(4)校園網(wǎng)(√)(5)Internet(√)

  (6)其它

  2、學習資源類型(打√)

  (1)課件(網(wǎng)絡課件)(√)(2)工具(3)專題學習網(wǎng)站(√)(4)多媒體資源庫

 。5)案例庫(6)題庫(7)網(wǎng)絡課程(8)其它

  3、學習資源內(nèi)容簡要說明

 。ㄕf明名稱、網(wǎng)址、主要內(nèi)容等)

  《圓錐曲線專題網(wǎng)站》:從自然與科技、定義與應用、性質(zhì)與實踐和創(chuàng)新與未來四個方面圍繞圓錐曲線進行探討與研究。(IP:192.168.3.134)

  用Flash5、幾何畫板和Authorware6制作可操作且具有交互性的網(wǎng)絡課件放在專題網(wǎng)站里。

  四、學習情境創(chuàng)設

  1、學習情境類型(打√)

  (1)真實性情境(√)(2)問題性情境(√)

 。3)虛擬性情境(√)(4)其它

  2、學習情境設計

  真實性情境:用Flash5制作的一系列教學軟件。用幾何畫板制作的《圓錐曲線的統(tǒng)一定義》的教學軟件。

  問題性情境:圓錐曲線的截取方法、圓錐曲線的各種定義、典型例題。

  虛擬性情境:Authorware6制作的《圓錐曲線的截取》,模擬曲線截取。

  五、學習活動的組織

  1、自主學習設計(打√并填寫相關內(nèi)容)

  (1)拋錨式

  (2)支架式(√)相應內(nèi)容:圓錐曲線的第一定義和統(tǒng)一定義。

  使用資源:數(shù)學教材、專題網(wǎng)站及專題網(wǎng)站下的多媒體教學軟件。

  學生活動:分析、操作、協(xié)作討論、總結(jié)、提交結(jié)論。

  教師活動:問題的提出。學習資源獲取路徑的指導。問題解答和咨詢。

  (3)隨機進入式(√)相應內(nèi)容:圓錐曲線定義的典型應用。

  使用資源:軌跡問題、最值問題、其它問題三種典型例題以及各個題目的動畫演示和答案。

  學生活動:根據(jù)自身情況選題、分析題目、協(xié)作討論、解答題目。

  教師活動:講解例題,總結(jié)點評學生做題過程中的問題。

  (4)其它

  2、協(xié)作學習設計(打√并填寫相關內(nèi)容)

 。1)競爭

 。2)伙伴(√)

  相應內(nèi)容:圓錐曲線的第一定義和統(tǒng)一定義

  使用資源:數(shù)學教材、專題網(wǎng)站及專題網(wǎng)站下的多媒體教學軟件。

  分組情況:每組三人

  學生活動:學生之間對圓錐曲線的定義展開討論,從而達到對定義的理解和掌握。

  教師活動:問題的提出。學習資源獲取路徑的'指導。問題解答和咨詢。

 。3)協(xié)同(√)

  相應內(nèi)容:圓錐曲線定義的典型應用。

  使用資源:軌跡問題、最值問題、其它問題三種典型例題以及各個題目的動畫演示和答案。

  分組情況:每組三人。

  學生活動:通過協(xié)作討論區(qū),同學之間互相配合、互相幫助、各種觀點互相補充。

  教師活動:總結(jié)點評學生做題過程中的問題。

  (4)辯論

 。5)角色扮演

  (6)其它

  4、教學結(jié)構(gòu)流程的設計

  六、學習評價設計

  1、測試形式與工具(打√)

 。1)堂上提問(√)(2)書面練習(3)達標測試(4)學生自主網(wǎng)上測試(√)(5)合作完成作品(6)其它

  2、測試內(nèi)容

  教師堂上提問:圓錐曲線的定義、學生提交的結(jié)論的完整性、學生協(xié)作討論時的疑問、例題講解過程中問題,課堂總結(jié)。

  學生自主網(wǎng)上測試:解決軌跡問題、最值問題、其它問題三種典型題目。

  (附)圓錐曲線專題網(wǎng)站設計分析

  (1)設計思路

  (A)給學生操作與實踐的機會:在每一環(huán)節(jié)中建設一個可供學生操作的實驗平臺。

  (B)突出教學中“主導和主體”的作用:在每一環(huán)節(jié)中建設一個可供師生交流的平臺。

  (C)突出知識的再創(chuàng)新過程和知識的延伸:如圓錐曲線的作法和知識的創(chuàng)新與應用。

  (D)強調(diào)教學軟件的交互性:如在題目中給出提示的動畫過程和解答過程。

  (E)突出和各學科的聯(lián)系:如斜拋運動和行星運動等等。

  (F)強調(diào)分層次的教學:

  如在知識應用中的配置不同層次的例題和練習:

  (2)網(wǎng)站導航圖

高中數(shù)學教學設計 8

  一、問題導入,引發(fā)探究

  師:我在旅游時買回來一種磁性蛇蛋玩具(如圖),所謂生活處處皆學問嘛,我把它運動過程中的軸截面用圖形計算器做出了以下有趣的現(xiàn)象:

  兩個全等的橢圓形卵,相互依偎旋轉(zhuǎn)(動畫)。你能通過所學解析幾何知識,構(gòu)造出這種有趣的現(xiàn)象嗎?

  二、實驗探究,交流發(fā)現(xiàn)

  探究1:卵之由來——橢圓的形成

  (1)單個定橢圓的形成

  橢圓的定義:平面內(nèi)到兩定點、的距離之和等于常數(shù)(大于)的點的軌跡叫做橢圓。(即若平面內(nèi)的動點到兩定點、的距離之和等于常數(shù)(大于),則點的軌跡為以、為焦點的橢圓。)

  思考1:如何使為定值?

 。ú环翆蓷l線段的長度和轉(zhuǎn)化為一條線段,即在線段的延長線上取點,使得,此時,為定值則可轉(zhuǎn)化為為定值。)

  思考2:若為定值,則點的軌跡是什么?定點與點軌跡的位置關系?

  (以定點為圓心,為半徑的圓。由于>,則點在圓內(nèi)。)

  思考3:如何確定點的位置,使得,且?

 。ň段的中垂線與線段的交點為點。)

  揭示思路來源:(高中數(shù)學選修2—1P497)如圖,圓的半徑為定長,是圓內(nèi)一個定點,是圓上任意一點,線段的垂直平分線l和半徑相交于點,當點在圓上運動時,點的軌跡是什么?為什么?

 。ㄔO圓的半徑為,由橢圓定義,(常數(shù)),且,所以當點在圓周上運動時,點的軌跡是以為焦點的橢圓。)

  圖形計算器作圖驗證:以圓與定點所在直線為軸,中垂線為軸建立直角坐標系,設圓半徑,,即圓,點,則點軌跡是以以為焦點的橢圓,橢圓方程為。

  (2)單個動橢圓的形成

  思考4:構(gòu)造一種動橢圓的方式

 。ㄓ捎跈E圓形狀不變,即離心率不變,而長軸長為定值,則也要為定值,因此可將圓內(nèi)點取在圓的同心圓上,當點在圓上動時,即可得到動橢圓。)

  圖形計算器作圖驗證:當圓內(nèi)動點取在圓的同心圓上,運動點,即得到動橢圓。

 。3)兩個橢圓的形成

  觀察兩個橢圓相互依偎旋轉(zhuǎn)的幾個畫面,分析兩橢圓的位置關系。判斷兩個橢圓關于對稱軸對稱,且直線過兩橢圓公共點,所以直線為兩橢圓的公切線。

  因而找到公切線,作橢圓關于切線的對稱橢圓即可。

  探究2:卵之所依——切線的判斷與證明

  線段的垂直平分線與橢圓的位置關系

 。1)利用圖形計算器中的“圖象分析”工具直觀判斷與橢圓的位置關系、設圓上動點,則線段的中垂線的方程為,將動點的橫坐標保存為變量,縱坐標保存為變量,隨著點的改變,在Graphs中畫出相應的動直線、用圖形計算器中的“圖象分析”工具找出橢圓所在區(qū)域內(nèi)的直線與橢圓的交點,拖動點,動態(tài)觀測交點個數(shù)的變化,發(fā)現(xiàn)無論點在何處,動直線與橢圓只有一個交點,因此判斷直線與橢圓相切,并可求出該切點的坐標、也可以將橢圓方程與直線方程聯(lián)立,用“代數(shù)”工具中的solve()求出方程組的解,從而判斷根的情況、

 。2)證明橢圓與直線相切、

  不妨設直線:,其中,,與橢圓方程聯(lián)立,得,因此

  ,

  將,,代入上式,用“代數(shù)”工具中的expand()化簡式子,得,所以橢圓與直線相切,切點為、

 。3)證明由任意圓上的動點和圓內(nèi)一點確定的橢圓與線段中垂線均相切(反證法)

