《鴿巢問(wèn)題》教學(xué)設(shè)計(jì)范文(精選15篇)
作為一名教學(xué)工作者,常常要寫(xiě)一份優(yōu)秀的教學(xué)設(shè)計(jì),借助教學(xué)設(shè)計(jì)可以更大幅度地提高學(xué)生各方面的能力,從而使學(xué)生獲得良好的發(fā)展。那么教學(xué)設(shè)計(jì)應(yīng)該怎么寫(xiě)才合適呢?以下是小編幫大家整理的《鴿巢問(wèn)題》教學(xué)設(shè)計(jì)范文,歡迎閱讀與收藏。
《鴿巢問(wèn)題》教學(xué)設(shè)計(jì) 1
教學(xué)目標(biāo):
1、引導(dǎo)學(xué)生經(jīng)歷鴿巢原理的探究過(guò)程,初步了解鴿巢原理,會(huì)運(yùn)用鴿巢原理解決一些簡(jiǎn)單的實(shí)際問(wèn)題。
2、通過(guò)操作、觀察、比較、列舉、假設(shè)、推理等活動(dòng)發(fā)展學(xué)生的類推能力,形成比較抽象的數(shù)學(xué)思維。
3、使學(xué)生經(jīng)歷將具體問(wèn)題“數(shù)學(xué)化”的過(guò)程,初步形成模型思想。
教學(xué)重點(diǎn):經(jīng)歷鴿巢原理的探究過(guò)程,初步了解鴿巢原理。
教學(xué)難點(diǎn):理解鴿巢原理,并對(duì)一些簡(jiǎn)單的實(shí)際問(wèn)題加以模型化。
教學(xué)過(guò)程:
一、創(chuàng)設(shè)情境、導(dǎo)入新課
1、師:同學(xué)們,你們玩過(guò)撲克牌嗎?這里有一副牌,拿掉大小王后還剩52張,5位同學(xué)隨意抽一張牌,猜一猜:至少有幾張牌的花色是一樣的?(指名回答)
2、師:大家猜對(duì)了嗎?其實(shí)這里面藏著一個(gè)非常有趣的數(shù)學(xué)問(wèn)題,叫做“鴿巢問(wèn)題”。今天我們就一起來(lái)研究它。
二、合作探究、發(fā)現(xiàn)規(guī)律
師:研究一個(gè)數(shù)學(xué)問(wèn)題,我們通常從簡(jiǎn)單一點(diǎn)的情況開(kāi)始入手研究。請(qǐng)看大屏幕。(生齊讀題目)
1、教學(xué)例1:把4支鉛筆放進(jìn)3個(gè)筆筒里,不管怎么放,總有一個(gè)筆筒里至少有2支鉛筆。
(1)理解“總有”、“至少”的含義。(PPT)總有:一定有至少:最少
師:這個(gè)結(jié)論正確嗎?我們要?jiǎng)邮謥?lái)驗(yàn)證一下。
。2)同學(xué)們的課桌上都有一張作業(yè)紙,請(qǐng)同桌兩人合作探究:把4支鉛筆放進(jìn)3個(gè)筆筒里,有幾種不同的擺法?
探究之前,老師有幾個(gè)要求。(一生讀要求)
。3)匯報(bào)展示方法,證明結(jié)論。(展示兩張作品,其中一張是重復(fù)擺的。)
第一張作品:誰(shuí)看懂他是怎么擺的?(一生匯報(bào),發(fā)現(xiàn)重復(fù)的'擺法)
第二張作品:他是怎么擺的?這4種擺法有沒(méi)有重復(fù)的?還有其他的擺法嗎?板書(shū):(3,1,0)、(4,0,0)、(2,2,0)、(1,1,2)
師:我們要證明的是總有一個(gè)筆筒里至少有2支鉛筆,這4種擺法都滿足要求嗎?(指名匯報(bào):第一種擺法中哪個(gè)筆筒滿足要求?只要發(fā)現(xiàn)有一個(gè)筆筒里至少有2支鉛筆就行了。)總結(jié):把4支鉛筆放進(jìn)3個(gè)筆筒中一共只有四種情況,在每一種情況中,都一定有一個(gè)筆筒中至少有2支鉛筆。看來(lái)這個(gè)結(jié)論是正確的。
師:像這樣把所有情況一一列舉出來(lái)的方法,數(shù)學(xué)上叫做“枚舉法”。(板書(shū))
(4)通過(guò)比較,引出“假設(shè)法”
同桌討論:剛才我們把4種情況都列舉出來(lái)進(jìn)行驗(yàn)證,能不能找到一種更簡(jiǎn)單直接的方法,只擺一種情況就能證明這個(gè)結(jié)論是正確的?
引導(dǎo)學(xué)生說(shuō)出:假設(shè)先在每個(gè)筆筒里放1支,還剩下1支,這時(shí)無(wú)論放到哪個(gè)筆筒,那個(gè)筆筒里就有2支鉛筆了。(PPT演示)
。5)初步建!骄
師:先在每個(gè)筆筒里放1支,這種分法實(shí)際上是怎么分的?
生:平均分(師板書(shū))
師:為什么要去平均分呢?平均分有什么好處?
生:平均分可以保證每個(gè)筆筒里的筆數(shù)量一樣,盡可能的少。這樣多出來(lái)的1支不管放進(jìn)哪個(gè)筆筒里,總有一個(gè)筆筒里至少有2支鉛筆。(如果不平均分,隨便放,比如把4支鉛筆都放到一個(gè)筆筒里,這樣就不能保證一下子找到最少的情況了)
師:這種先平均分的方法叫做“假設(shè)法”。怎么用算式表示這種方法呢?
板書(shū):4÷3=1……11+1=2
。5)概括鴿巢問(wèn)題的一般規(guī)律
師:現(xiàn)在我們把題目改一改,結(jié)果會(huì)怎樣呢?
PPT出示:把5支筆放進(jìn)4個(gè)筆筒里,不管怎么放,總有一個(gè)筆筒里至少有幾支筆?……(引導(dǎo)學(xué)生說(shuō)清楚理由)
師:為什么大家都選擇用假設(shè)法來(lái)分析?(假設(shè)法更直接、簡(jiǎn)單)
通過(guò)這些問(wèn)題,你有什么發(fā)現(xiàn)?
交流總結(jié):只要筆的數(shù)量比筆筒數(shù)量多1,總有一個(gè)筆筒里至少放進(jìn)2支筆。
過(guò)渡語(yǔ):師:如果多出來(lái)的數(shù)量不是1,結(jié)果會(huì)怎樣呢?
2、出示:5只鴿子飛進(jìn)了3個(gè)鴿籠,總有一個(gè)鴿籠里至少飛進(jìn)了幾只鴿子呢?
。1)同桌討論交流、指名匯報(bào)。
先讓一生說(shuō)出5÷3=1……21+2=3的結(jié)果,再問(wèn):有不同的意見(jiàn)嗎?
再讓一生說(shuō)出5÷3=1……21+1=2
師:你們同意哪種想法?
(2)師:余下的2只怎樣飛才更符合“至少”的要求呢?為什么要再次平均分?
。3)明確:再次平均分,才能保證“至少”的情況。
3、教學(xué)例2
。1)師:我們剛才研究的把筆放入筆筒、鴿子飛進(jìn)鴿籠這樣的問(wèn)題就叫做“鴿巢問(wèn)題”,也叫“抽屜問(wèn)題”。它最早是由德國(guó)數(shù)學(xué)家狄利克雷發(fā)現(xiàn)并提出的,當(dāng)他發(fā)現(xiàn)這個(gè)問(wèn)題之后決定繼續(xù)深入研究下去。出示例2。
。2)獨(dú)立思考后指名匯報(bào)。
師板書(shū):7÷3=2……12+1=3
。3)如果有8本書(shū)會(huì)怎樣?10本書(shū)呢?
指名回答,師相機(jī)板書(shū):8÷3=2……22+1=3
師:剩下的2本怎么放才更符合“至少”的要求?
為什么不能用商+2?
10÷3=3……13+1=4
。4)觀察發(fā)現(xiàn)、總結(jié)規(guī)律
同桌討論交流:學(xué)到這里,老師想請(qǐng)大家觀察這些算式并思考一個(gè)問(wèn)題,把書(shū)放進(jìn)抽屜里,總有一個(gè)抽屜里至少放進(jìn)了幾本書(shū)?我們是用什么方法去找到這個(gè)結(jié)果的?(假設(shè)法,也就是平均分的方法)用書(shū)的數(shù)量去除以抽屜的數(shù)量,會(huì)得到一個(gè)商和一個(gè)余數(shù),最后的結(jié)果都是怎么計(jì)算得到的?為什么不能用商加余數(shù)?
歸納總結(jié):總有一個(gè)抽屜里至少可以放“商+1”本書(shū)。(板書(shū):商+1)
三、鞏固應(yīng)用
師:利用鴿巢問(wèn)題中這個(gè)原理可以解釋生活中很多有趣的問(wèn)題。
1、做一做第1、2題。
2、用抽屜原理解釋“撲克表演”。
說(shuō)清楚把4種花色看作抽屜,5張牌看作要放進(jìn)的書(shū)。
四、全課小結(jié)通過(guò)這節(jié)課的學(xué)習(xí),你有什么收獲或感想?
《鴿巢問(wèn)題》教學(xué)設(shè)計(jì) 2
教學(xué)內(nèi)容
審定人教版六年級(jí)下冊(cè)數(shù)學(xué)《數(shù)學(xué)廣角鴿巢問(wèn)題》,也就是原實(shí)驗(yàn)教材《抽屜原理》。
設(shè)計(jì)理念
《鴿巢問(wèn)題》既鴿巢原理又稱抽屜原理,它是組合數(shù)學(xué)的一個(gè)基本原理,最先是由德國(guó)數(shù)學(xué)家狄利克雷明確提出來(lái)的,因此,也稱為狄利克雷原理。
首先,用具體的操作,將抽象變?yōu)橹庇^!翱傆幸粋(gè)筒至少放進(jìn)2支筆”這句話對(duì)于學(xué)生而言,不僅說(shuō)起來(lái)生澀拗口,而且抽象難以理解。怎樣讓學(xué)生理解這句話呢?我覺(jué)得要讓學(xué)生充分的操作,一在具體操作中理解“總有”和“至少”;二在操作中理解“平均分”是保證“至少”的最好方法。通過(guò)操作,最直觀地呈現(xiàn)“總有一個(gè)筒至少放進(jìn)2支筆”這種現(xiàn)象,讓學(xué)生理解這句話。
其次,充分發(fā)揮學(xué)生主動(dòng)性,讓學(xué)生在證明結(jié)論的過(guò)程中探究方法,總結(jié)規(guī)律。學(xué)生是學(xué)習(xí)的主動(dòng)者,特別是這種原理的初步認(rèn)識(shí),不應(yīng)該是教師牽著學(xué)生去認(rèn)識(shí),而是創(chuàng)造條件,讓學(xué)生自己去探索,發(fā)現(xiàn)。所以我認(rèn)為應(yīng)該提出問(wèn)題,讓學(xué)生在具體的操作中來(lái)證明他們的結(jié)論是否正確,讓學(xué)生初步經(jīng)歷“數(shù)學(xué)證明”的過(guò)程,逐步提高學(xué)生的邏輯思維能力。
再者,適當(dāng)把握教學(xué)要求。我們的教學(xué)不同奧數(shù),因此在教學(xué)中不需要求學(xué)生說(shuō)理的嚴(yán)密性,也不需要學(xué)生確定過(guò)于抽象的“鴿巢”和“物體”。
教材分析
《鴿巢問(wèn)題》這是一類與“存在性”有關(guān)的問(wèn)題,如任意13名學(xué)生,一定存在兩名學(xué)生,他們?cè)谕粋(gè)月過(guò)生日。在這類問(wèn)題中,只需要確定某個(gè)物體(或某個(gè)人)的存在就可以了,并不需要指出是哪個(gè)物體(或哪個(gè)人),也不需要說(shuō)明通過(guò)什么方式把這個(gè)存在的物體(或人)找出來(lái)。這類問(wèn)題依據(jù)的理論,我們稱之為“鴿巢問(wèn)題”。
通過(guò)第一個(gè)例題教學(xué),介紹了較簡(jiǎn)單的“鴿巢問(wèn)題”:只要物體數(shù)比鴿巢數(shù)多,總有一個(gè)鴿巢至少放進(jìn)2個(gè)物體。它意圖讓學(xué)生發(fā)現(xiàn)這樣的一種存在現(xiàn)象:不管怎樣放,總有一個(gè)筒至少放進(jìn)2支筆。呈現(xiàn)兩種思維方法:一是枚舉法,羅列了擺放的所有情況。二是假設(shè)法,用平均分的方法直接考慮“至少”的情況。通過(guò)前一個(gè)例題的兩個(gè)層次的探究,讓學(xué)生理解“平均分”的方法能保證“至少”的情況,能用這種方法在簡(jiǎn)單的具體問(wèn)題中解釋證明。
第二個(gè)例題是在例1的基礎(chǔ)上說(shuō)明:只要物體數(shù)比鴿巢數(shù)多,總有一個(gè)鴿巢里至少放進(jìn)(商+1)個(gè)物體。因此我認(rèn)為例2的目的是使學(xué)生進(jìn)一步理解“盡量平均分”,并能用有余數(shù)的除法算式表示思維的過(guò)程。
學(xué)情分析
可能有一部分學(xué)生已經(jīng)了解了鴿巢問(wèn)題,他們?cè)诰唧w分得過(guò)程中,都在運(yùn)用平均分的方法,也能就一個(gè)具體的問(wèn)題得出結(jié)論。但是這些學(xué)生中大多數(shù)只“知其然,不知其所以然”,為什么平均分能保證“至少”的情況,他們并不理解。還有部分學(xué)生完全沒(méi)有接觸,所以他們可能會(huì)認(rèn)為至少的情況就應(yīng)該是“1”。
教學(xué)目標(biāo)
1、通過(guò)猜測(cè)、驗(yàn)證、觀察、分析等數(shù)學(xué)活動(dòng),經(jīng)歷“鴿巢問(wèn)題”的探究過(guò)程,初步了解“鴿巢問(wèn)題”,會(huì)用“鴿巢原理”解決簡(jiǎn)單的實(shí)際問(wèn)題。滲透“建!彼枷。
2、經(jīng)歷從具體到抽象的探究過(guò)程,提高學(xué)生有根據(jù)、有條理地進(jìn)行思考和推理的能力。
3、通過(guò)“鴿巢原理”的靈活應(yīng)用,提高學(xué)生解決數(shù)學(xué)問(wèn)題的能力和興趣,感受到數(shù)學(xué)文化及數(shù)學(xué)的魅力。
教學(xué)重點(diǎn)
經(jīng)歷“鴿巢問(wèn)題”的探究過(guò)程,初步了解“鴿巢原理”。
教學(xué)難點(diǎn)
理解“鴿巢問(wèn)題”,并對(duì)一些簡(jiǎn)單實(shí)際問(wèn)題加以“模型化”。
教具準(zhǔn)備:相關(guān)課件相關(guān)學(xué)具(若干筆和筒)
教學(xué)過(guò)程
一、游戲激趣,初步體驗(yàn)。
游戲規(guī)則是:請(qǐng)這四位同學(xué)從數(shù)字1、2、3中任選一個(gè)自己喜歡的數(shù)字寫(xiě)在手心上,寫(xiě)好后,握緊拳頭不要松開(kāi),讓老師猜。
[設(shè)計(jì)意圖:聯(lián)系學(xué)生的生活實(shí)際,激發(fā)學(xué)習(xí)興趣,使學(xué)生積極投入到后面問(wèn)題的研究中。]
二、操作探究,發(fā)現(xiàn)規(guī)律。
1、具體操作,感知規(guī)律
教學(xué)例1:4支筆,三個(gè)筒,可以怎么放?請(qǐng)同學(xué)們運(yùn)用實(shí)物放一放,看有幾種擺放方法?