  因為橢圓是點的軌跡,而點是直線與線段中垂線的交點,所以點既在橢圓上,也在直線上。因此,直線與橢圓至少有一個公共點,即直線與橢圓相切或相交。

  假設直線與橢圓相交,設另一個交點為(與不重合)、因為,所以;又因為,

  所以為定值,而,矛盾、因此直線與橢圓相切。

  探究3:兩卵相依——對稱旋轉(zhuǎn)橢圓的形成與動畫

  當圓內(nèi)動點取在圓的同心圓上,作橢圓關于切線的對稱橢圓,運動點,隱藏相關坐標系與輔助圓等圖形,呈現(xiàn)兩卵相互依偎旋轉(zhuǎn)的有趣效果。

  改變一些問題條件,進行深入探究與發(fā)現(xiàn)。

  探究4:改變點位置,探究點軌跡

 。1)曲線判斷:利用TI圖形計算器作圖分析,拖動點,當點在定圓內(nèi)且不與圓心重合時,交點的軌跡是橢圓;當點在定圓外時,則,交點的軌跡是雙曲線;當點與圓心重合時,點的軌跡是圓的同心圓;當點在圓周上時,點的'軌跡是是一點(圓心)、

 。2)方程證明:圓,設點,可解得點的軌跡方程為

  當或時,點的軌跡為圓心;

  當且時,點的軌跡方程為

  當時,點的軌跡為圓:;

  當且時,點的軌跡為橢圓;

  當或時,點的軌跡為雙曲線。

  探究5:改變切線位置,探究由切線得到的包絡圖形

  查閱有關參考書籍,了解圓錐曲線的包絡線,并利用圖形計算器作出橢圓、雙曲線的包絡圖形,自主探究拋物線的包絡線(將定圓改為定直線)。

  結(jié)論:所謂包絡圖,就是指有一條曲線按照一定運動規(guī)律運動,保留其所有瞬間位置的影像,會有一條曲線能夠和該運動曲線所有位置相切,這條曲線就成為該運動曲線的包絡線。

  探究6:拓展延伸:橢圓切線的幾個性質(zhì)及其應用

  性質(zhì)1:是橢圓的兩個焦點,若點是橢圓上異于長軸兩端點的任一點,則點的切線平分的外角。

  性質(zhì)1′:點處的法線(過點且垂直于切線)平分。(即為橢圓的光學性質(zhì):從橢圓的一個焦點發(fā)出的光線,經(jīng)過橢圓反射后,反射光線交于橢圓的另一個焦點上。)

  課后探究:閱讀數(shù)學選修2—1P75閱讀與思考——圓錐曲線的光學性質(zhì)及其應用,了解雙曲線、拋物線的光學性質(zhì)。

  練習1:已知為橢圓的左、右焦點,點為橢圓上任一點,過焦點向作垂線,垂足為,則點的軌跡是_____________,軌跡方程是_______________。

  解:(1)直觀判斷:作軌跡

 。2)嚴謹證明:圓的定義

  由此得到:

  性質(zhì)2:是橢圓的兩個焦點,是長軸的兩個端點,過橢圓上異于的任一點的切線,過做切線的垂線,垂足分別為,則在以長軸為直徑的圓上。

  練習2:已知為橢圓的左、右焦點,點為橢圓上任一點,直線與橢圓相切與點,且到的垂線長分別為,求證:為定值。

  解:

  (1)直觀判斷:作圖

 。2)嚴謹證明:利用性質(zhì)2及圓的相交弦性質(zhì),

  由此得到:

  性質(zhì)3:已知橢圓為,則焦點到橢圓任一切線的垂線長乘積等于。

  課后探究2:已知為橢圓的左、右焦點,點為橢圓上任一點,直線過點,且到的垂線長分別為,則

 、佼敃r,直線與橢圓的位置關系;(相交)

 、诋敃r,直線與橢圓的位置關系。(相離)

 。惐戎本與圓位置關系的幾何法,此為直線與橢圓位置關系的幾何法)

  課后探究:雙曲線、拋物線的切線是否有類似性質(zhì)?

高中數(shù)學教學設計 9

  一、教學目標設計

  通過實例理解充分條件、必要條件的意義。

  能夠在簡單的問題情境中判斷條件的充分性、必要性。

  二、教學重點及難點

  充分條件、必要條件的判斷;

  充分條件、必要條件的判斷方法。

  三、教學流程設計

  四、教學過程設計

  一、概念引入

  早在戰(zhàn)國時期,《墨經(jīng)》中就有這樣一段話有之則必然,無之則未必不然,是為大故無之則必不然,有之則未必然,是為小故。

  今天,在日常生活中,常聽人說:這充分說明,沒有這個必要等,在數(shù)學中,也講充分和必要,這節(jié)課,我們就來學習教材第一章第五節(jié)充分條件與必要條件。

  二、概念形成

  1、 首先請同學們判斷下列命題的真假

  (1)若兩三角形全等,則兩三角形的面積相等。

  (2)若三角形有兩個內(nèi)角相等,則這個三角形是等腰三角形。

  (3)若某個整數(shù)能夠被4整除,則這個整數(shù)必是偶數(shù)。

  (4) 若ab=0,則a=0。

  解答:命題(2)、(3)、(4)為真。命題(4)為假;

  2、請同學用推斷符號寫出上述命題。

  解答:(1)兩三角形全等 兩三角形的面積相等。

  (2) 三角形有兩個內(nèi)角相等 三角形是等腰三角形。

  (3) 某個整數(shù)能夠被4整除則這個整數(shù)必是偶數(shù);

  (4)ab=0 a=0。

  3、充分條件與必要條件

  繼續(xù)結(jié)合上述實例說明什么是充分條件、什么是必要條件。

  若某個整數(shù)能夠被4整除則這個整數(shù)必是偶數(shù)中,我們稱某個整數(shù)能夠被4整除是這個整數(shù)必是偶數(shù)的充分條件,可以解釋為:只要某個整數(shù)能夠被4整除成立,這個整數(shù)必是偶數(shù)就一定成立;而稱這個整數(shù)必是偶數(shù)是某個整數(shù)能夠被4整除的必要條件,可以解釋成如果某個整數(shù)能夠被4整除 成立,就必須要這個整數(shù)必是偶數(shù)成立

  充分條件:一般地,用、分別表示兩件事,如果這件事成立,可以推出這件事也成立,即,那么叫做的充分條件。

  [說明]:①可以解釋為:為了使成立,具備條件就足夠了。②可進一步解釋為:有它即行,無它也未必不行。③結(jié)合實例解釋為: x = 0 是 xy = 0 的充分條件,xy = 0不一定要 x = 0。)

  必要條件:如果,那么叫做的必要條件。

  [說明]:①可以解釋為若,則叫做的必要條件,是的充分條件。②無它不行,有它也不一定行③結(jié)合實例解釋為:如 xy = 0是 x = 0的必要條件,若xy0,則一定有 x若xy = 0也不一定有 x = 0。

  回答上述問題(1)、(2)中的條件關系。

  (1)中:兩三角形全等是兩三角形的面積相等的充分條件;兩三角形的`面積相等是兩三角形全等的必要條件。

  (2)中:三角形有兩個內(nèi)角相等是三角形是等腰三角形的充分條件;三角形是等腰三角形是三角形有兩個內(nèi)角相等的必要條件。

  4、拓廣引申

  把命題:若某個整數(shù)能夠被4整除,則這個整數(shù)必是偶數(shù)中的條件與結(jié)論分別記作與,那么,原命題與逆命題的真假同與之間有什么關系呢?

  關系可分為四類:

  (1)充分不必要條件,即,而

  (2)必要不充分條件,即,而

  (3)既充分又必要條件,即,又有

  (4)既不充分也不必要條件,即,又有。

  三、典型例題(概念運用)

  例1:(1)已知四邊形ABCD是凸四邊形,那么AC=BD是四邊形ABCD是矩形的什么條件?為什么?(課本例題p22例4)

  (2) 是 的什么條件。

  (3)a+b是1,b什么條件。

  解:(1)AC=BD是四邊形ABCD是矩形的必要不充分條件。

  (2)充分不必要條件。

  (3)必要不充分條件。

  [說明]①如果把命題條件與結(jié)論分別記作與,則既要對進行判斷,又要對進行判斷。②要否定條件的充分性、必要性,則只需舉一反例即可。

  例2:判斷下列電路圖中p與q的充要關系。其中p:開關閉合;q:

  燈亮。(補充例題)

  [說明]①圖中含有兩個開關時,p表示其中一個閉合,另一個情況不確定。②加強學科之間的橫向溝通,通過圖示,深化概念認識。

  例3、探討下列生活中名言名句的充要關系。(補充例題)

  (1)頭發(fā)長,見識短。

  (2)驕兵必敗。

  (3)有志者事竟成。

  (4)春回大地,萬物復蘇。

  (5)不入虎穴、焉得虎子

  (6)四肢發(fā)達,頭腦簡單

  [說明]通過本例,充分調(diào)動學生生活經(jīng)驗,使得抽象概念形象化。從而激發(fā)學生學習熱情。

  四、鞏固練習

  1、課本P/22練習1.5(1)

  2:填表(補充)

  p q p是q的

  什么條件 q是p的

  什么條件

  兩個角相等 兩個角是對頂角

  內(nèi)錯角相等 兩直線平行

  四邊形對角線相等 四邊形是平行邊形

  a=b ac=bc

  [說明]通過練習,及時鞏固所學新知,反饋教學效果。

  五、課堂小結(jié)

  1、本節(jié)課主要研究的內(nèi)容:

  推斷符號,

  充分條件的意義 命題充分性、必要性的判斷。

  必要條件的意義

  2、 充分條件、必要條件判別步驟:

  ① 認清條件和結(jié)論。

  ② 考察p q和q p的真假。

  3、充分條件、必要條件判別技巧:

 、 可先簡化命題。

 、 否定一個命題只要舉出一個反例即可。

 、 將命題轉(zhuǎn)化為等價的逆否命題后再判斷。

  六、課后作業(yè)

  書面作業(yè):課本P/24習題1.51,2,3。

  五、教學設計說明

  1、充分條件、必要條件以及下節(jié)課中充要條件與集合的概念一樣涉及到數(shù)學的各個分支,用推出關系的形式給出它的定義,對高一學生只要求知道它的意義,并能判斷簡單的充分條件與必要條件。

  2、由于充要條件與命題的真假、命題的條件與結(jié)論的相互關系緊密相關,為此,教學時可以從判斷命題的真假入手,來分析命題的條件對于結(jié)論來說,是否充分,從而引入充分條件的概念,進而引入必要條件的概念。

  3、教材中對充分條件、必要條件的定義沒有作過多的解釋說明,為了讓學生能理解定義的合理性,在教學過程中,教師可以從一些熟悉的命題的條件與結(jié)論之間的關系來認識充分條件的概念,從互為逆否命題的等價性來引出必要條件的概念。

  4、由于這節(jié)課概念性、理論性較強,一般的教學使學生感到枯燥乏味,為此,激發(fā)學生的學習興趣是關鍵。教學中始終要注意以學生為主,結(jié)合相關學科及學生生活經(jīng)驗讓學生在自我思考、相互交流中去給概念下定義,去體會概念的本質(zhì)屬性。

高中數(shù)學教學設計 10

  一、目標

  1.知識與技能

  (1)理解流程圖的順序結(jié)構(gòu)和選擇結(jié)構(gòu)。

  (2)能用字語言表示算法,并能將算法用順序結(jié)構(gòu)和選擇結(jié)構(gòu)表示簡單的流程圖

  2.過程與方法

  學生通過模仿、操作、探索、經(jīng)歷設計流程圖表達解決問題的過程,理解流程圖的結(jié)構(gòu)。

  3情感、態(tài)度與價值觀

  學生通過動手作圖,.用自然語言表示算法,用圖表示算法。進一步體會算法的基本思想——程序化思想,在歸納概括中培養(yǎng)學生的邏輯思維能力。

  二、重點、難點

  重點:算法的順序結(jié)構(gòu)與選擇結(jié)構(gòu)。

  難點:用含有選擇結(jié)構(gòu)的流程圖表示算法。

  三、學法與教學用具

  學法:學生通過動手作圖,.用自然語言表示算法,用圖表示算法,體會到用流程圖表示算法,簡潔、清晰、直觀、便于檢查,經(jīng)歷設計流程圖表達解決問題的過程。進而學習順序結(jié)構(gòu)和選擇結(jié)構(gòu)表示簡單的流程圖。

  教學用具:尺規(guī)作圖工具,多媒體。

  四、教學思路

  (一)、問題引入 揭示題

  例1 尺規(guī)作圖,確定線段的一個5等分點。

  要求:同桌一人作圖,一人寫算法,并請學生說出答案。

  提問:用字語言寫出算法有何感受?

  引導學生體驗到:顯得冗長,不方便、不簡潔。

  教師說明:為了使算法的表述簡潔、清晰、直觀、便于檢查,我們今天學習用一些通用圖型符號構(gòu)成一張圖即流程圖表示算法。

  本節(jié)要學習的是順序結(jié)構(gòu)與選擇結(jié)構(gòu)。

  右圖即是同流程圖表示的算法。

 。ǘ⒂^察類比 理解題

  1、 投影介紹流程圖的符號、名稱及功能說明。

  符號 符號名稱 功能說明

  終端框 算法開始與結(jié)束

  處理框 算法的各種處理操作

  判斷框 算法的各種轉(zhuǎn)移

  輸入輸出框 輸入輸出操作

  指向線 指向另一操作

  2、講授順序結(jié)構(gòu)及選擇結(jié)構(gòu)的概念及流程圖

  (1)順序結(jié)構(gòu)

  依照步驟依次執(zhí)行的一個算法

  流程圖:

  (2)選擇結(jié)構(gòu)

  對條進行判斷決定后面的步驟的結(jié)構(gòu)

  流程圖:

  3.用自然語言表示算法與用流程圖表示算法的比較

 。1)半徑為r的圓的面積公式 當r=10時寫出計算圓的面積的算法,并畫出流程圖。

  解:

  算法(自然語言)

 、侔10賦與r

 、谟霉 求s

 、圯敵鰏

  流程圖

 。2) 已知函數(shù) 對于每輸入一個X值都得到相應的函數(shù)值,寫出算法并畫流程圖。

  算法:(語言表示)

  ① 輸入X值

 、谂袛郮的'范圍,若 ,用函數(shù)Y=x+1求函數(shù)值;否則用Y=2-x求函數(shù)值

 、圯敵鯵的值

  流程圖

  小結(jié):含有數(shù)學中需要分類討論的或與分段函數(shù)有關的問題,均要用到選擇結(jié)構(gòu)。

  學生觀察、類比、說出流程圖與自然語言對比有何特點?(直觀、清楚、便于檢查和交流)

 。ㄈ┠7虏僮 經(jīng)歷題

  1.用流程圖表示確定線段A.B的一個16等分點

  2.分析講解例2;

  分析:

  思考:有多少個選擇結(jié)構(gòu)?相應的流程圖應如何表示?

  流程圖:

 。ㄋ模w納小結(jié) 鞏固題

  1.順序結(jié)構(gòu)和選擇結(jié)構(gòu)的模式是怎樣的?

  2.怎樣用流程圖表示算法。

 。ㄎ澹┚毩暎99 2

 。┳鳂I(yè)P99 1

高中數(shù)學教學設計 11

  教學目標:

  1.掌握基本事件的概念;

  2.正確理解古典概型的兩大特點:有限性、等可能性;

  3.掌握古典概型的概率計算公式,并能計算有關隨機事件的概率.

  教學重點:

  掌握古典概型這一模型.

  教學難點:

  如何判斷一個實驗是否為古典概型,如何將實際問題轉(zhuǎn)化為古典概型問題.

  教學方法:

  問題教學、合作學習、講解法、多媒體輔助教學.

  教學過程:

  一、問題情境

  1.有紅心1,2,3和黑桃4,5這5張撲克牌,將其牌點向下置于桌上,現(xiàn)從中任意抽取一張,則抽到的牌為紅心的概率有多大?

  二、學生活動

  1.進行大量重復試驗,用“抽到紅心”這一事件的頻率估計概率,發(fā)現(xiàn)工作量較大且不夠準確;

  2.(1)共有“抽到紅心1” “抽到紅心2” “抽到紅心3” “抽到黑桃4” “抽到黑桃5”5種情況,由于是任意抽取的,可以認為出現(xiàn)這5種情況的可能性都相等;

 。2)6個;即“1點”、“2點”、“3點”、“4點”、“5點”和“6點”,

  這6種情況的可能性都相等;

  三、建構(gòu)數(shù)學

  1.介紹基本事件的概念,等可能基本事件的概念;

  2.讓學生自己總結(jié)歸納古典概型的兩個特點(有限性)、(等可能性);

  3.得出隨機事件發(fā)生的概率公式:

  四、數(shù)學運用

  1.例題.

  例1

  有紅心1,2,3和黑桃4,5這5張撲克牌,將其牌點向下置于桌上,現(xiàn)從中任意抽取2張共有多少個基本事件?(用枚舉法,列舉時要有序,要注意“不重不漏”)

  探究(1):一只口袋內(nèi)裝有大小相同的5只球,其中3只白球,2只黑球,從中一次摸出2只球,共有多少個基本事件?該實驗為古典概型嗎?(為什么對球進行編號?)

  探究(2):拋擲一枚硬幣2次有(正,反)、(正,正)、(反,反)3個基本事件,對嗎?

  學生活動:探究(1)如果不對球進行編號,一次摸出2只球可能有兩白、一黑一白、兩黑三種情況,“摸到兩黑”與“摸到兩白”的可能性相同;而事實上“摸到兩白”的機會要比“摸到兩黑”的機會大.記白球為1,2,3號,黑球為4,5號,通過枚舉法發(fā)現(xiàn)有10個基本事件,而且每個基本事件發(fā)生的可能性相同.

  探究(2):拋擲一枚硬幣2次,有(正,正)、(正,反)、(反,正)、(反,反)四個基本事件.

 。ㄔO計意圖:加深對古典概型的特點之一等可能基本事件概念的理解.)

  例2

  一只口袋內(nèi)裝有大小相同的5只球,其中3只白球,2只黑球,從中

  一次摸出2只球,則摸到的.兩只球都是白球的概率是多少?

  問題:在運用古典概型計算事件的概率時應當注意什么?

 、倥袛喔怕誓P褪欠駷楣诺涓判

  ②找出隨機事件A中包含的基本事件的個數(shù)和試驗中基本事件的總數(shù).

  教師示范并總結(jié)用古典概型計算隨機事件的概率的步驟

  例3

  同時拋兩顆骰子,觀察向上的點數(shù),問:

 。1)共有多少個不同的可能結(jié)果?