。1)學(xué)生匯報(bào)結(jié)果
(4,0,0)(3,1,0)(2,2,0)(2,1,1)
。2)師生交流擺放的結(jié)果
。3)小結(jié):不管怎么放,總有一個(gè)筒里至少放進(jìn)了2支筆。
(學(xué)情預(yù)設(shè):學(xué)生可能不會(huì)說(shuō),“不管怎么放,總有一個(gè)筒里至少放進(jìn)了2支筆。”)
[設(shè)計(jì)意圖:鴿巢問(wèn)題對(duì)于學(xué)生來(lái)說(shuō),比較抽象,特別是“不管怎么放,總有一個(gè)筒里至少放進(jìn)了2支筆!边@句話的理解。所以通過(guò)具體的操作,枚舉所有的情況后,引導(dǎo)學(xué)生直接關(guān)注到每種分法中數(shù)量最多的筒,理解“總有一個(gè)筒里至少放進(jìn)了2支筆”。讓學(xué)生初步經(jīng)歷“數(shù)學(xué)證明”的過(guò)程,訓(xùn)練學(xué)生的邏輯思維能力。]
質(zhì)疑:我們能不能找到一種更為直接的方法,只擺一次,也能得到這個(gè)結(jié)論的方法呢?
2、假設(shè)法,用“平均分”來(lái)演繹“鴿巢問(wèn)題”。
1.思考,同桌討論:要怎么放,只放一次,就能得出這樣的結(jié)論?
學(xué)生思考——同桌交流——匯報(bào)
2.匯報(bào)想法
預(yù)設(shè)生1:我們發(fā)現(xiàn)如果每個(gè)筒里放1支筆,最多放4支,剩下的1支不管放進(jìn)哪一個(gè)筒里,總有一個(gè)筒里至少有2支筆。
3.學(xué)生操作演示分法,明確這種分法其實(shí)就是“平均分”。
[設(shè)計(jì)意圖:鼓勵(lì)學(xué)生積極的自主探索,尋找不同的證明方法,在枚舉法的基礎(chǔ)上,學(xué)生意識(shí)到了要考慮最少的情況,從而引出假設(shè)法滲透平均分的思想。]
三、探究歸納,形成規(guī)律
1、課件出示第二個(gè)例題:5只鴿子飛回2個(gè)鴿巢呢?至少有幾只鴿子飛進(jìn)同一個(gè)鴿巢里?應(yīng)該怎樣列式“平均分”。
[設(shè)計(jì)意圖:引導(dǎo)學(xué)生用平均分思想,并能用有余數(shù)的除法算式表示思維的過(guò)程。]
根據(jù)學(xué)生回答板書(shū):5÷2=2……1
。▽W(xué)情預(yù)設(shè):會(huì)有一些學(xué)生回答,至少數(shù)=商+余數(shù)至少數(shù)=商+1)
根據(jù)學(xué)生回答,師邊板書(shū):至少數(shù)=商+余數(shù)?
至少數(shù)=商+1?
2、師依次創(chuàng)設(shè)疑問(wèn):7只鴿子飛回5個(gè)鴿巢呢?8只鴿子飛回5個(gè)鴿巢呢?9只鴿子飛回5個(gè)鴿巢呢?(根據(jù)回答,依次板書(shū))
……
7÷5=1……2
8÷5=1……3
9÷5=1……4
觀察板書(shū),同學(xué)們有什么發(fā)現(xiàn)嗎?
得出“物體的數(shù)量大于鴿巢的`數(shù)量,總有一個(gè)鴿巢里至少放進(jìn)(商+1)個(gè)物體”的結(jié)論。
板書(shū):至少數(shù)=商+1
[設(shè)計(jì)意圖:對(duì)規(guī)律的認(rèn)識(shí)是循序漸進(jìn)的。在初次發(fā)現(xiàn)規(guī)律的基礎(chǔ)上,從“至少2支”得到“至少商+余數(shù)”個(gè),再到得到“商+1”的結(jié)論。]
師過(guò)渡語(yǔ):同學(xué)們的這一發(fā)現(xiàn),稱為“鴿巢問(wèn)題”,最先是由19世紀(jì)的德國(guó)數(shù)學(xué)家狄利克雷提出來(lái)的,所以又稱“狄里克雷原理”,也稱為“鴿巢原理”。這一原理在解決實(shí)際問(wèn)題中有著廣泛的應(yīng)用。“鴿巢原理”的應(yīng)用是千變?nèi)f化的,用它可以解決許多有趣的問(wèn)題,并且常常能得到一些令人驚異的結(jié)果。下面我們應(yīng)用這一原理解決問(wèn)題。
四、運(yùn)用規(guī)律解決生活中的問(wèn)題
課件出示習(xí)題、:
1.三個(gè)小朋友同行,其中必有幾個(gè)小朋友性別相同。
2、五年一班共有學(xué)生53人,他們的年齡都相同,請(qǐng)你證明至少有兩個(gè)小朋友出生在同一周。
3、從電影院中任意找來(lái)13個(gè)觀眾,至少有兩個(gè)人屬相相同。
[設(shè)計(jì)意圖:讓學(xué)生體會(huì)平常事中也有數(shù)學(xué)原理,有探究的成就感,激發(fā)對(duì)數(shù)學(xué)的熱情。]
五、課堂總結(jié)
這節(jié)課我們學(xué)習(xí)了什么有趣的規(guī)律?請(qǐng)學(xué)生暢談,師總結(jié)
《鴿巢問(wèn)題》教學(xué)設(shè)計(jì) 3
一、教學(xué)內(nèi)容:
教科書(shū)第68頁(yè)例1。
二、教學(xué)目標(biāo):
(一)知識(shí)與技能:通過(guò)數(shù)學(xué)活動(dòng)讓學(xué)生了解鴿巢原理,學(xué)會(huì)簡(jiǎn)單的鴿巢原理分析方法。
(二)過(guò)程與方法:結(jié)合具體的實(shí)際問(wèn)題,通過(guò)實(shí)驗(yàn)、觀察、分析、歸納等數(shù)學(xué)活動(dòng),讓學(xué)生通過(guò)獨(dú)立思考與合作交流等活動(dòng)提高解決實(shí)際問(wèn)題的能力。
。ㄈ┣楦袘B(tài)度和價(jià)值觀:在主動(dòng)參與數(shù)學(xué)活動(dòng)的過(guò)程中,讓學(xué)生切實(shí)體會(huì)到探索的樂(lè)趣,讓學(xué)生切實(shí)體會(huì)到數(shù)學(xué)與生活的緊密結(jié)合。
三、教學(xué)重難點(diǎn)
教學(xué)重點(diǎn):經(jīng)歷鴿巢問(wèn)題的探究過(guò)程,初步了解鴿巢原理,會(huì)用鴿巢原理解決簡(jiǎn)單的實(shí)際問(wèn)題。
教學(xué)難點(diǎn):通過(guò)操作發(fā)展學(xué)生的類推能力,形成比較抽象的數(shù)學(xué)思維。
四、教學(xué)準(zhǔn)備:多媒體課件。
五、教學(xué)過(guò)程
(一)候課閱讀分享:
同學(xué)們,大家好,課前老師讓大家收集了有關(guān)“鴿巢問(wèn)題”的閱讀資料,現(xiàn)在就某某同學(xué)的閱讀在這候課的幾分鐘內(nèi)與大家分享一下。
。ǘ┘で閷(dǎo)課
好,咱們班人數(shù)已到齊,從今天開(kāi)始,我們學(xué)習(xí)第五單元鴿巢問(wèn)題,這節(jié)課通過(guò)數(shù)學(xué)活動(dòng)我們來(lái)了解鴿巢原理,學(xué)會(huì)簡(jiǎn)單的鴿巢原理分析方法。你準(zhǔn)備好了嗎?好,我們現(xiàn)在開(kāi)始上課。
。ㄈ┟裰鲗(dǎo)學(xué)
1、請(qǐng)同學(xué)們先來(lái)看例1。把4支鉛筆放進(jìn)3個(gè)筆筒中,不管怎么放,總有1個(gè)筆筒里至少有2只鉛筆。
請(qǐng)你再把題讀一次,這是為什么呢?
要想解決這個(gè)問(wèn)題,我們首先要理解,總有一個(gè)筆筒里至少有2支鉛筆這句話。我們?cè)偎伎歼@一句話中,總有和至少是什么意思?
對(duì)總有就是一定的意思。至少就是最少的意思至少有兩支鉛筆,就是說(shuō)最少有兩支鉛筆;蛘呤钦f(shuō),鉛筆的支數(shù)要大于或等于兩支。
那你能現(xiàn)在說(shuō)說(shuō),總有一個(gè)筆筒里至少有兩支鉛筆這句話的意思了嗎?對(duì),這句話就是說(shuō),一定有一個(gè)筆筒里最少有兩支鉛筆,或者是說(shuō)一定有一個(gè)筆筒里的鉛筆數(shù)是大于或等于兩支的'。你說(shuō)對(duì)了嗎?
課前老師已經(jīng)讓大家完成前置性作業(yè),就“4支鉛筆放進(jìn)3個(gè)筆筒中有幾種擺法呢?”這兒老師收集到了各組組長(zhǎng)整理出的大家的各種擺法,我們一起來(lái)看一看吧!
方法一:用“枚舉法”證明。也可用“分解法”證明把4分解成3個(gè)數(shù)。我們發(fā)現(xiàn)有(4,0,0)(0,1,3)(2,2,0)(2,1,1)四種不同的方法。
剛才的兩種方法無(wú)論是擺還是寫(xiě)都是把方法枚舉出來(lái),在數(shù)學(xué)中我們叫它“枚舉法”。
那大家能不能找到一種更為直接的方法只擺一種情況也能得到這個(gè)情況呢?
方法二:用“假設(shè)法”證明。
對(duì),我們可以這樣想,如果在每個(gè)筆筒中放1支,先放3支,剩下的1支就要放進(jìn)其中的一個(gè)筆筒。這時(shí)無(wú)論放在哪個(gè)筆筒,那個(gè)筆筒中就有2支,所以總有一個(gè)筆筒中至少放進(jìn)2支鉛筆。(平均分)
方法三:列式計(jì)算
你能用算式表示這個(gè)方法嗎?
學(xué)生列出式子并說(shuō)一說(shuō)算式中商與余數(shù)各表示什么意思?
2、把5支鉛筆放進(jìn)4個(gè)筆筒,總有一個(gè)筆筒里至少有2支鉛筆。
這道題大家可以用幾種方法解答呢?
3種,枚舉法、假設(shè)法、列式計(jì)算。
3、100支鉛筆,放進(jìn)99個(gè)筆筒,總有一個(gè)筆筒至少要放進(jìn)多少支鉛筆呢?
還能有枚舉法嗎?對(duì),不能,枚舉法雖然比較直觀,但數(shù)據(jù)大的時(shí)候用起來(lái)比較麻煩?梢杂眉僭O(shè)法和列式計(jì)算。
4、表格中通過(guò)整理,總結(jié)規(guī)律
你發(fā)現(xiàn)了什么規(guī)律?
當(dāng)要分的物體數(shù)比鴿巢數(shù)(抽屜數(shù))多1時(shí),至少數(shù)等于2“商+1”。
5、簡(jiǎn)單了解鴿巢問(wèn)題的由來(lái)。
經(jīng)過(guò)剛才的探索研究,我們經(jīng)歷了一個(gè)很不簡(jiǎn)單的思維過(guò)程,我把我們的這一發(fā)現(xiàn),稱為筆筒問(wèn)題。但其實(shí)最早發(fā)現(xiàn)這個(gè)規(guī)律的不是我們,而是德國(guó)的一個(gè)數(shù)學(xué)家“狄里克雷”。
。ㄋ模z測(cè)導(dǎo)結(jié)
好,我們做幾道題檢測(cè)一下你們的學(xué)習(xí)效果。
1、隨意找13位老師,他們中至少有2個(gè)人的屬相相同。為什么?
2、一副牌,取出大小王,還剩52張,你們5人每人隨意抽一張,我知道至少有2張牌是同花色的。相信嗎?
3、5只鴿子飛進(jìn)了3個(gè)鴿籠,總有一個(gè)鴿籠至少飛進(jìn)了2只鴿子。為什么?
4、育新小學(xué)全校共有2192名學(xué)生,其中一年級(jí)新生有367名同學(xué)是2008年出生的,這個(gè)學(xué)校一年級(jí)學(xué)生2008年出生的同學(xué)中,至少有幾個(gè)人出生在同一天?
。ㄎ澹┤n總結(jié)今天你有什么收獲呢?
。┎贾米鳂I(yè)
作業(yè):兩導(dǎo)兩練第70頁(yè)、71頁(yè)實(shí)踐應(yīng)用1、4題。
《鴿巢問(wèn)題》教學(xué)設(shè)計(jì) 4
教學(xué)目標(biāo):
1、理解簡(jiǎn)單的鴿巢問(wèn)題及鴿巢問(wèn)題的一般形式,引導(dǎo)學(xué)生采用操作的方法進(jìn)行枚舉及假設(shè)法探究“鴿巢問(wèn)題”。
2、體會(huì)數(shù)學(xué)知識(shí)在日常生活中的廣泛應(yīng)用,培養(yǎng)學(xué)生的探究意識(shí)。
教學(xué)重點(diǎn):了解簡(jiǎn)單的鴿巢問(wèn)題,理解“總有”和“至少”的含義。
教學(xué)難點(diǎn):運(yùn)用“鴿巢原理”解決相關(guān)的實(shí)際問(wèn)題,理解數(shù)學(xué)中的優(yōu)化思想。
教學(xué)過(guò)程:
一、游戲激趣導(dǎo)入新課
1、同學(xué)們看,老師手中拿的是什么?拿出大王和小王,剩下的牌中共有幾種花色?
2、現(xiàn)在我們一起來(lái)玩猜花色的游戲,請(qǐng)5位同學(xué)到前面每人隨意抽一張紙牌,抽完后不要讓老師看到。
3、抽后老師大膽猜測(cè):一副撲克牌,取出大王和小王,5人每人隨意抽一張,至少有2張牌花色相同(課件出示)。
4、有些同學(xué)一定覺(jué)得老師只是湊巧猜對(duì)了,我們?cè)俪橐淮,老師還大膽猜測(cè):一副撲克牌,取出大王和小王,5人每人隨意抽一張,至少有2張牌花色相同。如果老師猜對(duì)了,就給老師點(diǎn)掌聲。
5、如果老師再換5名同學(xué)來(lái)抽牌,我還敢確定的說(shuō)至少有2張牌的花色相同,這是為什么呢?其實(shí)這里面蘊(yùn)藏著一個(gè)有趣的數(shù)學(xué)原理--抽屜原理,也叫鴿巢原理或鴿巢問(wèn)題,這節(jié)課我們就一起來(lái)研究這個(gè)問(wèn)題。(板書(shū)課題)
。ㄔO(shè)計(jì)意圖:通過(guò)這個(gè)游戲激發(fā)學(xué)生學(xué)習(xí)本節(jié)課的好奇心,也使學(xué)生感受到數(shù)學(xué)和生活中的聯(lián)系,知道學(xué)習(xí)本節(jié)課的重要性。)
二、呈現(xiàn)問(wèn)題自主探究
1、小紅在整理自己的學(xué)習(xí)用品是有這樣的發(fā)現(xiàn)(課件出示:把4支鉛筆放進(jìn)3個(gè)筆筒中,不管怎么放,總有一個(gè)筆筒里至少有2支鉛筆。)學(xué)生齊讀。
2、在這句話中你有什么不理解的嗎?學(xué)生提出不理解的詞語(yǔ)。
。1)不管:隨意,想想怎么放就怎么放。
。2)總有:一定有。
(3)至少:最少,最起碼。
師提問(wèn):最少2支指的是幾支呢?具體來(lái)說(shuō)。
2、把整句話翻譯過(guò)來(lái)再說(shuō)一遍。
(設(shè)計(jì)意圖:讓學(xué)生充分理解這句話的意思,為接下來(lái)的研究做好鋪墊。)
2、你覺(jué)得這句話說(shuō)得對(duì)嗎?給同學(xué)們1分鐘時(shí)間同學(xué)生靜靜思考一下。
3、現(xiàn)在同學(xué)用擺一擺、畫(huà)一畫(huà)、寫(xiě)一寫(xiě)等方法來(lái)驗(yàn)證這句話,老師出示自己的溫馨提示。(課件出示:溫馨提示:選擇自己喜歡的方式驗(yàn)證,比如,同桌合作,用紙杯代替筆筒,用鉛筆擺一擺,一人擺,一人記錄。(注意:不考慮順序。)
4、學(xué)生匯報(bào)驗(yàn)證的方法:
生1:利用圖片來(lái)列舉出幾種放法
教師提問(wèn):我們來(lái)看這位同學(xué)的擺法,憑什么說(shuō)“總有一個(gè)筆筒里至少有2支鉛筆”呢?比2支多也可以嗎?
教師小結(jié):非常好,我們?cè)谟^察這幾種擺法,把符合要求的筆筒用彩色筆標(biāo)出來(lái):所以說(shuō)不管怎么放總有一支筆筒里至少有2支鉛筆。
生2:利用數(shù)字方法列舉出幾種方法(4,0,0)(3,1,0)(2,1,1)(2,2,0)
我們一起圈出每種分法不少于2的數(shù)字。(表?yè)P(yáng)生2,方法更簡(jiǎn)單一些)
5、同學(xué)們像剛才把所有中情況都列舉出來(lái),這種方法就叫做列舉法或枚舉法。(板書(shū))
6、除了這種枚舉法,還有沒(méi)有別的方法也能證明這句話是對(duì)的。
生:先假設(shè)每個(gè)筆筒中放1支鉛筆,這樣還剩1支鉛筆,這時(shí)無(wú)論放到哪個(gè)筆筒,哪個(gè)筆筒就是2支鉛筆了,所以我認(rèn)為是對(duì)的。
師追問(wèn):你為什么要現(xiàn)在每個(gè)筆筒里放1支呢?
生:因?yàn)橐还灿?支筆,平均分后每個(gè)筆筒只能分到一支。
師追問(wèn):那為什么要一開(kāi)始就去平均分呢?
生:平均分就可以使每個(gè)筆筒中的筆盡量少一點(diǎn),如果這樣都能符合要求,其他中情況都能符合要求了。
。ㄔO(shè)計(jì)意圖:教師的追問(wèn)讓學(xué)生更明確為什么要平均分,平均分的好處是什么。)
7、這位同學(xué)的想法真是太與眾不同了,我們?yōu)樗恼,誰(shuí)聽(tīng)懂了他的想法,把他的想法在復(fù)述一遍。
8、想這位同學(xué)的方法就是假設(shè)法。(板書(shū):假設(shè)法)
9、到現(xiàn)在為止,我們可以得出結(jié)論了。
三、提升思維構(gòu)建模型
1、剛才我們通過(guò)不同的方法驗(yàn)證了這句話是正確的,現(xiàn)在老師把題目改一改,同學(xué)們看看還對(duì)不對(duì)了,為什么?(課件出示:把5支鉛筆放進(jìn)4個(gè)筆筒里,不管怎么放,總有一個(gè)筆筒里至少有2支鉛筆。)生回答并說(shuō)明理由。
2、課件繼續(xù)出示:
。1)把6個(gè)蘋果放進(jìn)5個(gè)盤子里呢?
(2)把10本書(shū)放進(jìn)9個(gè)抽屜中呢?
(3)把100只鴿子放進(jìn)99個(gè)籠子中呢?
3、我們?yōu)槭裁炊疾捎昧思僭O(shè)法來(lái)分析,而不是畫(huà)圖用枚舉法呢?(枚舉法雖然直觀,但是有一定的局限性,假設(shè)法更具有一般性)
。ㄔO(shè)計(jì)意圖:通過(guò)出示更大的.數(shù),讓學(xué)生感受到用假設(shè)法的方便性,實(shí)用性,同時(shí)引出的優(yōu)化的思想。)
4、在數(shù)學(xué)課堂上我們通常采用更便于我們解決的方法來(lái)解決問(wèn)題,這是一種優(yōu)化的思想。(板書(shū):優(yōu)化思想)
5、引出物體數(shù)、鴿巢數(shù)、至少數(shù),學(xué)生觀察,你有什么發(fā)現(xiàn)嗎?(當(dāng)物體數(shù)比鴿巢數(shù)多1時(shí),總有一個(gè)鴿巢里至少有2個(gè)物體。)
6、回過(guò)頭來(lái)我們看課前老師猜測(cè)的撲克牌的游戲,誰(shuí)能解釋一下是怎么回事呢?看來(lái)并不是老師神奇,而是鴿巢問(wèn)題神奇啊。
7、同學(xué)們今天的發(fā)現(xiàn)是德國(guó)數(shù)學(xué)家狄利克雷最早提出的:課件介紹有關(guān)鴿巢問(wèn)題的來(lái)歷。
四、解決問(wèn)題練習(xí)鞏固
通過(guò)學(xué)生的努力,我們一起研究出鴿巢問(wèn)原理,現(xiàn)在老師出幾道題看同學(xué)們是否真的學(xué)會(huì)了。
1、5只鴿子飛進(jìn)了3個(gè)鴿籠,總有一個(gè)鴿籠至少飛進(jìn)了2只鴿子。為什么?
2、把()本書(shū)放進(jìn)3個(gè)抽屜,不管怎么放,總有一個(gè)抽屜至少放進(jìn)2本書(shū)。()中能填幾呢?
。ㄔO(shè)計(jì)意圖:習(xí)題2鍛煉學(xué)生的逆向思維,同時(shí)也為下節(jié)課的學(xué)習(xí)埋下了伏筆。)
五、課堂總結(jié)
這節(jié)課的探究學(xué)習(xí)中,我們一起經(jīng)歷了與德國(guó)數(shù)學(xué)家狄利克雷一樣的偉大發(fā)現(xiàn),你有什么收獲呢?
板書(shū)設(shè)計(jì):
《鴿巢問(wèn)題》教學(xué)設(shè)計(jì) 5
教學(xué)內(nèi)容:
人教版小學(xué)數(shù)學(xué)六年級(jí)下冊(cè)教材第68~69頁(yè)。
教材分析:
鴿巢問(wèn)題又稱抽屜原理或鴿巢原理,它是組合數(shù)學(xué)中最簡(jiǎn)單也是最基本的原理之一,從這個(gè)原理出發(fā),可以得出許多有趣的結(jié)果。這部分教材通過(guò)幾個(gè)直觀的例子,借助實(shí)際操作,向?qū)W生介紹了“鴿巢問(wèn)題”。學(xué)生在理解這一數(shù)學(xué)方法的基礎(chǔ)上,對(duì)一些簡(jiǎn)單的實(shí)際問(wèn)題“模型化”,會(huì)用“鴿巢問(wèn)題”解決問(wèn)題,促進(jìn)邏輯推理能力的發(fā)展。
學(xué)情分析:
“鴿巢問(wèn)題”的理論本身并不復(fù)雜,對(duì)于學(xué)生來(lái)說(shuō)是很容易的。但“鴿巢問(wèn)題”的應(yīng)用卻是千變?nèi)f化的,尤其是“鴿巢問(wèn)題”的逆用,學(xué)生對(duì)進(jìn)行逆向思維的思考可能會(huì)感到困難,也缺乏思考的方向,很難找到切入點(diǎn)。
設(shè)計(jì)理念:
在教學(xué)中,讓學(xué)生經(jīng)歷將具體問(wèn)題“數(shù)學(xué)化”的過(guò)程,初步形成模型思想,體會(huì)和理解數(shù)學(xué)與外部世界的緊密聯(lián)系,發(fā)展抽象能力、推理能力和應(yīng)用能力,這是《標(biāo)準(zhǔn)》的重要要求,也是本課的編排意圖和價(jià)值取向。
教學(xué)目標(biāo):
1、知識(shí)與技能:通過(guò)操作、觀察、比較、推理等活動(dòng),初步了解鴿巢原理,學(xué)會(huì)簡(jiǎn)單的鴿巢原理分析方法,運(yùn)用鴿巢原理的知識(shí)解決簡(jiǎn)單的實(shí)際問(wèn)題。
2、過(guò)程與方法:在鴿巢原理的探究過(guò)程中,使學(xué)生逐步理解和掌握鴿巢原理,經(jīng)歷將具體問(wèn)題數(shù)學(xué)化的過(guò)程,培養(yǎng)學(xué)生的模型思想。
3、情感態(tài)度:通過(guò)對(duì)鴿巢原理的靈活運(yùn)用,感受數(shù)學(xué)的魅力,體會(huì)數(shù)學(xué)的價(jià)值,提高學(xué)生解決問(wèn)題的能力和興趣。
教學(xué)重點(diǎn):
理解鴿巢原理,掌握先“平均分”,再調(diào)整的方法。教學(xué)難點(diǎn):理解“總有”“至少”的意義,理解“至少數(shù)=商數(shù)+1”。教學(xué)準(zhǔn)備:多媒體課件、合作探究作業(yè)紙。
教學(xué)過(guò)程:
一、游戲?qū)дn:
1、游戲:
一副撲克牌取出大小王,還剩52張牌。
自己動(dòng)手洗牌。隨意抽出五張牌,至少有兩張牌是相同的花色。自己想想為什么會(huì)這樣呢?
2、把3枝筆放到2個(gè)筆筒里,不管怎么放,總有一個(gè)筆筒里至少有2枝筆。 “不管怎么放”也就是說(shuō)放的情況X“總有一個(gè)”也就是指X的意思。 “至少”也就是指X的意思。
二、合作探究
(一)枚舉法
4支鉛筆放進(jìn)3個(gè)筆筒,總有一個(gè)筆筒至少放了3支鉛筆。
1、小組合作:
。1)畫(huà)一畫(huà):借助“畫(huà)圖”或“數(shù)的分解”的方法把各種情況都表示出來(lái);
。2)找一找:每種擺法中最多的一個(gè)筆筒放了幾支,用筆標(biāo)出;
。3)我們發(fā)現(xiàn):總有一個(gè)筆筒至少放進(jìn)了(?)支鉛筆。
2、學(xué)生匯報(bào),展臺(tái)展示。交流后明確:
。1)四種情況:(4,0,0)、(3,1,0)、(2,1,1)、(2,2,0)
(2)每種擺法中最多的一個(gè)筆筒放進(jìn)了:4支、3支、2支。
(3)總有一個(gè)筆筒至少放進(jìn)了2支鉛筆。
3、小結(jié):剛才我們通過(guò)“畫(huà)圖”、“數(shù)的分解”兩種方法列舉出所有情況驗(yàn)證了結(jié)論,這種方法叫“枚舉法”,我們能不能找到一種更為直接的方法,只擺一種情況,也能得到這個(gè)結(jié)論,找到“至少數(shù)”呢?
(二)假設(shè)法
1、學(xué)生嘗試回答。(如果有困難,也可以直接投影書(shū)中有關(guān)“假設(shè)法”的截圖)
2、學(xué)生操作演示,教師圖示。
3、語(yǔ)言描述:把4支鉛筆平均放在3個(gè)筆筒里,每個(gè)筆筒放1支,余下的1支,無(wú)論放在哪個(gè)筆筒,那個(gè)筆筒就有2支筆,所以說(shuō)總有一個(gè)筆筒至少放進(jìn)了2支筆。(指名說(shuō),互相說(shuō))
4、引導(dǎo)發(fā)現(xiàn):
。1)這種分法的實(shí)質(zhì)就是先怎么分的?(平均分)
(2)為什么要一開(kāi)始就平均分?(均勻地分,使每個(gè)筆筒的筆盡可能少一點(diǎn),方便找到“至少數(shù)”),余下的1支,怎么放?(放進(jìn)哪個(gè)筆筒都行)
(3)怎樣用算式表示這種方法?(4÷3=1支……1支? 1+1=2支)算式中的兩個(gè)“1”是什么意思?5、引伸拓展:
。1)5只鴿子飛進(jìn)4個(gè)鴿籠,總有一個(gè)鴿籠至少飛進(jìn)(?)只鴿子。(2)6本書(shū)放進(jìn)5個(gè)抽屜里,總有一個(gè)抽屜至少放進(jìn)(?)本書(shū)。(3)100支筆放進(jìn)99個(gè)筆筒,總有一個(gè)筆筒至少放進(jìn)(?)支筆。學(xué)生列出算式,依據(jù)算式說(shuō)理。
6、發(fā)現(xiàn)規(guī)律:剛才的這種方法就是“假設(shè)法”,它里面就蘊(yùn)含了“平均分”,我們用有余數(shù)的除法算式把平均分的過(guò)程簡(jiǎn)明的表示出來(lái)了,現(xiàn)在會(huì)用簡(jiǎn)便方法求“至少數(shù)”嗎?
。ㄈ┙⒛P
1、出示題目:17支筆放進(jìn)3個(gè)文具盒?17÷3=5支……2支學(xué)生可能有兩種意見(jiàn):總有一個(gè)文具盒里至少有5支,至少6支。針對(duì)兩種結(jié)果,各自說(shuō)說(shuō)自己的想法。
2、小組討論,突破難點(diǎn):至少5只還是6只?