 。2)點數(shù)之和是6的可能結(jié)果有多少種?

  (3)點數(shù)之和是6的概率是多少?

  問題:如何準確的寫出“同時拋兩顆骰子”所有基本事件的個數(shù)?

  學生活動:用課本第102頁圖3-2-2,可直觀的列出事件A中包含的基本事件的個數(shù)和試驗中基本事件的總數(shù).

  問題:點數(shù)之和是3的倍數(shù)的可能結(jié)果有多少種?

  (介紹圖表法)

  例4

  甲、乙兩人作出拳游戲(錘子、剪刀、布),求:

 。1)平局的概率;(2)甲贏的概率;(3)乙贏的概率.

  設計意圖:進一步提高學生對將實際問題轉(zhuǎn)化為古典概型問題的能力.

  2.練習.

 。1)一枚硬幣連擲3次,只有一次出現(xiàn)正面的概率為_________.

 。2)在20瓶飲料中,有3瓶已過了保質(zhì)期,從中任取1瓶,取到已過保質(zhì)期的飲料的概率為_________..

  (3)第103頁練習1,2.

 。4)從1,2,3,…,9這9個數(shù)字中任取2個數(shù)字,

 、2個數(shù)字都是奇數(shù)的概率為_________;

 、2個數(shù)字之和為偶數(shù)的概率為_________.

  五、要點歸納與方法小結(jié)

  本節(jié)課學習了以下內(nèi)容:

  1.基本事件,古典概型的概念和特點;

  2.古典概型概率計算公式以及注意事項;

  3.求基本事件總數(shù)常用的方法:列舉法、圖表法.

高中數(shù)學教學設計 12

  一、教學目標

  1、在初中學過原命題、逆命題知識的基礎上,初步理解四種命題。

  2、給一個比較簡單的命題(原命題),可以寫出它的逆命題、否命題和逆否命題。

  3、通過對四種命題之間關系的學習,培養(yǎng)學生邏輯推理能力

  4、初步培養(yǎng)學生反證法的數(shù)學思維。

  二、教學分析

  重點:四種命題;難點:四種命題的關系

  1、本小節(jié)首先從初中數(shù)學的命題知識,給出四種命題的概念,接著,講述四種命題的關系,最后,在初中的基礎上,結(jié)合四種命題的知識,進一步講解反證法。

  2、教學時,要注意控制教學要求。本小節(jié)的內(nèi)容,只涉及比較簡單的命題,不研究含有邏輯聯(lián)結(jié)詞“或”、“且”、“非”的命題的逆命題、否命題和逆否命題

  3、“若p則q”形式的命題,也是一種復合命題,并且,其中的p與q,可以是命題也可以是開語句,例如,命題“若,則x,y全為0”,其中的p與q,就是開語句。對學生,只要求能分清命題“若p則q”中的條件與結(jié)論就可以了,不必考慮p與q是命題,還是開語句。

  三、教學手段和方法(演示教學法和循序漸進導入法)

  1、以故事形式入題

  2、多媒體演示

  四、教學過程

 。ㄒ唬┮耄阂粋生活中有趣的與命題有關的笑話:某人要請甲乙丙丁吃飯,時間到了,只有甲乙丙三人按時赴約。丁卻打電話說“有事不能參加”主人聽了隨口說了句“該來的沒來”甲聽了臉色一沉,一聲不吭的走了,主人愣了一下又說了一句“哎,不該走的走了”乙聽了大怒,拂袖即去。主人這時還沒意識到又順口說了一句:“俺說的又不是你”。這時丙怒火中燒不辭而別。四個客人沒來的沒來,來的又走了。主人請客不成還得罪了三家。大家肯定都覺得這個人不會說話,但是你想過這里面所蘊涵的數(shù)學思想嗎?通過這節(jié)課的學習我們就能揭開它的廬山真面,學生的興奮點被緊緊抓住,躍躍欲試!

  設計意圖:創(chuàng)設情景,激發(fā)學生學習興趣

 。ǘ⿵土曁釂枺

  1、命題“同位角相等,兩直線平行”的條件與結(jié)論各是什么?

  2、把“同位角相等,兩直線平行”看作原命題,它的逆命題是什么?

  3、原命題真,逆命題一定真嗎?

  “同位角相等,兩直線平行”這個原命題真,逆命題也真.但“正方形的四條邊相等”的原命題真,逆命題就不真,所以原命題真,逆命題不一定真.

  學生活動:

  口答:(1)若同位角相等,則兩直線平行;(2)若一個四邊形是正方形,則它的四條邊相等.

  設計意圖: 通過復習舊知識,打下學習否命題、逆否命題的基礎.

 。ㄈ┬抡n講解:

  1、命題“同位角相等,兩直線平行”的條件是“同位角相等”,結(jié)論是“兩直線平行”;如果把“同位角相等,兩直線平行”看作原命題,它的逆命題就是“兩直線平行,同位角相等”。也就是說,把原命題的結(jié)論作為條件,條件作為結(jié)論,得到的命題就叫做原命題的逆命題。

  2、把命題“同位角相等,兩直線平行”的條件與結(jié)論同時否定,就得到新命題“同位角不相等,兩直線不平行”,這個新命題就叫做原命題的否命題。

  3、把命題“同位角相等,兩直線平行”的條件與結(jié)論互相交換并同時否定,就得到新命題“兩直線不平行,同位角不相等”,這個新命題就叫做原命題的逆否命題。

 。ㄋ模┙M織討論:

  讓學生歸納什么是否命題,什么是逆否命題。

  例1及例2

 。ㄎ澹┱n堂探究:“兩條直線不平行,則同位角不相等”是否真?“若一個四邊形的四條邊不相等,則不是正方形”是否真?若原命題真,逆否命題是否也真?

  學生活動:

  討論后回答

  這兩個逆否命題都真.

  原命題真,逆否命題也真

  引導學生討論原命題的真假與其他三種命題的真

  假有什么關系?舉例加以說明,同學們踴躍發(fā)言。

 。┱n堂小結(jié):

  1、一般地,用p和q分別表示原命題的條件和結(jié)論,用¬p和¬q分別表示p和q否定時,四種命題的形式就是:

  原命題若p則q;

  逆命題若q則p;(交換原命題的條件和結(jié)論)

  否命題,若¬p則¬q;(同時否定原命題的條件和結(jié)論)

  逆否命題若¬q則¬p。(交換原命題的`條件和結(jié)論,并且同時否定)

  2、四種命題的關系

 。1)原命題為真,它的逆命題不一定為真.

 。2)原命題為真,它的否命題不一定為真.

 。3)原命題為真,它的逆否命題一定為真

 。ㄆ撸┗乜垡

  分析引入中的笑話,先討論,后總結(jié):現(xiàn)在我們來分析一下主人說的四句話:

  第一句:“該來的沒來”

  其逆否命題是“不該來的來了”,甲認為自己是不該來的,所以甲走了。

  第二句:“不該走的走了”,其逆否命題為“該走的沒走”,乙認為自己該走,所以乙也走了。

  第三句:“俺說的不是你(指乙)”其值為真其非命題:“俺說的是你”為假,則說的是他(指丙)為真。所以,丙認為說的是自己,所以丙也走了。

  同學們,生活中處處是數(shù)學,期待我們善于發(fā)現(xiàn)的眼睛

  五、作業(yè)

  1、設原命題是“若

  斷它們的真假,則 ”,寫出它的逆命題、否命題與逆否命題,并分別判

  2、設原命題是“當 時,若 ,則 ”,寫出它的逆命題、否定命與逆否命題,并分別判斷它們的真假。

高中數(shù)學教學設計 13

  教學目的:

 。1)使學生初步理解集合的概念,知道常用數(shù)集的概念及記法

 。2)使學生初步了解“屬于”關系的意義

  (3)使學生初步了解有限集、無限集、空集的意義

  教學重點:

  集合的基本概念及表示方法

  教學難點:

  運用集合的兩種常用表示方法——列舉法與描述法,正確表示一些簡單的集合

  授課類型:

  新授課

  課時安排:

  1課時

  教具:

  多媒體、實物投影儀

  內(nèi)容分析:

  1、集合是中學數(shù)學的一個重要的基本概念在小學數(shù)學中,就滲透了集合的初步概念,到了初中,更進一步應用集合的語言表述一些問題例如,在代數(shù)中用到的有數(shù)集、解集等;在幾何中用到的有點集至于邏輯,可以說,從開始學習數(shù)學就離不開對邏輯知識的掌握和運用,基本的邏輯知識在日常生活、學習、工作中,也是認識問題、研究問題不可缺少的工具這些可以幫助學生認識學習本章的意義,也是本章學習的基礎

  把集合的初步知識與簡易邏輯知識安排在高中數(shù)學的最開始,是因為在高中數(shù)學中,這些知識與其他內(nèi)容有著密切聯(lián)系,它們是學習、掌握和使用數(shù)學語言的基礎例如,下一章講函數(shù)的概念與性質(zhì),就離不開集合與邏輯

  本節(jié)首先從初中代數(shù)與幾何涉及的集合實例入手,引出集合與集合的元素的概念,并且結(jié)合實例對集合的概念作了說明然后,介紹了集合的常用表示方法,包括列舉法、描述法,還給出了畫圖表示集合的例子

  這節(jié)課主要學習全章的引言和集合的基本概念學習引言是引發(fā)學生的學習興趣,使學生認識學習本章的意義本節(jié)課的教學重點是集合的基本概念

  集合是集合論中的原始的、不定義的概念在開始接觸集合的概念時,主要還是通過實例,對概念有一個初步認識教科書給出的“一般地,某些指定的對象集在一起就成為一個集合,也簡稱集”這句話,只是對集合概念的描述性說明

  教學過程:

  一、復習引入:

  1、簡介數(shù)集的發(fā)展,復習公約數(shù)和最小公倍數(shù),質(zhì)數(shù)與和數(shù);

  2、教材中的章頭引言;

  3、集合論的創(chuàng)始人——康托爾(德國數(shù)學家)(見附錄);

  4、“物以類聚”,“人以群分”;

  5、教材中例子(P4)

  二、講解新課:

  閱讀教材第一部分,問題如下:

 。1)有那些概念?是如何定義的?