3、學(xué)生說(shuō)理,邊擺邊說(shuō):先平均分給每個(gè)文具盒5支筆,余下2只再平均分放進(jìn)2個(gè)不同的文具盒里,所以至少6只。(指名說(shuō),互相說(shuō))
4、質(zhì)疑:為什么第二次平均分?(保證“至少”)5、強(qiáng)化:如果把筆和筆筒的`數(shù)量進(jìn)一步增加呢?(1)28支筆放進(jìn)11個(gè)筆筒,至少幾支放進(jìn)同一個(gè)筆筒?28÷11=2(支)…6(支)? 2+1=3(支)
(2)77支筆放進(jìn)13個(gè)筆筒,至少幾支放進(jìn)同一個(gè)筆筒?77÷13=6(支)…12(支)? 6+1=7(支)
6、對(duì)比算式,發(fā)現(xiàn)規(guī)律:先平均分,再用所得的“商+1” 7、強(qiáng)調(diào):和余數(shù)有沒(méi)有關(guān)系?
學(xué)生交流,明確:與余數(shù)無(wú)關(guān),不管余多少,都要再平均分,所以就是加1.8、引申拓展:剛才我們研究了筆放入筆筒的問(wèn)題,那如果換成鴿子飛進(jìn)鴿籠你會(huì)解答嗎?把蘋果放入抽屜,把書(shū)放入書(shū)架,高速路口同時(shí)有4輛車通過(guò)3個(gè)收費(fèi)口……,類似的問(wèn)題我們都可以用這種方法解答。
三、鴿巢原理的由來(lái)
微視頻:同學(xué)們從數(shù)學(xué)的角度分析了這些事情,同時(shí)根據(jù)數(shù)據(jù)特征,發(fā)現(xiàn)了這些規(guī)律。你們發(fā)現(xiàn)的這個(gè)規(guī)律和一位數(shù)學(xué)家發(fā)現(xiàn)的規(guī)律一模一樣,只不過(guò)他是在150多年前發(fā)現(xiàn)的,你們知道他是誰(shuí)嗎?——德國(guó)數(shù)學(xué)家?“狄里克雷”,后人們?yōu)榱思o(jì)念他從這么平凡的事情中發(fā)現(xiàn)的規(guī)律,就把這個(gè)規(guī)律用他的名字命名,叫“狄里克雷原理”,由于人們對(duì)鴿子飛回鴿巢這個(gè)引起思考的故事記憶猶新,所以人們又把這個(gè)原理叫做“鴿巢原理”,它還有另外一個(gè)名字叫“抽屜原理”。
四、解決問(wèn)題
1、隨意找13位老師,他們中至少有2個(gè)人的屬相相同。為什么?2、11只鴿子飛進(jìn)了4個(gè)鴿籠,總有一個(gè)鴿籠至少飛進(jìn)了3只鴿子。為什么?3、5個(gè)人坐4把椅子,總有一把椅子上至少坐2人。為什么?
4、把15本書(shū)放進(jìn)4個(gè)抽屜中,不管怎么放,總有一個(gè)抽屜至少有4本書(shū),為什么?
《鴿巢問(wèn)題》教學(xué)設(shè)計(jì) 6
教學(xué)目標(biāo):
1.知識(shí)與技能:通過(guò)操作、觀察、比較、推理等活動(dòng),初步了解鴿巢原理,學(xué)會(huì)簡(jiǎn)單的鴿巢原理分析方法,運(yùn)用鴿巢原理的知識(shí)解決簡(jiǎn)單的實(shí)際問(wèn)題。
2.過(guò)程與方法:在鴿巢原理的探究過(guò)程中,使學(xué)生逐步理解和掌握鴿巢原理,經(jīng)歷將具體問(wèn)題數(shù)學(xué)化的過(guò)程,培養(yǎng)學(xué)生的模型思想。
3.情感態(tài)度:通過(guò)對(duì)鴿巢原理的靈活運(yùn)用,感受數(shù)學(xué)的魅力,體會(huì)數(shù)學(xué)的價(jià)值,提高學(xué)生解決相關(guān)問(wèn)題的能力和興趣。
教學(xué)重點(diǎn):經(jīng)歷鴿巢原理的探究過(guò)程,初步了解鴿巢原理。
教學(xué)難點(diǎn):理解“總有”“至少”的意義,理解鴿巢原理,并對(duì)一些簡(jiǎn)單的實(shí)際問(wèn)題加以模型化。
教學(xué)準(zhǔn)備:多媒體課件、撲克牌、3個(gè)筆筒。
教學(xué)過(guò)程:
一、魔術(shù)游戲激趣導(dǎo)入:
1、老師這個(gè)魔術(shù)需要請(qǐng)1名同學(xué)來(lái)配合,誰(shuí)愿意?
向?qū)W生介紹這是一幅撲克牌,取出大小王、還剩52張,(請(qǐng)學(xué)生隨意抽出5張牌)好,見(jiàn)證奇跡的時(shí)刻到了,你手里有5張牌至少有兩張牌的花色是一樣的。(學(xué)生打開(kāi)牌讓大家看)
課件出示:至少有2張是同一花色!爸辽佟北硎臼裁匆馑迹
引導(dǎo):老師為什么能作出準(zhǔn)確的`判斷呢?因?yàn)檫@個(gè)有趣的魔術(shù)中蘊(yùn)含著一個(gè)數(shù)學(xué)原理,這節(jié)課我們就一起來(lái)研究這個(gè)問(wèn)題。
板演:鴿巢問(wèn)題
二、合作探究
(一)列舉法:
課件出示:同學(xué)們,如果把3支筆放進(jìn)2個(gè)筆筒中,會(huì)有哪幾種擺放的結(jié)果?
找一組學(xué)生上前實(shí)物模擬操作擺放情況。
師問(wèn):同學(xué)們,你們誰(shuí)能把擺放的情況用“總有……至少……”這個(gè)句式來(lái)概括出來(lái)嗎?“總有”、“至少”分別又是什么意思呢?
概括得出:總有1個(gè)筆筒至少放2支筆。(及時(shí)肯定學(xué)生們的回答:你的邏輯思維能力真強(qiáng))
課件出示:如果把4支筆放進(jìn)3個(gè)筆筒中呢?快和你的小伙伴們交流探索一下:
1.分組探究,教師巡視指導(dǎo)。
預(yù)設(shè)學(xué)生會(huì)出現(xiàn)以下幾種情況:
(1)實(shí)物模擬
。2)圖示
。3)數(shù)的分解
2.學(xué)生匯報(bào),講臺(tái)展示。
3.學(xué)生概括得出:總有1個(gè)筆筒至少放2支筆。
4.小結(jié):剛才我們通過(guò)以上方法列舉出所有情況驗(yàn)證了結(jié)論,這種方法叫“列舉法”。
(二)假設(shè)法
師問(wèn):同學(xué)們,將100支筆放99個(gè)筆筒,總有1個(gè)筆筒至少放進(jìn)幾支筆呢?
追問(wèn)有勇氣列舉嗎?預(yù)設(shè):沒(méi)有勇氣列舉
我們能不能找到一種更為直接的方法,找到“至少數(shù)”呢?
課件出示:4支筆放3個(gè)筆筒,總有1個(gè)筆筒至少放2支筆。這句話能快速得到驗(yàn)證嗎?
1.引導(dǎo)學(xué)生思考:回顧下“至少”的意思,為保障每個(gè)筆筒都盡量少,不能出現(xiàn)某個(gè)筆筒特別多的情況,我們要把怎樣分?學(xué)生嘗試作答:
生:如果每個(gè)筆筒里放1支筆,放了3支,剩下的1支不管放進(jìn)哪一個(gè)筆筒里,總有一個(gè)筆筒里至少有2支筆。既而教師圖示。(及時(shí)肯定學(xué)生的探究能力)
2.引伸拓展:
(1) 5支筆放進(jìn)4個(gè)筆筒,總有一個(gè)筆筒中至少放進(jìn)( )支筆。
(2) 6支筆放進(jìn)5個(gè)筆筒,總有一個(gè)筆筒中至少放進(jìn)( )支筆。
(3) 100支筆放進(jìn)99個(gè)筆筒,總有一個(gè)筆筒至少放進(jìn)( )支筆。
也就是說(shuō):有n+1支筆放進(jìn)n個(gè)筆筒中,總有一個(gè)筆筒至少放進(jìn)2支筆。
3.小結(jié):這種先假設(shè)按平均分,然后再分配剩余量的方法叫做“假設(shè)法”。
教師追問(wèn):列舉法和假設(shè)法的優(yōu)缺點(diǎn)是什么?
學(xué)生總結(jié)出:
列舉法優(yōu)點(diǎn):能夠做到不重復(fù),不遺漏,結(jié)果一目了然。缺點(diǎn):局限性,擺放更多筆浪費(fèi)時(shí)間,效率低。
假設(shè)法的優(yōu)點(diǎn)是:簡(jiǎn)潔、迅速解決問(wèn)題,更具有一般性。
三、練習(xí)鞏固,解決問(wèn)題
1.5只鴿子飛進(jìn)3個(gè)鴿籠,總有1個(gè)鴿籠至少飛進(jìn)了幾只鴿子?為什么?
2.同學(xué)們理解上面撲克牌的原理了嗎?
四、鴿巢原理的由來(lái)
最早指出這個(gè)數(shù)學(xué)原理的是19世紀(jì)的德國(guó)數(shù)學(xué)家狄利克雷,這個(gè)原理被稱為“狄利克雷原理”,又因?yàn)樵谥v述這個(gè)原理是,人們經(jīng)常以鴿巢、抽屜為例,所以它往往也被稱為“鴿巢原理”和“抽屜原理”。
五:板書(shū)設(shè)計(jì)
鴿巢問(wèn)題
“總是”“至少”
列舉法
假設(shè)法平均分
《鴿巢問(wèn)題》教學(xué)設(shè)計(jì) 7
教學(xué)內(nèi)容
人教版教材小學(xué)數(shù)學(xué)六年級(jí)第十二冊(cè)“數(shù)學(xué)廣角”例1及相關(guān)內(nèi)容。
教學(xué)目標(biāo)
(1)經(jīng)歷“鴿巢問(wèn)題”的探究過(guò)程,初步了解“鴿巢問(wèn)題”,會(huì)用“鴿巢問(wèn)題”解決簡(jiǎn)單的實(shí)際問(wèn)題。
。2)通過(guò)操作發(fā)展學(xué)生的類推能力,形成比較抽象的數(shù)學(xué)思維。
。3)通過(guò)“鴿巢問(wèn)題”的靈活應(yīng)用感受數(shù)學(xué)的魅力。
教學(xué)重點(diǎn)
經(jīng)歷“鴿巢問(wèn)題”的探究過(guò)程,初步了解“鴿巢問(wèn)題”。
教學(xué)難點(diǎn)
理解“鴿巢問(wèn)題”里的先“平均分”,再得出至少數(shù)的過(guò)程。并對(duì)一些簡(jiǎn)單實(shí)際問(wèn)題加以“模型化”。
教具、學(xué)具準(zhǔn)備
若干個(gè)紙杯(每小組3個(gè))、筆(每小組4根)、撲克牌1副
教學(xué)過(guò)程
一、撲克魔術(shù)導(dǎo)入。
請(qǐng)同學(xué)們看我表演一個(gè)“魔術(shù)”。拿出一副撲克牌(去掉大小王)52張中有四種花色,請(qǐng)一個(gè)同學(xué)幫我從中隨意抽5張牌,無(wú)論怎么抽,總有一種花色至少有2張牌是同花色的你相信嗎?
你能說(shuō)明其中的道理嗎?老師不用看就知道“一定有2張牌是同花色的對(duì)不對(duì)?假如請(qǐng)這位同學(xué)再抽取,不管怎么抽,總有2張牌是同花色的,同意么?
其實(shí)這里蘊(yùn)含了一個(gè)有趣的數(shù)學(xué)原理,這節(jié)課我們一起探究這個(gè)數(shù)學(xué)原理?(板書(shū)課題:鴿巢問(wèn)題)
二、學(xué)習(xí)例1,列舉探究
1、用枚舉法深入研究4支筆放進(jìn)3個(gè)紙杯里。
。1)要把4支筆放進(jìn)3個(gè)紙杯里(紙杯代替),有幾種放法?請(qǐng)同學(xué)們想一想,小組擺一擺,記一記;再把你的想法在小組內(nèi)交流。(提醒學(xué)生左3右1與左1右3是同一種方法——不管杯子的順序)
。2)反饋:四種放法:(4,0,0)、(3,1,0)、(2,2,0)、(2,1,1)
。3)觀察這四種放法,同學(xué)們有什么發(fā)現(xiàn)呢?(不管怎么放,總有一個(gè)紙杯里至少放有2枝鉛筆)讓孩子們充分地說(shuō)。
板書(shū):枚舉法
(4)“總有”什么意思?(一定有)
(5)“至少”有2本是什么意思?(最少是2本,2本或者2本以上)。
2、假設(shè)法
①還可以這樣想:先放3支,在每個(gè)筆筒中平均放1支,剩下的1支再放進(jìn)其中的`一個(gè)筆筒。所以至少有一個(gè)筆筒中有2支鉛筆
、谒伎迹簽槭裁匆仍诿總(gè)筆筒里平均放一支呢?
、劾^續(xù)思考:
6只鉛筆放進(jìn)5個(gè)筆筒,總有一個(gè)筆筒至少放進(jìn)()支鉛筆。
10只鉛筆放進(jìn)9個(gè)筆筒,總有一個(gè)筆筒至少放進(jìn)()支鉛筆。
100只鉛筆放進(jìn)99個(gè)筆筒,總有一個(gè)筆筒至少放進(jìn)()支鉛筆。
④通過(guò)剛才的分析,你有什么發(fā)現(xiàn)?誰(shuí)能試著說(shuō)一說(shuō)?
只要鉛筆數(shù)比筆筒多1,總有一個(gè)筆筒里至少放進(jìn)2支鉛筆。
3、介紹鴿巢問(wèn)題的由來(lái)。
。1)抽屜原理是組合數(shù)學(xué)中的一個(gè)重要原理,它最早由德國(guó)數(shù)學(xué)家狄利克雷(Dirichlet)提出并運(yùn)用于解決數(shù)論中的問(wèn)題,所以該原理又稱“狄利克雷原理”。
(2)總結(jié):把m個(gè)物體任意放進(jìn)n個(gè)抽屜中,(m>n,m和n是非0自然數(shù)),若m÷ n= 1……a,那么一定有一個(gè)抽屜中至少放進(jìn)了2個(gè)物體。
三、鞏固練習(xí):
1、5只鴿子飛進(jìn)了3個(gè)鴿籠,總有一個(gè)鴿籠至少飛進(jìn)了2只鴿子。為什么?
2、隨意找13位老師,他們中至少有2個(gè)人的屬相相同。為什么?
四、總結(jié)全課:這節(jié)課你有哪些收獲呢?
。ㄉ厦纥c(diǎn)學(xué)生說(shuō)一說(shuō),不全的老師補(bǔ)充)
五、設(shè)疑留懸念。
如果是把7本書(shū)放進(jìn)3個(gè)抽屜里,那么總有一個(gè)抽屜至少放進(jìn)()本書(shū)。
如果有8本書(shū)呢?
六、作業(yè)布置
1.完成教材課后習(xí)題p71第5、6題;
2.完成練習(xí)冊(cè)本課時(shí)的習(xí)題。
《鴿巢問(wèn)題》教學(xué)設(shè)計(jì) 8
一、教學(xué)內(nèi)容
教材第6
二、教學(xué)目標(biāo)
1.經(jīng)歷“鴿巢問(wèn)題”的探究過(guò)程,初步了解“鴿巢問(wèn)題”,會(huì)用“鴿巢問(wèn)題”解決簡(jiǎn)單的實(shí)際問(wèn)題。
2.通過(guò)操作發(fā)展學(xué)生的類推能力,形成比較抽象的數(shù)學(xué)思維。
3.通過(guò)“鴿巢問(wèn)題”的靈活應(yīng)用感受數(shù)學(xué)的魅力。
三、教學(xué)重難點(diǎn)
重點(diǎn):經(jīng)歷“鴿巢問(wèn)題”的探究過(guò)程,初步了解“鴿巢問(wèn)題”。難點(diǎn):理解“鴿巢問(wèn)題”,并對(duì)一些簡(jiǎn)單實(shí)際問(wèn)題加以“模型化”。
四、教學(xué)準(zhǔn)備
多媒體課件
紙杯
吸管
五、教學(xué)過(guò)程
一、課前游戲引入。
師:孩子們,你們知道劉謙嗎?你們喜歡魔術(shù)嗎?今天老師很高興和大家見(jiàn)面,初次見(jiàn)面,所以老師特地練了個(gè)小魔術(shù),準(zhǔn)備送給大家做見(jiàn)面禮。孩子們,想不想看老師表演一下?
生:想
師:我這里有一副撲克牌,我找五位同學(xué)每人抽一張。老師猜。(至少有兩張花色一樣)
師:老師厲害嗎?佩服嗎?那就給老師點(diǎn)獎(jiǎng)勵(lì)吧!想不想學(xué)老師的這個(gè)絕招。下面老師就教給你這個(gè)魔術(shù),可要用心學(xué)了。有沒(méi)有信心學(xué)會(huì)?
二、通過(guò)操作,探究新知
(一)探究例1
1、研究3根小棒放進(jìn)2個(gè)紙杯里。
。1)要把3枝小棒放進(jìn)2個(gè)紙杯里,有幾種放法?請(qǐng)同學(xué)們想一想,擺一擺,寫(xiě)一寫(xiě),再把你的想法在小組內(nèi)交流。
。2)反饋:兩種放法:(3,0)和(2,1)。(教師板書(shū))(3)從兩種放法,同學(xué)們會(huì)有什么發(fā)現(xiàn)呢?(總有一個(gè)文具盒至少放進(jìn)2枝鉛筆)你是怎么發(fā)現(xiàn)的?(說(shuō)得真有道理)
。4)“總有”什么意思?(一定有)
。5)“至少”有2枝什么意思?(不少于2枝)
小結(jié):在研究3根小棒放進(jìn)2個(gè)紙杯時(shí),同學(xué)們表現(xiàn)得很積極,發(fā)現(xiàn)了“不管怎么放,總有一個(gè)紙杯里放進(jìn)2根小棒)
2、研究4根小棒放進(jìn)3個(gè)紙杯里。
(1)要把4根小棒放進(jìn)3個(gè)紙杯里,有幾種放法?請(qǐng)同學(xué)們動(dòng)手?jǐn)[一擺,再把你的想法在小組內(nèi)交流。
。2)反饋:四種放法:(4,0,0)、(3,1,0)、(2,2,0)、(2,1,1)。(3)從四種放法,同學(xué)們會(huì)有什么發(fā)現(xiàn)呢?(總有一個(gè)紙杯里至少有2根小棒)
。4)你是怎么發(fā)現(xiàn)的?
(5)大家通過(guò)枚舉出四種放法,能清楚地發(fā)現(xiàn)“總有一個(gè)紙杯里放進(jìn)2根小棒”。
師:大家看,全放到一個(gè)杯子里,就有四個(gè)了。太多了。那怎么樣讓每個(gè)杯子里都盡可能少,你覺(jué)得應(yīng)該要怎樣放?(小組合作,討論交流)(每個(gè)紙杯里都先放進(jìn)一枝,還剩一枝不管放進(jìn)哪個(gè)紙杯,總會(huì)有一個(gè)紙杯里至少有2根小棒)(你真是一個(gè)善于思想的孩子。)
。6)這位同學(xué)運(yùn)用了假設(shè)法來(lái)說(shuō)明問(wèn)題,你是假設(shè)先在每個(gè)紙杯里里放1根小棒,這種放法其實(shí)也就是怎樣分?(平均分)那剩下的1枝怎么處理?(放入任意一個(gè)文具盒,那么這個(gè)文具盒就有2枝鉛筆了)
。7)誰(shuí)能用算式來(lái)表示這位同學(xué)的想法?(4÷3=1…1)商1表示什么?余數(shù)1表示什么?怎么辦?
。8)在探究4枝鉛筆放進(jìn)3個(gè)文具盒的問(wèn)題,同學(xué)們的方法有兩種,一是
2枚舉了所有放法,找規(guī)律,二是采用了“假設(shè)法”來(lái)說(shuō)明理由,你覺(jué)得哪種方法更明了更簡(jiǎn)單?
3、類推:把5枝小棒放進(jìn)4個(gè)紙杯,總有一個(gè)紙杯里至少有幾根小棒?為什么?
把6枝小棒放進(jìn)5個(gè)紙杯,總有一個(gè)紙杯里至少有幾根小棒?為什么?
把7枝小棒放進(jìn)6個(gè)紙杯,是不是總有一個(gè)紙杯里至少有幾根小棒?為什么?
把100枝小棒放進(jìn)99個(gè)紙杯,是不是總有一個(gè)紙杯里至少有幾根小棒?為什么?
4、從剛才我們的'探究活動(dòng)中,你有什么發(fā)現(xiàn)?(只要放的小棒比紙杯的數(shù)量多1,總有一個(gè)紙杯里至少放進(jìn)2根小棒。)
5、小結(jié):剛才我們分析了把小棒放進(jìn)紙杯的情況,只要小棒數(shù)量多于紙杯數(shù)量時(shí),總有一個(gè)紙杯里至少放進(jìn)2根小棒。
這就是今天我們要學(xué)習(xí)的鴿巢問(wèn)題,也叫抽屜原理。既然叫“抽屜原理”是不是應(yīng)該和抽屜有聯(lián)系吧?小棒相當(dāng)于我們要準(zhǔn)備放進(jìn)抽屜的物體,那么紙杯就相當(dāng)于抽屜了。如果物體數(shù)多于抽屜數(shù),我們就能得出結(jié)論“總有一個(gè)抽屜里放進(jìn)了2個(gè)物體。
小練習(xí):
1、任意13人中,至少有幾人的出生月份相同?
2、任意367名學(xué)生中,至少有幾名學(xué)生,他們?cè)谕惶爝^(guò)生日?為什么?
3、任意13人中,至少有幾人的屬相相同?”
6、剛才我們研究的是小棒數(shù)比紙杯多1的情況,如果小棒比紙杯數(shù)多2呢?多3呢?是不是也能得到結(jié)論:“總有一個(gè)紙杯里至少有2根小棒。”
《鴿巢問(wèn)題》教學(xué)設(shè)計(jì) 9
一、教學(xué)目標(biāo)
。ㄒ唬┲R(shí)與技能
通過(guò)數(shù)學(xué)活動(dòng)讓學(xué)生了解鴿巢原理,學(xué)會(huì)簡(jiǎn)單的鴿巢原理分析方法。
(二)過(guò)程與方法
結(jié)合具體的實(shí)際問(wèn)題,通過(guò)實(shí)驗(yàn)、觀察、分析、歸納等數(shù)學(xué)活動(dòng),讓學(xué)生通過(guò)X思考與合作交流等活動(dòng)提高解決實(shí)際問(wèn)題的能力。
。ㄈ┣楦袘B(tài)度和價(jià)值觀
在主動(dòng)參與數(shù)學(xué)活動(dòng)的過(guò)程中,讓學(xué)生切實(shí)體會(huì)到探索的樂(lè)趣,讓學(xué)生切實(shí)體會(huì)到數(shù)學(xué)與生活的緊密結(jié)合。
二、教學(xué)重難點(diǎn)
教學(xué)重點(diǎn):理解鴿巢原理,掌握先“平均分”,再調(diào)整的方法。
教學(xué)難點(diǎn):理解“總有”“至少”的意義,理解“至少數(shù)=商數(shù)+1”。
三、教學(xué)準(zhǔn)備
多媒體課件。
四、教學(xué)過(guò)程
(一)游戲引入
出示一副撲克牌。
教師:今天老師要給大家表演一個(gè)“魔術(shù)”。取出大王和小王,還剩下52張牌,下面請(qǐng)5位同學(xué)上來(lái),每人隨意抽一張,不管怎么抽,至少有2張牌是同花X的。同學(xué)們相信嗎?
5位同學(xué)上臺(tái),抽牌,亮牌,統(tǒng)計(jì)。
教師:這類問(wèn)題在數(shù)學(xué)上稱為鴿巢問(wèn)題(板書(shū))。因?yàn)?2張撲克牌數(shù)量較大,為了方便研究,我們先來(lái)研究幾個(gè)數(shù)量較小的同類問(wèn)題。
【設(shè)計(jì)意圖】從學(xué)生喜歡的“魔術(shù)”入手,設(shè)置懸念,激發(fā)學(xué)生學(xué)習(xí)的興趣和求知欲望,從而提出需要研究的數(shù)學(xué)問(wèn)題。
。ǘ┨剿餍轮
1.教學(xué)例1。
(1)教師:把3支鉛筆放到2個(gè)鉛筆盒里,有哪些放法?請(qǐng)同桌二人為一組動(dòng)手試一試。
教師:誰(shuí)來(lái)說(shuō)一說(shuō)結(jié)果?
預(yù)設(shè):一個(gè)放3支,另一個(gè)不放;一個(gè)放2支,另一個(gè)放1支。(教師根據(jù)學(xué)生回答在黑板上畫(huà)圖表示兩種結(jié)果)
教師:“不管怎么放,總有一個(gè)鉛筆盒里至少有2支鉛筆”,這句話說(shuō)得對(duì)嗎?
教師:這句話里“總有”是什么意思?
預(yù)設(shè):一定有。
教師:這句話里“至少有2支”是什么意思?
預(yù)設(shè):最少有2支,不少于2支,包括2支及2支以上。
【設(shè)計(jì)意圖】把教材中例1的“筆筒”改為“鉛筆盒”,便于學(xué)生準(zhǔn)備學(xué)具。且用畫(huà)圖和數(shù)的分解來(lái)表示上述問(wèn)題的結(jié)果,更直觀。通過(guò)對(duì)“總有”“至少”的意思的單獨(dú)說(shuō)明,讓學(xué)生更深入地理解“不管怎么放,總有一個(gè)鉛筆盒里至少有2支鉛筆”這句話。
(2)教師:把4支鉛筆放到3個(gè)鉛筆盒里,有哪些放法?請(qǐng)4人為一組動(dòng)手試一試。教師:誰(shuí)來(lái)說(shuō)一說(shuō)結(jié)果?
學(xué)生:可以放(4,0,0);(3,1,0);(2,2,0);(2,1,1)。(教師根據(jù)學(xué)生回答在黑板上畫(huà)圖表示四種結(jié)果)
引導(dǎo)學(xué)生仿照上例得出“不管怎么放,總有一個(gè)鉛筆盒里至少有2支鉛筆”。
假設(shè)法(反X法):
教師:前面我們是通過(guò)動(dòng)手作得出這一結(jié)論的,想一想,能不能找到一種更為直接的方法得到這個(gè)結(jié)論呢?小組討論一下。
學(xué)生進(jìn)行組內(nèi)交流,再匯報(bào),教師進(jìn)行總結(jié):
如果每個(gè)盒子里放1支鉛筆,最多放3支,剩下的.1支不管放進(jìn)哪一個(gè)盒子里,總有一個(gè)盒子里至少有2支鉛筆。首先通過(guò)平均分,余下1支,不管放在哪個(gè)盒子里,一定會(huì)出現(xiàn)“總有一個(gè)盒子里至少有2支鉛筆”。這就是平均分的方法。
【設(shè)計(jì)意圖】從另一方面入手,逐步引入假設(shè)法來(lái)說(shuō)理,從實(shí)際X作上升為理論水平,進(jìn)一步加深理解。
教師:把5支鉛筆放到4個(gè)鉛筆盒里呢?
引導(dǎo)學(xué)生分析“如果每個(gè)盒子里放1支鉛筆,最多放4支,剩下的1支不管放進(jìn)哪一個(gè)盒子里,總有一個(gè)盒子里至少有2支鉛筆。首先通過(guò)平均分,余下1支,不管放在哪個(gè)盒子里,一定會(huì)出現(xiàn)“總有一個(gè)盒子里至少有2支鉛筆”。
教師:把6支鉛筆放到5個(gè)鉛筆盒里呢?把7支鉛筆放到6個(gè)鉛筆盒里呢?你發(fā)現(xiàn)了什么?
引導(dǎo)學(xué)生得出“只要鉛筆數(shù)比鉛筆盒數(shù)多1,總有一個(gè)盒子里至少有2支鉛筆”。教師:上面各個(gè)問(wèn)題,我們都采用了什么方法?
引導(dǎo)學(xué)生通過(guò)觀察比較得出“平均分”的方法。
【設(shè)計(jì)意圖】讓學(xué)生自己通過(guò)觀察比較得出“平均分”的方法,將解題經(jīng)驗(yàn)上升為理論水平,進(jìn)一步強(qiáng)化方法、理清思路。
。3)教師:現(xiàn)在我們回過(guò)頭來(lái)揭示本節(jié)課開(kāi)頭的魔術(shù)的結(jié)果,你能來(lái)說(shuō)一說(shuō)這個(gè)魔術(shù)的道理嗎?
引導(dǎo)學(xué)生分析“如果4人選中了4種不同的花X,剩下的1人不管選那種花X,總會(huì)和其他4人里的一人相同?傆幸环N花X,至少有2人選”。
【設(shè)計(jì)意圖】回到課開(kāi)頭提出的問(wèn)題,揭示懸念,滿足學(xué)生的好奇心,讓學(xué)生認(rèn)識(shí)到數(shù)學(xué)的應(yīng)用價(jià)值。
。4)練習(xí)教材第68頁(yè)“做一做”第1題(進(jìn)一步練習(xí)“平均分”的方法)。5只鴿子飛進(jìn)了3個(gè)鴿籠,總有一個(gè)鴿籠至少飛進(jìn)了2只鴿子。為什么?