  (2)有那些符號?是如何表示的'?

 。3)集合中元素的特性是什么?

 。ㄒ唬┘系挠嘘P概念:

  由一些數(shù)、一些點、一些圖形、一些整式、一些物體、一些人組成的我們說,每一組對象的全體形成一個集合,或者說,某些指定的對象集在一起就成為一個集合,也簡稱集、集合中的每個對象叫做這個集合的元素、

  定義:一般地,某些指定的對象集在一起就成為一個集合、

  1、集合的概念

 。1)集合:某些指定的對象集在一起就形成一個集合(簡稱集)

 。2)元素:集合中每個對象叫做這個集合的元素

  2、常用數(shù)集及記法

 。1)非負整數(shù)集(自然數(shù)集):全體非負整數(shù)的集合記作N,

 。2)正整數(shù)集:非負整數(shù)集內(nèi)排除0的集記作N_或N+

 。3)整數(shù)集:全體整數(shù)的集合記作Z,

  (4)有理數(shù)集:全體有理數(shù)的集合記作Q,

 。5)實數(shù)集:全體實數(shù)的集合記作R

  注:(1)自然數(shù)集與非負整數(shù)集是相同的,也就是說,自然數(shù)集包括數(shù)0

 。2)非負整數(shù)集內(nèi)排除0的集記作N_或N+Q、Z、R等其它數(shù)集內(nèi)排除0的集,也是這樣表示,例如,整數(shù)集內(nèi)排除0的集,表示成Z_

  3、元素對于集合的隸屬關系

 。1)屬于:如果a是集合A的元素,就說a屬于A,記作a∈A

 。2)不屬于:如果a不是集合A的元素,就說a不屬于A,記作

  4、集合中元素的特性

 。1)確定性:按照明確的判斷標準給定一個元素或者在這個集合里,或者不在,不能模棱兩可

  (2)互異性:集合中的元素沒有重復

 。3)無序性:集合中的元素沒有一定的順序(通常用正常的順序?qū)懗觯?/p>

  5、⑴集合通常用大寫的拉丁字母表示,如A.B.C、P、Q……元素通常用小寫的拉丁字母表示,如a、b、c、p、q……

 、啤啊省钡拈_口方向,不能把a∈A顛倒過來寫

  三、練習題:

  1、教材P5練習1、2

  2、下列各組對象能確定一個集合嗎?

  (1)所有很大的實數(shù)(不確定)

 。2)好心的人(不確定)

 。3)1,2,2,3,4,5、(有重復)

  3、設a,b是非零實數(shù),那么可能取的值組成集合的元素是_—2,0,2__

  4、由實數(shù)x,—x,|x|,所組成的集合,最多含(A)

  (A)2個元素(B)3個元素(C)4個元素(D)5個元素

  5、設集合G中的元素是所有形如a+b(a∈Z,b∈Z)的數(shù),求證:

 。1)當x∈N時,x∈G;

  (2)若x∈G,y∈G,則x+y∈G,而不一定屬于集合G

  證明(1):在a+b(a∈Z,b∈Z)中,令a=x∈N,b=0,

  則x=x+0_=a+b∈G,即x∈G

  證明(2):∵x∈G,y∈G,

  ∴x=a+b(a∈Z,b∈Z),y=c+d(c∈Z,d∈Z)

  ∴x+y=(a+b)+(c+d)=(a+c)+(b+d)

  ∵a∈Z,b∈Z,c∈Z,d∈Z

  ∴(a+c)∈Z,(b+d)∈Z

  ∴x+y=(a+c)+(b+d)∈G,

  又∵=

  且不一定都是整數(shù),

  ∴=不一定屬于集合G

  四、小結(jié):本節(jié)課學習了以下內(nèi)容:

  1、集合的有關概念:(集合、元素、屬于、不屬于)

  2、集合元素的性質(zhì):確定性,互異性,無序性

  3、常用數(shù)集的定義及記法

  五、課后作業(yè):

  六、板書設計(略)

  七、課后記:

  八、附錄:康托爾簡介

  發(fā)瘋了的數(shù)學家康托爾(GeorgCantor,1845—1918)是德國數(shù)學家,集合論的

  1845年3月3日生于圣彼得堡,1918年1月6日病逝于哈雷

  康托爾11歲時移居德國,在德國讀中學

  1862年17歲時入瑞士蘇黎世大學,翌年入柏林大學,主修數(shù)學,1866年曾去格丁根學習一學期

  1867年以數(shù)論方面的論文獲博士學位

  1869年在哈雷大學通過講師資格考試,后在該大學任講師,1872年任副教授,1879年任教授

  由于研究無窮時往往推出一些合乎邏輯的但又荒謬的結(jié)果(稱為“悖論”),許多大數(shù)學家唯恐陷進去而采取退避三舍的態(tài)度

  在1874—1876年期間,不到30歲的年輕德國數(shù)學家康托爾向神秘的無窮宣戰(zhàn)

  他靠著辛勤的汗水,成功地證明了一條直線上的點能夠和一個平面上的點一一對應,也能和空間中的點一一對應

  這樣看起來,1厘米長的線段內(nèi)的點與太平洋面上的點,以及整個地球內(nèi)部的點都“一樣多”,后來幾年,康托爾對這類“無窮集合”問題發(fā)表了一系列文章,通過嚴格證明得出了許多驚人的結(jié)論

  康托爾的創(chuàng)造性工作與傳統(tǒng)的數(shù)學觀念發(fā)生了尖銳沖突,遭到一些人的反對、攻擊甚至謾罵

  有人說,康托爾的集合論是一種“疾病”,康托爾的概念是“霧中之霧”,甚至說康托爾是“瘋子”

  來自數(shù)學_們的巨大精神壓力終于摧垮了康托爾,使他心力交瘁,患了精神_癥,被送進精神病醫(yī)院

  真金不怕火煉,康托爾的思想終于大放光彩

  1897年舉行的第一次國際數(shù)學家會議上,他的成就得到承認,偉大的哲學家、數(shù)學家羅素稱贊康托爾的工作“可能是這個時代所能夸耀的最巨大的工作

  ”可是這時康托爾仍然神志恍惚,不能從人們的崇敬中得到安慰和喜悅

  1918年1月6日,康托爾在一家精神病院去世

  集合論是現(xiàn)代數(shù)學的基礎,康托爾在研究函數(shù)論時產(chǎn)生了探索無窮集和超窮數(shù)的興趣

  康托爾肯定了無窮數(shù)的存在,并對無窮問題進行了哲學的討論,最終建立了較完善的集合理論,為現(xiàn)代數(shù)學的發(fā)展打下了堅實的基礎

  康托爾創(chuàng)立了集合論作為實數(shù)理論,以至整個微積分理論體系的基礎

  從而解決17世紀牛頓(I.Newton,1642—1727)與萊布尼茨(G.W.Leibniz,1646—1716)創(chuàng)立微積分理論體系之后,在近一二百年時間里,微積分理論所缺乏的邏輯基礎和從19世紀開始,柯西(A.L.Cauchy,1789—1857)、魏爾斯特拉斯(K.Weierstrass,1815—1897)等人進行的微積分理論嚴格化所建立的極限理論

  克隆尼克(L.Kronecker,1823—1891),康托爾的老師,對康托爾表現(xiàn)了無微不至的關懷

  他用各種用得上的尖刻語言,粗暴地、連續(xù)不斷地攻擊康托爾達十年之久

  他甚至在柏林大學的學生面前公開攻擊康托爾

  橫加阻撓康托爾在柏林得到一個薪金較高、聲望更大的教授職位

  使得康托爾想在柏林得到職位而改善其地位的任何努力都遭到挫折

  法國數(shù)學家彭加勒(H.Poi—ncare,1854—1912):我個人,而且還不只我一人,認為重要之點在于,切勿引進一些不能用有限個文字去完全定義好的東西

  集合論是一個有趣的“病理學的情形”,后一代將把(Cantor)集合論當作一種疾病,而人們已經(jīng)從中恢復過來了

  德國數(shù)學家魏爾(C.H、Her—mannWey1,1885—1955)認為,康托爾關于基數(shù)的等級觀點是霧上之霧

  菲利克斯、克萊因(F.Klein,1849—1925)不贊成集合論的思想

  數(shù)學家H.A.施瓦茲,康托爾的好友,由于反對集合論而同康托爾斷交

  從1884年春天起,康托爾患了嚴重的憂郁癥,極度沮喪,神態(tài)不安,精神病時時發(fā)作,不得不經(jīng)常住到精神病院的療養(yǎng)所去

  變得很自卑,甚至懷疑自己的工作是否可靠

  他請求哈勒大學_把他的數(shù)學教授職位改為哲學教授職位

  健康狀況逐漸惡化,1918年,他在哈勒大學附屬精神病院去世

  流星埃、伽羅華(E、Galois,1811—1832),法國數(shù)學家

  伽羅華17歲時,就著手研究數(shù)學中最困難的問題之一一般π次方程求解問題

  許多數(shù)學家為之耗去許多精力,但都失敗了

  直到1770年,法國數(shù)學家拉格朗日對上述問題的研

  究才算邁出重要的一步伽羅華在前人研究成果的基礎上,利用群論的方法從系統(tǒng)結(jié)構(gòu)的整體上徹底解決了根式解的難題他從拉格朗日那里學習和繼承了問題轉(zhuǎn)化的思想,即把預解式的構(gòu)成同置換群聯(lián)系起來,并在阿貝爾研究的基礎上,進一步發(fā)展了他的思想,把全部問題轉(zhuǎn)化成或者歸結(jié)為置換群及其子群結(jié)構(gòu)的分析上同時創(chuàng)立了具有劃時代意義的數(shù)學分支——群論,數(shù)學發(fā)展作出了重大貢獻1829年,他把關于群論研究所初步結(jié)果的第一批論文提交給法國科學院科學院委托當時法國最杰出的數(shù)學家柯西作為這些論文的鑒定人在1830年1月18日柯西曾計劃對伽羅華的研究成果在科學院舉行一次全面的意見聽取會然而,第二周當柯西向科學院宣讀他自己的一篇論文時,并未介紹伽羅華的著作1830年2月,伽羅華將他的研究成果比較詳細地寫成論文交上去了以參加科學院的數(shù)學大獎評選,論文寄給當時科學院終身秘書J.B、傅立葉,但傅立葉在當年5月就去世了,在他的遺物中未能發(fā)現(xiàn)伽羅華的手稿1831年1月伽羅華在尋求確定方程的可解性這個問題上,又得到一個結(jié)論,他寫成論文提交給法國科學院這篇論文是伽羅華關于群論的重要著作當時的數(shù)學家S.K、泊松為了理解這篇論文絞盡了腦汁盡管借助于拉格朗日已證明的一個結(jié)果可以表明伽羅華所要證明的論斷是正確的,但最后他還是建議科學院否定它1832年5月30日,臨死的前一夜,他把他的重大科研成果匆忙寫成后,委托他的朋友薛伐里葉保存下來,從而使他的勞動結(jié)晶流傳后世,造福人類1832年5月31日離開了人間死因參加無意義的決斗受重傷1846年,他死后14年,法國數(shù)學家劉維爾著手整理伽羅華的重大創(chuàng)作后,首次發(fā)表于劉維爾主編的《數(shù)學雜志》

高中數(shù)學教學設計 14

  一、課題:

  人教版全日制普通高級中學教科書數(shù)學第一冊(上)《2.7對數(shù)》

  二、指導思想與理論依據(jù):

  《數(shù)學課程標準》指出:高中數(shù)學課程應講清一些基本內(nèi)容的實際背景和應用價值,開展“數(shù)學建!钡膶W習活動,把數(shù)學的應用自然地融合在平常的教學中。任何一個數(shù)學概念的引入,總有它的現(xiàn)實或數(shù)學理論發(fā)展的需要。都應強調(diào)它的現(xiàn)實背景、數(shù)學理論發(fā)展背景或數(shù)學發(fā)展歷史上的背景,這樣才能使教學內(nèi)容顯得自然和親切,讓學生感到知識的發(fā)展水到渠成而不是強加于人,從而有利于學生認識數(shù)學內(nèi)容的實際背景和應用的價值。在教學設計時,既要關注學生在數(shù)學情感態(tài)度和科學價值觀方面的發(fā)展,也要幫助學生理解和掌握數(shù)學基礎知識和基本技能,發(fā)展能力。在課程實施中,應結(jié)合教學內(nèi)容介紹一些對數(shù)學發(fā)展起重大作用的歷史事件和人物,用以反映數(shù)學在人類社會進步、人類文化建設中的作用,同時反映社會發(fā)展對數(shù)學發(fā)展的促進作用。

  三、教材分析:

  本節(jié)內(nèi)容主要學習對數(shù)的概念及其對數(shù)式與指數(shù)式的互化。它屬于函數(shù)領域的知識。而對數(shù)的概念是對數(shù)函數(shù)部分教學中的核心概念之一,而函數(shù)的思想方法貫穿在高中數(shù)學教學的始終。通過對數(shù)的學習,可以解決數(shù)學中知道底數(shù)和冪值求指數(shù)的問題,以及對數(shù)函數(shù)的'相關問題。

  四、學情分析:

  在ab=N(a>0,a≠1)中,知道底數(shù)和指數(shù)可以求冪值,那么知道底數(shù)和冪值如何求求指數(shù),從學生認知的角度自然就產(chǎn)生了這樣的需要。因此,在前面學習指數(shù)的基礎上學習對數(shù)的概念是水到渠成的事。

  五、教學目標:

  (一)教學知識點:

  1.對數(shù)的概念。

  2.對數(shù)式與指數(shù)式的互化。

  (二)能力目標:

  1.理解對數(shù)的概念。

  2.能夠進行對數(shù)式與指數(shù)式的互化。

  (三)德育滲透目標:

  1.認識事物之間的相互聯(lián)系與相互轉(zhuǎn)化,

  2.用聯(lián)系的觀點看問題。

  六、教學重點與難點:

  重點是對數(shù)定義,難點是對數(shù)概念的理解。

  七、教學方法:

  講練結(jié)合法八、教學流程:

  問題情景(復習引入)——實例分析、形成概念(導入新課)——深刻認識概念(對數(shù)式與指數(shù)式的互化)——變式分析、深化認識(對數(shù)的性質(zhì)、對數(shù)恒等式,介紹自然對數(shù)及常用對數(shù))——練習小結(jié)、形成反思(例題,小結(jié))

  八、教學反思:

  對本節(jié)內(nèi)容在進行教學設計之前,本人反復閱讀了課程標準和教材,教材內(nèi)容的處理收到了一定的預期效果,尤其是練習的處理,充分發(fā)揮了學生的主體作用,也提高了學生主體的合作意識,達到了設計中所預想的目標。然而還有一些缺憾:對本節(jié)內(nèi)容,難度不高,本人認為,教師的干預(講解)還是太多。在以后的教學中,對于一些較簡單的內(nèi)容,應放手讓學生多一些探究與合作。隨著教育改革的深化,教學理念、教學模式、教學內(nèi)容等教學因素,都在不斷更新,作為數(shù)學教師要更新教學觀念,從學生的全面發(fā)展來設計課堂教學,關注學生個性和潛能的發(fā)展,使教學過程更加切合《課程標準》的要求。

  對于本教學設計,時間倉促,不足之處在所難免,期待與各位同仁交流。

高中數(shù)學教學設計 15

  我先來介紹一下參加我們這次講座的幾位嘉賓,我身邊這位是蘇州五中的羅強校長,這邊這位是蘇州中學的劉華老師,那邊那位是大家熟悉的首都師范大學數(shù)學系博士生導師王尚志教授。歡迎大家來到我們研討的現(xiàn)場!

  老師們都知道,素質(zhì)教育要落實在課堂上,課堂是我們實行數(shù)學新課程的主戰(zhàn)場,做好教學設計是我們整個高中數(shù)學新課程推進的一個關鍵點。那么,怎樣才能做好數(shù)學的教學設計呢?我們問過一些老師,大家感覺有些疑惑,比如說有的老師們認為:教學設計是不是就是備備課,寫好一個教案、做一個課件,是不是這樣?我們想聽聽來自江蘇的老師怎么看這個問題?