2.教學(xué)例2。
。1)課件出示例2。
把7本書(shū)放進(jìn)3個(gè)抽屜,不管怎么放,總有一個(gè)抽屜里至少放進(jìn)3本書(shū)。為什么?先小組討論,再匯報(bào)。
引導(dǎo)學(xué)生得出仿照例1“平均分”的方法得出“如果每個(gè)抽屜放2本,剩下1本不管放在哪個(gè)抽屜里,都會(huì)變成3本,所以總有一個(gè)抽屜里至少放進(jìn)3本書(shū)!
(2)教師:如果把8本書(shū)放進(jìn)3個(gè)抽屜,會(huì)出現(xiàn)怎樣的結(jié)論呢?10本呢?11本呢?16本呢?
教師根據(jù)學(xué)生的回答板書(shū):
7÷3=21不管怎么放,總有一個(gè)抽屜里至少放進(jìn)3本;
8÷3=22不管怎么放,總有一個(gè)抽屜里至少放進(jìn)3本;
10÷3=31不管怎么放,總有一個(gè)抽屜里至少放進(jìn)4本;
11÷3=32不管怎么放,總有一個(gè)抽屜里至少放進(jìn)4本;
16÷3=51不管怎么放,總有一個(gè)抽屜里至少放進(jìn)6本。
教師:觀察上述算式和結(jié)論,你發(fā)現(xiàn)了什么?
引導(dǎo)學(xué)生得出“物體數(shù)÷抽屜數(shù)=商數(shù)余數(shù)”“至少數(shù)=商數(shù)+1”。
【設(shè)計(jì)意圖】一步一步引導(dǎo)學(xué)生合作交流、自主探索,讓學(xué)生親身經(jīng)歷問(wèn)題解決的全過(guò)程,增強(qiáng)學(xué)習(xí)的積極X和主動(dòng)X。
。ㄈ╈柟叹毩(xí)
1.11只鴿子飛進(jìn)了4個(gè)鴿籠,總有一個(gè)鴿籠至少飛進(jìn)了3只鴿子。為什么?
2.5個(gè)人坐4把椅子,總有一把椅子上至少坐2人。為什么?
。ㄋ模┱n堂小結(jié)
教師:通過(guò)這節(jié)課的學(xué)習(xí),你有哪些新的收獲呢?
我們學(xué)會(huì)了簡(jiǎn)單的鴿巢問(wèn)題。
可以用畫(huà)圖的方法來(lái)幫助我們分析,也可以用除法的意義來(lái)解答。
《鴿巢問(wèn)題》教學(xué)設(shè)計(jì) 10
教學(xué)目標(biāo):
1、知識(shí)與技能:初步了解鴿巢原理,學(xué)會(huì)簡(jiǎn)單的鴿巢原理分析方法,運(yùn)用鴿巢原理的知識(shí)解決簡(jiǎn)單的實(shí)際問(wèn)題或解釋相關(guān)的現(xiàn)象。
2、過(guò)程與方法:通過(guò)X作、觀察、比較、說(shuō)理等數(shù)學(xué)活動(dòng),使學(xué)生經(jīng)歷鴿巢原理的形成過(guò)程,體會(huì)和掌握邏輯推理思想和模型思想。
3、情感態(tài)度:通過(guò)對(duì)鴿巢原理的靈活運(yùn)用,感受數(shù)學(xué)的魅力,體會(huì)數(shù)學(xué)的價(jià)值,提高學(xué)習(xí)數(shù)學(xué)的興趣。
教學(xué)重點(diǎn):經(jīng)歷“鴿巢原理”的探究過(guò)程,理解鴿巢原理。
教學(xué)難點(diǎn):理解“鴿巢原理”,并對(duì)一些簡(jiǎn)單實(shí)際問(wèn)題加以“模型化”。
教學(xué)準(zhǔn)備:多媒體課件、鉛筆、紙杯、合作探究作業(yè)紙。
教學(xué)過(guò)程:
一、喚起與生成
1、談話:同學(xué)們,你們喜歡魔術(shù)嗎?今天,黃老師給大家表演一個(gè)小魔術(shù)。一副牌,取出大小王,還剩52張牌,請(qǐng)5個(gè)同學(xué)每人隨意抽一張,我知道至少有2張牌是同花X的。相信嗎?來(lái),試試看。
2、驗(yàn)X:抽取,統(tǒng)計(jì)。是不是湊巧了,再來(lái)一次。表演成功!
3、至少2張是什么意思?(也就是最少2張,最起碼2張,反過(guò)來(lái),同一花X的可能有2張,也可能是3張、4張、5張...,一句話概括就是至少2張)。
確定是哪個(gè)花X了嗎?(沒(méi)有)反正總有一個(gè)花X,所以,這個(gè)數(shù)據(jù)不管是在哪個(gè)花X出現(xiàn)都X表演是成功的。
4、設(shè)疑:你們想知道這是為什么嗎?其實(shí)這里面蘊(yùn)藏著一個(gè)非常有趣的數(shù)學(xué)原理,這節(jié)課讓我們一起去發(fā)現(xiàn)!
二、探究與解決
。ㄒ唬⑿〗M探究:4放3的簡(jiǎn)單鴿巢問(wèn)題
1、出示:把4支鉛筆放進(jìn)3個(gè)筆筒中,不管怎么放,總有一個(gè)筆筒里至少有2支鉛筆。
2、審題:
、僮x題。
、趶念}目上你知道了什么?X什么?
(我知道了把4支鉛筆放進(jìn)3個(gè)筆筒中,X不管怎么放,總有一個(gè)筆筒里至少有2支鉛筆。)
、勰阍鯓永斫狻安还茉趺捶拧薄ⅰ翱傆小、“至少”的意思?
“不管怎么放”:就是隨便放、任意放。
“總有”:就是一定有,不確定是哪個(gè)筆筒,這個(gè)筆筒沒(méi)有那個(gè)筆筒會(huì)有。
“至少”:就是最少,最起碼。至少有2支,就是最少有2支,不能少于2支。也可能是3支、4支、甚至5支。
3、探究:
、僬勗挘嚎磥(lái)大家已經(jīng)理解題目的意思了,眼見(jiàn)為實(shí),就讓我們親自動(dòng)手?jǐn)[一擺、放一放,看看有哪幾種放法?
、诨顒(dòng):小組活動(dòng),四人小組。
聽(tīng)要求!
活動(dòng)要求:每個(gè)小組都有筆筒和筆,請(qǐng)四個(gè)人中面對(duì)面的兩人一人扶杯子一人放鉛筆,另外兩人一人口述一人記錄,讓我們齊心協(xié)力,擺出所有情況后,對(duì)照題目,看有什么發(fā)現(xiàn)。
聽(tīng)明白了嗎?開(kāi)始!
3、反饋:匯報(bào)結(jié)果
同學(xué)們辦法真多,有用畫(huà)圖法,有用數(shù)的分解來(lái)表示,都很清晰。誰(shuí)來(lái)匯報(bào)一下你們的成果?
可以在第一個(gè)筆筒中放4支鉛筆,其他兩個(gè)空著。這種放法可以說(shuō)成(4,0,0),(3,1,0),(2,2,0),(2,1,1)(課件逐一出示)
追問(wèn):誰(shuí)還有疑問(wèn)或補(bǔ)充?
預(yù)設(shè):說(shuō)一說(shuō)你比他多了哪一種放法?
。2,1,1)和(1,1,2)是一種方法嗎?為什么?)
只是位置不同,方法相同
5、驗(yàn)X:觀察這4種擺法,憑什么說(shuō)“總有一個(gè)筆筒中至少有2支鉛筆”?
。1)逐一驗(yàn)X:
第一種擺法(4,0,0),是不是總有一個(gè)筆筒至少2支,哪個(gè)?放的最多的筆筒里有4支,比2支多也可以嗎?
符合總有一個(gè)筆筒里至少有2支鉛筆。
第二種擺法(3,1,0),符合。哪個(gè)?放的最多的筆筒里有3支,符合總有一個(gè)筆筒里至少有2支鉛筆。
第三種擺法(2,2,0),放的最多的筆筒里有2支,符合總有一個(gè)筆筒里至少有2支鉛筆。
第四種擺法(2,1,1),放的最多的筆筒里有2支,符合總有一個(gè)筆筒里至少有2支鉛筆。
符合條件的那個(gè)筆筒在三個(gè)筆筒中都是最多的。
。2)設(shè)疑:我有一個(gè)疑問(wèn),第一種擺法(4,0,0)放的最多的'筆筒里,放有4支,可以說(shuō)總有一個(gè)筆筒至少有4支鉛筆嗎?說(shuō)成3支也不行嗎?
。3)小結(jié):哦,原來(lái)是這樣,要考慮所有擺法,然后在所有擺法中,圈出每一種擺法中最多的,再?gòu)淖疃嗟睦锩嬲业街辽贁?shù),就能得出這個(gè)結(jié)論。
所以,把4支鉛筆放進(jìn)3個(gè)筆筒中,不管怎么放,總有一個(gè)筆筒里至少有2支鉛筆。
(二)自主探究:5放4的簡(jiǎn)單鴿巢原理
1、過(guò)渡:依此推想下去
2、出示:把5支鉛筆放進(jìn)4個(gè)筆筒,不管怎么放,總有一個(gè)筆筒至少有()支鉛筆。
3、猜想:同學(xué)們猜猜看,至少數(shù)是幾支?(你說(shuō)、你說(shuō))
4、驗(yàn)X:你們的猜測(cè)對(duì)嗎?讓我們來(lái)驗(yàn)X一下。
活動(dòng)要求:
。1)思考有幾種擺法?記錄下來(lái)。
(2)觀察每一種擺法,能不能從中找出X。有困難的可以同桌合作。
好,開(kāi)始。(教師參與其中)。
5、匯報(bào):把5支鉛筆放進(jìn)4個(gè)筆筒中,共有6種擺法
分別是:5000、4100、3200、3110、2200、2111
(課件同步播放)
預(yù)設(shè):我圈出了每種擺法中,放鉛筆最多的那個(gè)筆筒,然后發(fā)現(xiàn),放鉛筆最多的的筆筒里面至少放有2支鉛筆。
6、訂正:有補(bǔ)充的嗎?噢,我們來(lái)看,這6種擺法,把每種方法里放的(停頓)最多的鉛筆圈出來(lái)了,分別是5支、4支、3支、2支,從中找到至少數(shù)是2支。
7、小結(jié):恭喜答對(duì)的同學(xué)!同學(xué)們可真是厲害!請(qǐng)看,我們研究了這樣的兩個(gè)問(wèn)題:
①把4支鉛筆放進(jìn)3個(gè)筆筒中,不管怎么放,總有一個(gè)筆筒里至少有2支鉛筆。會(huì)講為什么。
②把5支鉛筆放進(jìn)4個(gè)筆筒,不管怎么放,總有一個(gè)筆筒至少有幾支鉛筆?會(huì)求至少數(shù)。
不管是對(duì)結(jié)論的X還是求解至少數(shù),我們都采用一一列舉的方法,羅列出所有擺法,再通過(guò)觀察,得出結(jié)論。
(三)、探究鴿巢原理算式
1、談話:哎,如果這里有100支鉛筆放進(jìn)30個(gè)筆筒,不管怎么放,總有一個(gè)筆筒至少有幾支鉛筆?
還是讓求至少數(shù),還用一一列舉的方法來(lái)研究,你覺(jué)得怎么樣?
。ê寐闊,是啊,想想都覺(jué)得麻煩。
2、追問(wèn):數(shù)學(xué)是一門簡(jiǎn)潔的科學(xué),那就請(qǐng)同學(xué)們想一想,除了通過(guò)X作一一列舉出來(lái),有沒(méi)有什么方法能一下子找到結(jié)果呢?
其實(shí),我們剛才已經(jīng)和那一種方法見(jiàn)過(guò)面,以4放3為例,請(qǐng)同學(xué)們認(rèn)真觀察每一種擺法,分別找一找,哪一種擺法最能說(shuō)明:總有一個(gè)筆筒里至少放有2支鉛筆呢?
3、平均分:為什么這樣分呢?
生:我是這樣想的,先假設(shè)每個(gè)筆筒中放1支,這樣還有1支,這是無(wú)論放到哪個(gè)筆筒,那個(gè)筆筒中就有2支了,所以我認(rèn)為是對(duì)的。(課件演示)
師:你為什么要先在每個(gè)筆筒中放1支呢?
生:因?yàn)榭偣仓挥?支,平均分,每個(gè)筆筒只能分到1支。
師:為什么一開(kāi)始就要去平均分呢?
生:平均分,就可以使每個(gè)筆筒中的筆盡可能少一點(diǎn)。也就有可能找到和題目意思不一樣的情況。
師:我明白了,但這樣能X總有一個(gè)筆筒中肯定會(huì)有2支筆,怎么就X了至少有2支呢?
生:平均分已經(jīng)使每個(gè)筆筒中的筆盡可能的少了,如果這樣都符合要求,那另外的情況肯定也是符合要求的了。
師:看來(lái),平均分是保X“至少”數(shù)的關(guān)鍵。
4、列式:
、倌隳苡盟闶奖硎締?
4÷3=1……11+1=2
②講講算式含義。
a、指名講:假設(shè)把4支鉛筆平均放進(jìn)3個(gè)筆筒中,每個(gè)筆筒放1支,剩下的1支就要放進(jìn)其中的一個(gè)筆筒,1+1=2,所以總有一個(gè)筆筒至少有2支鉛筆。
b、真棒!講給你的同桌聽(tīng)。
5、運(yùn)用:把5支鉛筆放進(jìn)4個(gè)筆筒不管怎么放,總有一個(gè)筆筒至少有幾支鉛筆??請(qǐng)用算式表示出來(lái)。
5÷4=1……11+1=2
說(shuō)說(shuō)算式的意思。
a、同桌齊說(shuō)。
b、誰(shuí)來(lái)說(shuō)一說(shuō)?
師:我們會(huì)用除法算式表示平均分的過(guò)程,這種方法更為快捷、簡(jiǎn)明。
。ㄋ模┨骄可詮(fù)雜的鴿巢問(wèn)題
1、加深感悟:我們繼續(xù)研究這樣的問(wèn)題,邊計(jì)算邊思考:這樣的題目有什么特點(diǎn)?結(jié)論中的至少數(shù)是怎樣得到的?
2、題組(開(kāi)火車,口答結(jié)果并口述算式)
。1)6支鉛筆放進(jìn)5個(gè)筆筒里,總有一個(gè)筆筒里面至少有()支鉛筆
。2)7支鉛筆放進(jìn)5個(gè)筆筒里,總有一個(gè)筆筒里面至少有()支鉛筆
7÷5=1……21+2=3?
7÷5=1……21+1=2
出現(xiàn)了兩種X,究竟那種正確?同桌商量商量。不行我再救場(chǎng)(學(xué)生討論)
你認(rèn)為哪種結(jié)果正確?為什么?
質(zhì)疑:為什么第二次還要平均分?(保X“至少”)
把鉛筆平均分才是解決問(wèn)題的關(guān)鍵啊。
。3)把筆的數(shù)量進(jìn)一步增加:
8支鉛筆放5個(gè)筆筒里,至少數(shù)是多少?
8÷5=1……3??1+1=2
(4)9支鉛筆放5個(gè)筆筒里,至少數(shù)是多少?
9÷5=1……4??1+1=2
。5)好,再增加一支鉛筆?至少數(shù)是多少?
還用加嗎?為什么??10÷5=2??正好分完,至少數(shù)是商
。6)好再增加一支鉛筆,,你來(lái)說(shuō)
11÷5=2……1??2+1=3??3個(gè)
、倌銇(lái)說(shuō)說(shuō)現(xiàn)在至少數(shù)為什么變成3個(gè)了?(因?yàn)樯套兞,所以至少?shù)變成了3.)
②那同學(xué)們?cè)傧胂,鉛筆的支數(shù)到多少支時(shí),至少數(shù)還是3?
、坫U筆的支數(shù)到多少支的時(shí)候,至少數(shù)就變成了4了呢?
。7)把28支鉛筆放進(jìn)5個(gè)筆筒里,總有一個(gè)筆筒里面至少放進(jìn)(?)支鉛筆。28÷5=5……35+1=6
。8)算的這么快,你一定有什么竅門?(比比至少數(shù)和商)
(9)把m支鉛筆放進(jìn)n個(gè)筆筒里,總有一個(gè)筆筒里面至少放進(jìn)(?)支鉛筆。(商+1)
3、觀察算式,同桌討論,發(fā)現(xiàn)規(guī)律。
鉛筆數(shù)÷筆筒數(shù)=商……余數(shù)”“至少數(shù)=商+1”
你和他們的發(fā)現(xiàn)相同嗎?出示:商+1
4、質(zhì)疑:和余數(shù)有沒(méi)有關(guān)系?
。鞔_:與余數(shù)無(wú)關(guān),因?yàn)椴还苡喽嗌,都要再平均分,所以就用“?1”)
。ㄎ澹w納概括鴿巢原理
1、解答:那現(xiàn)在會(huì)求100支鉛筆放進(jìn)30個(gè)筆筒中的至少數(shù)了嗎?
100÷30=3……10??3+1=4至少數(shù)是4個(gè)
(因?yàn)榘?00支鉛筆平均放進(jìn)30個(gè)筆筒中,每個(gè)筆筒屜放3支,剩下的10支在平均再放進(jìn)其中10個(gè)筆筒中。所以,不管怎么放,總有一個(gè)筆筒里至少放進(jìn)4支鉛筆。)
2、推廣:
剛才我們研究了鉛筆放入筆筒的問(wèn)題,其他還有很多問(wèn)題和它有相同之處。請(qǐng)看:
。1)書(shū)本放進(jìn)抽屜
把8本書(shū)放進(jìn)3個(gè)抽屜,不管怎么放,總有一個(gè)抽屜里至少放進(jìn)3本書(shū)。為什么?
8÷3=2……2?2+1=3
(因?yàn)榘?本書(shū)平均放進(jìn)3個(gè)抽屜,每個(gè)抽屜放2本,剩下的2本就要放進(jìn)其中的2個(gè)抽屜。所以,不管怎么放,總有一個(gè)抽屜里至少放進(jìn)3本書(shū)。)
(2)鴿子飛進(jìn)鴿巢
11只鴿子飛進(jìn)4個(gè)鴿籠,至少有幾只鴿子飛進(jìn)同一只鴿籠?
11÷4=2……3?2+1=3
答:至少有3只鴿子飛進(jìn)同一只鴿籠。
。3)車輛過(guò)高速路收費(fèi)口(圖)
。4)搶凳子
書(shū)、鴿子、同學(xué)就相當(dāng)于鉛筆,稱為要放的物體,抽屜、鴿籠、凳子就相當(dāng)于筆筒,統(tǒng)稱為抽屜。物體數(shù)量大于抽屜數(shù)量,類似的問(wèn)題我們都可以用這種方法解答。
3、建立模型:鴿巢原理:
同學(xué)們發(fā)現(xiàn)的這個(gè)原理和一位數(shù)學(xué)家發(fā)現(xiàn)的一模一樣,讓我們追溯到150多年以前:
知識(shí)鏈接:(課件)最早指出這個(gè)數(shù)學(xué)原理的,是十九世紀(jì)的德國(guó)數(shù)學(xué)家“狄利克雷”,后來(lái)人們?yōu)榱思o(jì)念他從這么平凡的事情中發(fā)現(xiàn)的規(guī)律,就把這個(gè)規(guī)律用他的名字命名,叫“狄利克雷原理”。以上這些問(wèn)題有相同之處,其實(shí)鴿巢、抽屜就相當(dāng)于筆筒,鴿子、書(shū)就相當(dāng)于鉛筆。人們對(duì)鴿子飛回鴿巢這個(gè)事例記憶猶新,所以像這樣的數(shù)學(xué)問(wèn)題就叫做鴿巢問(wèn)題或抽屜問(wèn)題,它被廣泛地應(yīng)用于現(xiàn)實(shí)生活中。運(yùn)用這一規(guī)律能解決許多有趣的問(wèn)題,并且常常能得到一些令人驚異的結(jié)果。
揭示課題:這是我們今天學(xué)習(xí)的第五單元數(shù)學(xué)廣角——鴿巢問(wèn)題,它們里面蘊(yùn)含的這種數(shù)學(xué)原理,我們就叫做鴿巢原理或抽屜原理。
5、小結(jié):分析這類問(wèn)題時(shí),要想清楚誰(shuí)是鴿子,誰(shuí)是鴿巢?
有信心用我們發(fā)現(xiàn)的原理繼續(xù)接受挑戰(zhàn)嗎?
3、鞏固與應(yīng)用
那我們回頭看看課前小魔術(shù),你明白它的秘密了嗎?
1、揭秘魔術(shù):一副牌,取出大小王,還剩52張牌,你們5人每人隨意抽一張,我知道至少有2張牌是同花X的。
答:因?yàn)榘?張牌,平均分在4個(gè)花X里,每個(gè)花X有1張,剩下的1張無(wú)論是什么花X,總有一個(gè)花X至少是2張。
正確應(yīng)用鴿巢原理是表演成功的秘密武器!
2、飛鏢運(yùn)動(dòng)
同學(xué)們玩過(guò)投飛鏢嗎?飛鏢運(yùn)動(dòng)是一種集競(jìng)技、健身及X于一體的紳士運(yùn)動(dòng)。
課件:張叔叔參加飛鏢運(yùn)動(dòng)比賽,投了5鏢,成績(jī)是41環(huán),張叔叔至少有一鏢不低于(?)環(huán)。
在練習(xí)本上算一算,講給你的同桌聽(tīng)聽(tīng)。
誰(shuí)來(lái)給大家說(shuō)說(shuō)你是怎么想的?(5相當(dāng)于鴿巢,41相當(dāng)于鴿子。把......)
41÷5=8……1?8+1=9
在我們同學(xué)身上也有鴿巢問(wèn)題,讓我們先了解一下六年級(jí)的情況。
3、我們六年級(jí)共有367名學(xué)生,其中六(2班)有49名學(xué)生。
(1)六年級(jí)里至少有兩人的生日是同一天。
(2)六(2)班中至少有5人的生日是在同一個(gè)月。
他們說(shuō)的對(duì)嗎?為什么?
同桌討論一下。
誰(shuí)來(lái)說(shuō)說(shuō)你們的想法?
。1、367人相當(dāng)于鴿子,365、或366天相當(dāng)于鴿巢......
2、49人相當(dāng)于鴿子,12個(gè)月相當(dāng)于鴿巢......)
真理是越辯越明!
3、星座測(cè)試命運(yùn)
說(shuō)起生日,我想起了現(xiàn)在非常流行的星座。采訪幾位同學(xué),你是什么星座?
你用星座測(cè)試過(guò)命運(yùn)嗎?你相信星座測(cè)試的命運(yùn)嗎?
我們用鴿巢原理來(lái)說(shuō)說(shuō)你的想法。
全X13億人,12個(gè)星座,總有至少一億以上的人命運(yùn)相同。盡管他們的出身、經(jīng)歷、天資、機(jī)遇各不相同,但他們卻具有完全相同的命,可能嗎?這真的很荒謬。用星座測(cè)試命運(yùn),充其量是一種游戲X一下而已,命運(yùn)掌握在自己手中。
4、柯南破案:
“鴿巢問(wèn)題”的原理不僅在數(shù)學(xué)中有用,在現(xiàn)實(shí)生活中也隨處可見(jiàn),看,誰(shuí)來(lái)了?
。ㄕn件)有一次,小柯南走在大街上,無(wú)意間聽(tīng)到了一位老大爺和一個(gè)年輕人的對(duì)話:
年輕人:大爺,我最近急用錢,想把我的一個(gè)手機(jī)號(hào)賣掉,價(jià)格500元,請(qǐng)問(wèn)您要嗎?
大爺:是什么手機(jī)號(hào)呢?這么貴?
年輕人:我的手機(jī)號(hào)很特別,它所有的數(shù)字中沒(méi)有一個(gè)數(shù)字重復(fù)......所以才這么貴的!
老大爺:哦!
聽(tīng)到這里,柯南馬上跑過(guò)去悄悄提醒老大爺:“大爺,這是一個(gè)騙子,您要小心!”并且馬上報(bào)了X,X察趕到后調(diào)查發(fā)現(xiàn)這個(gè)人果真是個(gè)騙子。
聰明的你,知道柯南是根據(jù)什么判斷那個(gè)年輕人是騙子的嗎?
(手機(jī)號(hào)11位數(shù)字相當(dāng)于鴿子。0-9這十個(gè)數(shù)字相當(dāng)于鴿巢,11÷10=1…1?1+1=2,總有至少一個(gè)數(shù)字重復(fù)出現(xiàn)。)
4、回顧與整理。
這節(jié)課我們認(rèn)識(shí)了“鴿巢問(wèn)題”,其實(shí)生活中還有許多的類似于“鴿巢問(wèn)題”這樣的知識(shí)等待我們?nèi)グl(fā)現(xiàn),去挖掘。只要你留心觀察加上細(xì)心思考,一定會(huì)在平凡的事件中有不平凡的發(fā)現(xiàn),也能創(chuàng)造一條真正屬于你自己的原理!
下課!
《鴿巢問(wèn)題》教學(xué)設(shè)計(jì) 11
【教學(xué)目標(biāo)】
1、經(jīng)歷“抽屜原理”的探究過(guò)程,初步了解“抽屜原理”,會(huì)用“抽屜原理”解決簡(jiǎn)單的實(shí)際問(wèn)題。
2、通過(guò)操作發(fā)展學(xué)生的類推能力,形成比較抽象的數(shù)學(xué)思維。
3、通過(guò)“抽屜原理”的靈活應(yīng)用感受數(shù)學(xué)的魅力。
【教學(xué)重點(diǎn)】
經(jīng)歷“抽屜原理”的探究過(guò)程,初步了解“抽屜原理”,會(huì)用“抽屜原理”解決簡(jiǎn)單的實(shí)際問(wèn)題。
【教學(xué)難點(diǎn)】
通過(guò)操作發(fā)展學(xué)生的類推能力,形成比較抽象的數(shù)學(xué)思維。
【教學(xué)準(zhǔn)備】
多媒體課件、鉛筆、文具盒等。
【教學(xué)過(guò)程】
一、創(chuàng)設(shè)情境,導(dǎo)入新知
老師組織學(xué)生做“搶凳子的游戲”。
請(qǐng)4位同學(xué)上來(lái),擺開(kāi)3張凳子。
老師宣布游戲規(guī)則:4位同學(xué)跟隨著音樂(lè)(甩蔥歌)圍著凳子轉(zhuǎn)圈,音樂(lè)“!钡臅r(shí)候,四個(gè)人每個(gè)人都必須坐在凳子上。
教師背對(duì)著游戲的學(xué)生。
師:都坐下了嗎?老師不用看,也知道肯定有一張凳子上至少坐著2位同學(xué)。老師說(shuō)得對(duì)嗎?
師:老師為什么說(shuō)得這么肯定呢?其實(shí)這里面蘊(yùn)含一個(gè)深?yuàn)W的道理,今天我們就來(lái)探究這個(gè)問(wèn)題——鴿巢問(wèn)題(板書(shū)課題)。
二、自主操作,探究新知
1、觀察猜測(cè)
多媒體出示例1:4枝鉛筆,3個(gè)文具盒。
師:4個(gè)人坐3張凳子,不管怎么坐,總有一張凳子至少坐兩個(gè)同學(xué)。4枝鉛筆放進(jìn)3個(gè)文具盒中呢?
【不管怎么放,總有一個(gè)文具盒中至少放進(jìn)2枝鉛筆。】
師:真的是這樣嗎?為什么會(huì)這樣呢?你能給大家解釋這一現(xiàn)象嗎?
2、自主思考
。1)獨(dú)立思考:怎樣解釋這一現(xiàn)象?
(2)小組合作,拿鉛筆和文具盒實(shí)際擺一擺、放一放,看一共有幾種情況?
3、交流討論
學(xué)生匯報(bào)是用什么辦法來(lái)解釋這一現(xiàn)象的。
學(xué)情預(yù)設(shè):
第一種:用實(shí)物擺一擺,把所有的擺放結(jié)果都羅列出來(lái)。
學(xué)生展示把4枝鉛筆放進(jìn)3個(gè)盒子里的幾種不同擺放情況。
課件再演示四種擺法。
請(qǐng)學(xué)生觀察不同的'放法,能發(fā)現(xiàn)什么?
引導(dǎo)學(xué)生發(fā)現(xiàn):每一種擺放情況,都一定有一個(gè)文具盒中至少有2枝鉛筆。也就是說(shuō)不管怎么放,總有一個(gè)盒子里至少有2枝鉛筆。
第二種:假設(shè)法
教師請(qǐng)只擺了一種或沒(méi)有擺放就能解釋的同學(xué)說(shuō)說(shuō)自己的想法。
師:其他學(xué)生是否明白他的想法呢?
學(xué)生在交流中明確:可以假設(shè)先在每個(gè)文具盒中放1枝鉛筆,3個(gè)文具盒里就放了3枝鉛筆。還剩下1枝,放入任意一個(gè)文具盒,那么這個(gè)文具盒中就有2枝鉛筆了。也就是先平均分,每個(gè)文具盒中放1枝,余下1枝,不管放在哪個(gè)盒子里,一定會(huì)出現(xiàn)總有一個(gè)文具盒里至少有2枝鉛筆。
你可以列個(gè)算式嗎?根據(jù)學(xué)生的回答
4、比較優(yōu)化。
請(qǐng)學(xué)生繼續(xù)思考:
如果把5枝鉛筆放進(jìn)4個(gè)文具盒,結(jié)果是否一樣呢?怎樣解釋這一現(xiàn)象? 請(qǐng)學(xué)生繼續(xù)思考:
把7枝鉛筆放進(jìn)6個(gè)文具盒里呢?