  羅強:我來談談自己對教學設計理論的學習和實踐過程中的一些體會。以前我們在教學實踐中往往把教學設計變成一種簡單的教案設計,但實際上這只是一種經(jīng)驗型的教學設計,沒有上升為科學型的教學設計。其實,國際上對教學設計的研究已經(jīng)進行多年,提出了許多思想、理論、案例,教學設計已經(jīng)成為一個獨立的研究領域。

  教學設計理論的發(fā)展基本上經(jīng)歷了兩個階段:第一個階段是突出以“教的傳遞策略”為中心來進行教學設計的傳統(tǒng)教學設計理論,它更接近工程學,遵循設計的規(guī)則和程序,強調(diào)目標遞進和按部就班的系統(tǒng)操作過程,其特點是注重目標細化,注重分層要求,注重教學內(nèi)容各要素的協(xié)調(diào)。就好像我們要造一幢房子,先要把這幢房子的圖紙設計出來,然后再設計一個施工的藍圖,教學就是按照這樣的設計來進行實施的一個過程。

  第二個階段是突出以“學的組織方式”為中心來進行教學設計的現(xiàn)代教學設計理論,它的基礎是信息加工理論與建構(gòu)主義的學習理論,現(xiàn)代教學設計理論強調(diào)依據(jù)學習任務類型(如認知、情感與心理動作等)來選擇教學策略,強調(diào)以問題為中心,營造一個能激活學生原有知識經(jīng)驗,有利于新知識建構(gòu)的學習環(huán)境。其特點是問題與環(huán)境,強調(diào)創(chuàng)設情境,提出問題,營造問題解決的環(huán)境,突出學生的自主學習和自主探究。

  按照新的教學設計的理論,我們應該以學為中心來進行教學設計,簡單的說就是——為學習而設計教學!打個比喻,就是說我們教師好比是導游,帶著學生去一個新的景點旅游,那么在這個過程中間,教學設計就是設計這么一個導游圖,讓學生在參觀各個景點的過程中,經(jīng)歷學習這些知識的一種過程。

  按照為學習而設計教學的理念,我覺得在教學設計時要考慮三條線索,這樣實際上也就構(gòu)成了教學設計的一種三維結(jié)構(gòu)。第一條線索就是一種數(shù)學知識線索。因為教師進行的是學科教學;第二個線索是學生的認知線索。因為學習的主體是學生;第三個線索就是教師的教學組織線索,因為教學過程是通過教師的組織來實現(xiàn)的。比如第一條線索——數(shù)學知識,我覺得數(shù)學知識實際有三個形態(tài):一是自然形態(tài),它既存在于客觀世界中間,實際上也存在于學生的頭腦中間;二是學術(shù)形態(tài),它是作為數(shù)學學科的一種知識體系而存在。那么,我們的教學就是要在數(shù)學的自然形態(tài)和學術(shù)形態(tài)的中間架一座橋梁,這座橋梁就是數(shù)學的教育形態(tài)。因此,我覺得教學設計的本質(zhì)就是設計好數(shù)學的教育形態(tài),教學設計的過程實際上就是構(gòu)建數(shù)學教育形態(tài)的一個過程。

  通過對教學設計理論的學習,并在實踐中反思和總結(jié),我的體會很深。有一位美國學者蘭達曾經(jīng)說過:教學設計是使天才能夠做到的事一般人也能去做。我想對教學設計理論的學習是一個大家都要努力的目標。

  張思明:剛才羅強老師從理論上分析了什么是教學設計?教學設計應該關注哪些問題?下面我們請劉華老師幫我們分析一下:在你們實驗區(qū)和老師接觸的實踐中,你感覺到老師們在教學設計中存在著哪些主要問題?

  劉華:我想解剖一個由職初教師,就是剛剛工作的青年教師所提供的一個教學案例。

  我先簡單介紹一下他的教學設計。這是高一函數(shù)單調(diào)性的一節(jié)起始課,在教學設計中,這個職初教師首先明確了這節(jié)課的三維目標,然后他提出了兩個生活中的情境,一個情境是生活中的氣溫圖;第二個情境是股票的價格走勢圖,然后引入新課。接著把函數(shù)單調(diào)性的概念介紹給學生,緊接著進入了例題講解階段,最后是有兩個思考題。

  我覺得這個教學設計大致存在這樣四點比較普遍的問題:

  第一個問題就是這位教師在確定課程目標的時候,比較機械地套用了新課程的理念,按照“知識技能,方法與過程,情感、態(tài)度、價值觀”這樣的三維目標來敘述他的本節(jié)課目標。在這些目標中,知識與技能的目標還是比較實在的,但“過程與方法”的目標以及“情感、態(tài)度、價值觀”的目標就比較空洞,流于形式。其實,這位老師對教學目標并沒有做深入的分析,這樣的教學目標只是一個標簽而已,這是第一個問題。

  第二個問題是問題情境的設計。好的情境應當是兼顧生活化與數(shù)學化,股票的價格走勢圖這個情境離學生的生活太遠,其中還包含了許多股票方面的專門知識,對函數(shù)單調(diào)性這個數(shù)學概念的反映也不夠準確,作為本課的情境,不太恰當。

  第三個問題就是在情境到數(shù)學概念的產(chǎn)生過程中,應當讓學生充分體驗或參與數(shù)學化的探索過程,從而建構(gòu)起函數(shù)單調(diào)性這一概念。我們看到在這位教師的設計當中,他忽略了學生活動,尤其是學生思維活動這樣一個環(huán)節(jié),而是直接把概念拋給了學生。我們認為學生在數(shù)學學習中,“過程”相對來說比僅僅接受概念這個“結(jié)果”更為重要。

  最后一個問題就是我們發(fā)現(xiàn)有很多老師認為數(shù)學教學設計主要就是習題的設計,這位教師本節(jié)課的例題、習題量非常多,而且對這些習題的要求他存在著一步到位的傾向,尤其是他最后拋出來的含字母的函數(shù)單調(diào)性的探索這個問題,我們覺得在新授課當中這個習題的要求太高了。我覺得老師們在教學設計中主要存在這樣幾點問題。

  張思明:劉華老師談了一個單調(diào)性的案例,對一個新教師的案例做了一個分析,分析出了我們老師在教學設計中常常出現(xiàn)的一些問題。那么面對這樣一些問題,我們應該怎么辦?我們就以這個案例為出發(fā)點,請羅強老師對函數(shù)單調(diào)性這個課題做了一個分析和再創(chuàng)造的工作,在這個工作中我們可以看到如何通過教師自己的再學習、再認識,設計出一個更好、更適用于學生的教學設計。我們來看一下羅強老師的說課錄像。

  羅強老師的說課:各位老師大家好,我向大家匯報一下我對函數(shù)單調(diào)性的教學設計。

  首先談一下我對教學設計的認識。我覺得教學設計的根本目的是創(chuàng)設一個有效的教學系統(tǒng),這樣的教學系統(tǒng)不是隨意出現(xiàn)的而是教師精心創(chuàng)設的,沒有有效的教學設計就不可能保證教學的效果和質(zhì)量。教學設計最根本的著力點是“為學習設計教學”,而不是“為教學設計學習”。

  教學設計的首要任務就是明確教學目標,實際上教學目標是教學設計的靈魂和統(tǒng)帥,將指引后續(xù)教學設計的方向,決定后續(xù)教學設計的具體工作。在制定教學目標的時候,我覺得要把握以下幾點:

  第一,把握教學要求,不求一步到位。函數(shù)單調(diào)性是高中階段刻劃函數(shù)變化的一個最基本的性質(zhì)。在高中數(shù)學課程中,對于函數(shù)單調(diào)性的研究分成兩個階段:第一個階段是用運算的性質(zhì)研究單調(diào)性,知道它的變化趨勢;第二階段用導數(shù)的性質(zhì)研究單調(diào)性,知道它的變化快慢。那么高一我們是處在第一個階段。第二,明確知識目標,落實隱性目標。知識目標往往就是教學的顯性目標,確定知識目標的關鍵在于分清主次輕重,把握好教學要求。根據(jù)課程標準的要求,本節(jié)課的知識目標定位在以下三個方面:一是理解函數(shù)單調(diào)性的概念;二是掌握判斷函數(shù)單調(diào)性的方法;三是會用定義證明一些簡單函數(shù)在某個區(qū)間上的單調(diào)性。另外這節(jié)課的隱性目標我覺得也很重要,因為函數(shù)單調(diào)性的定義是對函數(shù)圖象特征的一種數(shù)學描述,它經(jīng)歷了由圖象直觀特征到自然語言描述再到數(shù)學符號的描述的進化過程,反映了數(shù)學的理性思維和理性精神。對高一學生來講它是一個很有價值的數(shù)學教育載體和契機。因此這節(jié)課的隱性目標應該包括讓學生體驗數(shù)學知識的發(fā)生發(fā)展過程,學會數(shù)學概念符號化的建構(gòu)過程。根據(jù)剛才的分析,我把教學流程分成了三個階段:第一個階段是進行函數(shù)單調(diào)性概念的數(shù)學化過程;第二個階段是從不同的角度幫助學生深入理解函數(shù)單調(diào)性的`概念;第三個階段是讓學生學會判斷,并用函數(shù)單調(diào)性的定義證明函數(shù)的單調(diào)性。

  第一階段的教學流程分成三個教學環(huán)節(jié)。第一,問題情境;第二,溫故知新;第三,建構(gòu)概念。具體如下:

  先是創(chuàng)設問題情境。由老師和學生一起舉出生活中描繪上升或者下降的變化規(guī)律的成語。老師可以啟發(fā)一下,先說一個“蒸蒸日上”,然后和學生一起舉出比如“每況愈下”,“波瀾起伏”這樣三種描繪不同變化的成語。然后請學生根據(jù)上述成語,給出一個函數(shù),并在平面直角坐標系中繪制相應的函數(shù)圖象。這樣設計的意圖是讓學生結(jié)合生活體驗用樸素的生活語言描繪變化規(guī)律,體會如何將文字語言轉(zhuǎn)化為圖形語言。

  接下來是溫故知新。在剛才學生繪制出的三個函數(shù)圖象的基礎上,我請學生觀察它們變化的趨勢。在剛才學生繪制的三個函數(shù)圖象的基礎上,再請學生用初中的語言來敘述什么叫圖象呈逐漸上升的趨勢,也就是“函數(shù)值隨著的增大而增大”。這樣設計的意圖是讓學生對照繪制的函數(shù)圖象,用自然語言描述函數(shù)的變化規(guī)律,重溫初中函數(shù)單調(diào)性的描述定義。

  張思明:剛才我們看到了時駿老師的說課,下面我們來聽一聽嘉賓對這個說課的分析。

  羅強:我還是要強調(diào)教學設計一定要注意為學習而設計教學。還是拿我剛才的這個比喻,就是教師帶學生去旅游。既然是帶學生去旅游,首先就要考慮我要帶學生到什么地方去?然后需要考慮我怎么才能夠帶學生到達這個地方?然后我要確定學生是不是真的到達了這個地方?還要注意的是,作為教學的一種延伸,我覺得還應該讓學生有興趣、有能力繼續(xù)他自己的旅程。我覺得這是我們教學設計要做的主要工作。

  張思明:通過以上幾個案例,我想老師們對于如何做教學設計有了一個初步的認識。怎樣做好教學設計呢?我們也想聽一聽在教育指導部門的老師的一些想法,我們特別采訪了江蘇省教研室的董林偉主任,我們來聽一聽董主任關于教學設計的思考和認識。

  董主任:關于設計這兩個詞大家應該都非常的熟悉。當人們要從事一項有目的的活動的時候,事先都要有一些設想,要進行一些規(guī)劃,要進行一些設計。作為我們教學工作者來說,在開始我們的教學活動之前,我們的老師都必須做一項非常重要的工作,那就是教學設計。今天我要談的就是關于教學設計的話題。我想就三個方面來談談我的一些基本想法。第一,我想先談談什么叫教學設計?第二,談談我們在教學設計過程中應該來設計一些什么?第三,在設計的過程當中我們要注意哪幾點?下面我想簡要的把這三個方面跟大家做一個交流。

  一、關于什么叫教學設計?

  所謂的教學設計就是用系統(tǒng)的方法對各種課程資源進行有機的整合,對教學過程中相互聯(lián)系的各個部分作出整體安排的一種構(gòu)想。它是一種構(gòu)想,是一種整體的安排,是我們教師為將來進行的教學勾畫的一些圖景,它反映了我們的教師對自己未來教學的一種認識和期望。如果通俗一點來說,那么所謂的教學設計可以這樣來理解,就是:你要把學生帶到哪里去?你怎樣把學生帶到那里去?你這樣做能把學生帶到那里去嗎?

  二、在教學設計過程當中我們應該關注些什么,就是說設計一些什么?

  首先,我們必須明確我們的教學目標,教學目標是我們教學根本的指向與核心的任務,是教學設計的關鍵。教學的目標是教學中師生所預期達到的一種教學效果和標準,因此,明確教學目標就是要明確你要把學生帶到哪里去。在確定教學目標的時候,我們要關注以下的幾點:第一,整體性。就是要注意這部分內(nèi)容在整個高中階段數(shù)學教學中的聯(lián)系,以達到教學的一種連貫性,要正確處理好我們的近期的目標跟遠期目標的相互關系。第二,在我們明確目標的時候,要關注它的全面性。新課程對數(shù)學教學的目標提出了新的一種要求,三維目標在關注知識結(jié)果的同時,更注重對過程目標的關注和對學習者——學生的關注,更關注學生獲取數(shù)學知識的過程以及在學習中的經(jīng)歷、感受和體驗。因此,教師在設計數(shù)學教學目標時,應特別注意關注新課程所提出的過程性目標。第三,我們要關注目標的現(xiàn)實性。確定教學目標時,應當注意它與所授課任務的實質(zhì)性聯(lián)系,以避免目標空洞、無法落實。我們在設計教學目標時,常見的一種狀況是目標過分的大,過分的空洞,那么在落實過程中,就難以達到預設的目標。其次,我們在教學設計中要非常關注學生,要了解學生。我想,以下幾個方面,至少老師在教學設計過程中應該心中有數(shù)。

  第一,在數(shù)學方面學生以前做過什么?他在數(shù)學活動或者是在數(shù)學實驗方面,曾經(jīng)做過什么?這里我們實際上要關注的是學生的活動經(jīng)驗。

  第二,不同的學生在思維方式上會有什么不同。實際上就是要在教學中關注我所授課的學生的特點,關注我班學生的構(gòu)成,班級當中不同群體的學生在思維方面有些什么樣的不同。

  第三,要初步確定課堂的組織形式,就是說我這一堂課是整個班級一起學習,還是將學生分成若干個組來活動,甚至于是一種個體性的活動,包括開展一些個體性的實驗活動,包括自主學習的一種活動方式。組織形式上還要關注這堂課需要利用什么模型?是否需要做適當?shù)恼n件?或者準備一些相關的硬件設施。這也是我們在確定課堂組織形式是所必須要關注的。

  第四,要勾勒教學的一種順序。這個順序當中主要包括這樣幾點:

  第一點,應當怎樣提出主題,通俗一點講就是問題情境的創(chuàng)設。關于問題情境的創(chuàng)設,我們在相關的專題中也都提到它的重要性和一些要求。我們在勾勒教學順序的時候,首先要關注的是怎樣提出主題,這個主題應該是跟學生接近的,又要能夠引起他的興趣,又要圍繞著我們的教學主題的,而且能夠使得學生迅速的進入學習活動中。

  第二點,就是要關注是否需要復習以前的相關知識。一堂課的教學它往往不是獨立的,而是有前后聯(lián)系的,因此需要考慮我在這堂課教學中是否需要復習相關的知識?

  第三點,當學生對材料產(chǎn)生爭論的時候,你準備提出怎樣的探索性問題。當我們提出問題以后學生可能會產(chǎn)生什么樣的一種思考,可能會產(chǎn)生一種什么樣的爭論?我們要了解這些爭論的思維的背景,需要進行正確的引導,那么你就必須要設計好一些問題串,來引導學生圍繞主題展開探索。

  第四點,我們在設計教學程序的過程中要關注一下我們使用的材料,我們的課本提出了什么樣的觀點,使用什么樣課外的材料來幫助我們的教學。

  第五點,要根據(jù)學生對主題的掌握程度,準備幾個可以供選擇的,課堂當中要自主完成的練習,或者是課后要完成家庭作業(yè)。這些是勾勒我們整個教學流程的一些關鍵程序。

  三、教學設計中我們應該注意的方面。

  教學設計永遠只是教學過程的一種預期,實際的教學活動則永遠是一個謎。我們老師都有經(jīng)驗,同樣的一個課題,同一個老師的備課,他在不同班的授課過程中都會產(chǎn)生不同的教學流程、教學效果。因為我們所面對的學生是不同的,是在變化的,我們的教學生成是變化的,只有當這堂課教學完成了,我們才能知道這堂課最后的結(jié)果。所以前面的教學設計只是一種預期,我們的教學設計就是要關注這樣的一種變化。

  因此,教學設計首先要注意它的整體性,就是說我們的教學設計不是一種片斷,是一種整體的設計,它不是寫在我們紙上的一種文本,而是我們教師對自己和學生所持的一種整體性的目標。其次,要注意它的可變性,沒有一件事情是絲毫不差地按照計劃進行的。學生的思維可能還停留在你認為根本不重要的問題上,他們還會以你幾乎不能想象的方式來理解某些概念。當活動過程受到影響時,你必須放棄你原來的教學計劃,運用你對學生已有的知識的了解和更宏觀的數(shù)學教學目標,去指導你的教學行動,也就是說要產(chǎn)生一些生成的問題。第三,要注意它創(chuàng)造性。我們的教師很大程度上會依賴于教材或教學參考書,以確保他們的數(shù)學教學內(nèi)容符合一個內(nèi)部連貫的發(fā)展框架。這種依賴有一定的好處,它能夠使得我們的教學設計能夠圍繞著我們課程的設計來進行,但是同時也存在一些問題,就是說畢竟教材是我們課程的一種呈現(xiàn),跟教學的呈現(xiàn)還是有著本質(zhì)差別的。我們的教學設計應該是一種流動的過程,應該適合我們的學生,就像設計師設計的服裝要符合你所設計的群體的特點和要求,如果考慮到個體,就要符合他的氣質(zhì),符合他的整體形象。我們的教學設計也是這樣,我想每個人都應該有個人設計的一種思考和魅力。

  剛才談到這幾點僅供我們老師做一種參考。

  張思明:各位老師,我們這一講把教學設計中存在的問題通過幾個案例給大家做了一個初步的展示。我想教學設計中的問題是一個教學實踐過程中產(chǎn)生的問題,我們每一個老師都有自己的設計理念,都有自己設計成功或者不如意甚至失敗的地方。我們希望研討是一個互動的過程,我們真誠的期待著老師們把您們在教學設計中遇到的問題和成功的經(jīng)驗寄給我們,我們一起來研討。那么這一講就到這里,謝謝老師們的參與!

【高中數(shù)學教學設計】相關文章:

高中數(shù)學教學設計02-20

高中數(shù)學教學設計(15篇)03-27

高中數(shù)學教學設計精選15篇04-10

高中數(shù)學教學設計15篇03-15

高中數(shù)學教學設計(精選10篇)04-26

高中數(shù)學教學總結(jié)05-09

高中數(shù)學教學心得11-23

高中數(shù)學教學反思12-23

高中數(shù)學教學計劃03-07