把10枝鉛筆放進(jìn)9個(gè)文具盒里呢?
把100枝鉛筆放進(jìn)99個(gè)文具盒里呢?
你發(fā)現(xiàn)了什么?
引導(dǎo)學(xué)生發(fā)現(xiàn):只要放的鉛筆數(shù)比文具盒的數(shù)量多1,不論怎么放,總有一個(gè)文具盒里至少放進(jìn)2枝鉛筆。
5.請(qǐng)學(xué)生繼續(xù)思考:如果要放的鉛筆數(shù)比文具盒的數(shù)量多2呢?多3呢?多4呢?
討論:把6支筆放在4個(gè)文具盒里,會(huì)有什么結(jié)果呢?
繼續(xù)思考: 把7支筆放在4個(gè)文具盒里,會(huì)有什么結(jié)果呢?
把8支筆放在4個(gè)文具盒里,會(huì)有什么結(jié)果呢?
出示計(jì)算絕招:
至少數(shù)=商數(shù)+1
整除時(shí) 至少數(shù)=商數(shù)
6.其實(shí)這一發(fā)現(xiàn)早在150多年前有一位數(shù)學(xué)家就提出來(lái)了。課件出示你知道嗎。
“ 抽屜原理”又稱“鴿巢原理”,最先是由19世紀(jì)的德國(guó)數(shù)學(xué)家狄利克雷提出來(lái)的,所以又稱“狄里克雷原理”,這一原理在解決實(shí)際問(wèn)題中有著廣泛的應(yīng)用!俺閷显怼钡膽(yīng)用是千變?nèi)f化的,用它可以解決許多有趣的問(wèn)題,并且常常能得到一些令人驚異的結(jié)果。下面我們應(yīng)用這一原理解決問(wèn)題。
三、靈活應(yīng)用,解決問(wèn)題
1.解釋課前所做的搶凳子游戲。
2.師拿出撲克牌,問(wèn):對(duì)于撲克牌,你有哪些了解?
從撲克牌中取出兩張王牌,找5名學(xué)生,在剩下的52張中任意抽出5張,讓其他同學(xué)猜抽牌的結(jié)果,并說(shuō)明理由。
3.、第70頁(yè)“做一做”。
。1)課件出示:5只鴿子飛回3個(gè)鴿舍,至少有2只鴿子要飛進(jìn)同一個(gè)鴿舍里。為什么?
。2)學(xué)生獨(dú)立思考,自主探究。
。3)交流,說(shuō)理。
四、全課總結(jié)
這節(jié)課你懂得了什么原理?
《鴿巢問(wèn)題》教學(xué)設(shè)計(jì) 12
一、單元教材分析:
本教材專門安排“數(shù)學(xué)廣角”這一單元,向?qū)W生滲透一些重要的數(shù)學(xué)思想方法。和以往的義務(wù)教育教材相比,這部分內(nèi)容是新增的內(nèi)容。本單元教材通過(guò)幾個(gè)直觀例子,借助實(shí)際操作,向?qū)W生介紹“鴿巢問(wèn)題”,使學(xué)生在理解“鴿巢問(wèn)題”這一數(shù)學(xué)方法的基礎(chǔ)上,對(duì)一些簡(jiǎn)單的實(shí)際問(wèn)題加以“模型化”,會(huì)用“鴿巢問(wèn)題”加以解決。在數(shù)學(xué)問(wèn)題中,有一類與“存在性”有關(guān)的問(wèn)題。在這類問(wèn)題中,只需要確定某個(gè)物體(或某個(gè)人)的存在就是可以了,并不需要指出是哪個(gè)物體(或人)。這類問(wèn)題依據(jù)的理論我們稱之為“抽屜原理”!俺閷显怼弊钕仁19世紀(jì)的德國(guó)數(shù)學(xué)家狄利克雷運(yùn)用于解決數(shù)學(xué)問(wèn)題的,所以又稱“狄利克雷原理”,也稱之為“鴿巢問(wèn)題”!傍澇矄(wèn)題”的理論本身并不復(fù)雜,甚至可以說(shuō)是顯而易見(jiàn)的。但“鴿巢問(wèn)題”的應(yīng)用卻是千變?nèi)f化的,用它可以解決許多有趣的問(wèn)題,并且常常能得到一些令人驚異的結(jié)論。因此,“鴿巢問(wèn)題”在數(shù)論、集合論、組合論中都得到了廣泛的應(yīng)用。
二、單元三維目標(biāo)導(dǎo)向:
1、知識(shí)與技能:
1、引導(dǎo)學(xué)生通過(guò)觀察、猜測(cè)、實(shí)驗(yàn)、推理等活動(dòng),經(jīng)歷探究“鴿巢原理”的過(guò)程,初步了解“鴿巢原理”的含義,會(huì)用“鴿巢原理”解決簡(jiǎn)單的實(shí)際問(wèn)題。
2、過(guò)程與方法:經(jīng)歷探究“鴿巢原理”的學(xué)習(xí)過(guò)程,體驗(yàn)觀察、猜測(cè)、實(shí)驗(yàn)、推理等活動(dòng)的學(xué)習(xí)方法,滲透數(shù)形結(jié)合的思想。
3、情感態(tài)度與價(jià)值觀:
。1)體會(huì)數(shù)學(xué)與生活的緊密聯(lián)系,體驗(yàn)學(xué)數(shù)學(xué)、用數(shù)學(xué)的'樂(lè)趣。
(2)理解知識(shí)的產(chǎn)生過(guò)程,受到歷史唯物注意的教育。
。3)感受數(shù)學(xué)在實(shí)際生活中的作用,培養(yǎng)刻苦鉆研、探究新知的良好品質(zhì)。
三、單元教學(xué)重難點(diǎn)
重點(diǎn):應(yīng)用“鴿巢原理”解決實(shí)際問(wèn)題。引導(dǎo)學(xué)會(huì)把具體問(wèn)題轉(zhuǎn)化成“鴿巢問(wèn)題”。 難點(diǎn):理解“鴿巢原理”,找出”鴿巢問(wèn)題“解決的竅門進(jìn)行反復(fù)推理。
四、單元學(xué)情分析
“鴿巢原理”的變式很多,在生活中運(yùn)用廣泛,學(xué)生在生活中常常遇到此類問(wèn)題。教學(xué)時(shí),要引導(dǎo)學(xué)生先判斷某個(gè)問(wèn)題是否屬于“鴿巢原理”可以解決的范疇。能不能將這個(gè)問(wèn)題同“鴿巢原理”結(jié)合起來(lái),是本次教學(xué)能否成功的關(guān)鍵。所以,在教學(xué)中,應(yīng)有意識(shí)地讓學(xué)生理解“鴿巢原理”的“一般化模型”。六年級(jí)的學(xué)生理解能力、學(xué)習(xí)能力和生活經(jīng)驗(yàn)已達(dá)到能夠掌握本章內(nèi)容的程度。教材選取的是學(xué)生熟悉的,易于理解的生活實(shí)例,將具體實(shí)際與數(shù)學(xué)原理結(jié)合起來(lái),有助于提高學(xué)生的邏輯思維能力和解決實(shí)際問(wèn)題的能力。
五、教法和學(xué)法
1、讓學(xué)生經(jīng)歷“數(shù)學(xué)證明”的過(guò)程。可以鼓勵(lì)、引導(dǎo)學(xué)生借助學(xué)具、實(shí)物操作或畫(huà)草圖的方式進(jìn)行“說(shuō)理”。通過(guò)“說(shuō)理”的方式理解“鴿巢原理”的過(guò)程是一種數(shù)學(xué)證明的雛形。通過(guò)這樣的方式,有助于提高學(xué)生的邏輯思維能力,為以后學(xué)習(xí)較嚴(yán)密的數(shù)學(xué)證明做準(zhǔn)備。
2、有意識(shí)地培養(yǎng)學(xué)生的“模型”思想。當(dāng)我們面對(duì)一個(gè)具體的問(wèn)題時(shí),能否將這個(gè)具體問(wèn)題和“鴿巢原理”聯(lián)系起來(lái),能否找到該問(wèn)題中的具體情境與“鴿巢原理”的“一般化模型”之間的內(nèi)在關(guān)系,找出該問(wèn)題中什么是“待分的東西”,什么是“鴿巢”,是解決問(wèn)題的關(guān)鍵。教學(xué)時(shí),要引導(dǎo)學(xué)生先判斷某個(gè)問(wèn)題是否屬于用“鴿巢原理”可以解決的范疇;再思考如何尋找隱藏在其背后的“鴿巢問(wèn)題”的一般模型。這個(gè)過(guò)程是學(xué)生經(jīng)歷將具體問(wèn)題“數(shù)學(xué)化”的過(guò)程,從紛繁復(fù)雜的現(xiàn)實(shí)素材中找出最本質(zhì)的數(shù)學(xué)模型,是學(xué)生數(shù)學(xué)思維和能力的重要體現(xiàn)。
3、要適當(dāng)把握教學(xué)要求!傍澇苍怼北旧砘蛟S并不復(fù)雜,但它的應(yīng)用廣泛且靈活多變。因此,用“鴿巢原理”解決實(shí)際問(wèn)題時(shí),經(jīng)常會(huì)遇到一些困難。例如,有時(shí)要找到實(shí)際問(wèn)題與“鴿巢原理”之間的聯(lián)系并不容易,即使找到了,也很難確定用什么作為“鴿巢”,要用幾個(gè)“鴿巢”。因此,教學(xué)時(shí),不必過(guò)于要求學(xué)生“說(shuō)理”的嚴(yán)密性,只要能結(jié)合具體問(wèn)題,把大致意思說(shuō)出來(lái)就可以了,鼓勵(lì)學(xué)生借助實(shí)物操作等直觀方式進(jìn)行猜測(cè)、驗(yàn)證。
《鴿巢問(wèn)題》教學(xué)設(shè)計(jì) 13
教學(xué)內(nèi)容:
教材第70頁(yè)例3及練習(xí)十三相關(guān)題目。
教學(xué)目標(biāo):
1.在理解簡(jiǎn)單的“鴿巢原理”的基礎(chǔ)上,使學(xué)生學(xué)會(huì)用此原理解決簡(jiǎn)單的實(shí)際問(wèn)題。
2.經(jīng)歷把實(shí)際問(wèn)題轉(zhuǎn)化為鴿巢問(wèn)題的過(guò)程,了解用“鴿巢原理”解題的一般步驟,恰當(dāng)運(yùn)用“鴿巢原理”解決問(wèn)題。
3.通過(guò)用“鴿巢問(wèn)題”解決簡(jiǎn)單的實(shí)際問(wèn)題,激發(fā)學(xué)生的學(xué)習(xí)興趣,使學(xué)生感受數(shù)學(xué)的魅力。
教學(xué)重點(diǎn):
能運(yùn)用“鴿巢原理”解決實(shí)際問(wèn)題。
教學(xué)難點(diǎn):
能根據(jù)題意設(shè)計(jì)“鴿巢”。
教學(xué)準(zhǔn)備:
多媒體課件。
教學(xué)過(guò)程
學(xué)生活動(dòng)
。ǘ蝹湔n)
一、復(fù)習(xí)導(dǎo)入
1.課件出示下列問(wèn)題。
。1)把5只鴿子放進(jìn)4個(gè)籠子里,總有一個(gè)籠子里至少放進(jìn)()只鴿子。
。2)把7本書(shū)放進(jìn)4個(gè)抽屜里,總有一個(gè)抽屜里至少放進(jìn)()本書(shū)。
。3)體育課上,10個(gè)小朋友進(jìn)行投籃練習(xí),他們共投進(jìn)51個(gè)球。有一個(gè)小朋友至少投進(jìn)幾個(gè)球?
2.導(dǎo)入新課:上節(jié)課我們了解了“鴿巢原理”,這節(jié)課我們就用“鴿巢原理”解決問(wèn)題。
二、預(yù)習(xí)反饋
點(diǎn)名讓學(xué)生匯報(bào)預(yù)習(xí)情況。(重點(diǎn)讓學(xué)生說(shuō)說(shuō)通過(guò)預(yù)習(xí)本節(jié)課要學(xué)習(xí)的內(nèi)容,學(xué)到了哪些知識(shí),還有哪些不明白的地方,有什么問(wèn)題)
三、探索新知
1.課件出示例3:盒子里有同樣大小的紅球和藍(lán)球各4個(gè),要想摸出的球一定有2個(gè)同色的,至少要摸出幾個(gè)球?
學(xué)生提出猜想。
分組討論:如何把這道題轉(zhuǎn)化為“鴿巢問(wèn)題”?
這道題其實(shí)就是把摸出的球(鴿子)放在兩種顏色的“鴿巢”中,結(jié)論就是有一個(gè)顏色“鴿巢”中至少有2個(gè)。
根據(jù)“鴿巢原理”(一),只要摸出的球的個(gè)數(shù)比它們的`顏色種數(shù)多1,就能保證一定有2個(gè)球是同色的,所以答案是至少要摸出3個(gè)球。
有兩種顏色,只要摸出的球比它們的顏色至少多1,就能保證有兩個(gè)球同色。
2.引導(dǎo)學(xué)生總結(jié)用“鴿巢原理”解決問(wèn)題的一般步驟。
。1)確定什么是鴿巢及有幾個(gè)鴿巢。
。2)確定分放的物體。
。3)用倒推的方法找到答案。
四、鞏固練習(xí)
1.完成教材第70頁(yè)“做一做”第2題。
2.完成教材練習(xí)十三第3、4題。
五、拓展提升
一副撲克牌(不包括大、小王)有4種花色,每種花色各有13張,現(xiàn)在從中任意抽牌。
。1)最少要抽(13)張牌,才能保證一定有4張牌是同一種花色的。
。2)最少要抽(14)張牌,才能保證一定有2張牌是不同種花色的。
。3)最少要抽(14)張牌,才能保證一定有2張牌是數(shù)字相同的。
六、課堂總結(jié)
今天我們通過(guò)學(xué)習(xí)進(jìn)一步理解了“鴿巢原理”,并運(yùn)用它解決實(shí)際問(wèn)題。
七、作業(yè)布置
教材練習(xí)十三第5、6題。
獨(dú)立回答問(wèn)題。
教師根據(jù)學(xué)生預(yù)習(xí)的情況,有側(cè)重點(diǎn)地調(diào)整教學(xué)方案。
獨(dú)立思考后,在小組內(nèi)討論怎樣用“鴿巢原理”解決這些問(wèn)題。
板書(shū)設(shè)計(jì)
《鴿巢問(wèn)題》教學(xué)設(shè)計(jì) 14
教學(xué)目標(biāo)
1、知識(shí)與技能:進(jìn)一步熟知“鴿巢原理”的含義,會(huì)用“鴿巢原理”熟練解決簡(jiǎn)單的實(shí)際問(wèn)題。
2、過(guò)程與方法:經(jīng)歷探究“鴿巢原理”的學(xué)習(xí)過(guò)程,體驗(yàn)觀察、猜測(cè)、實(shí)驗(yàn)、推理等活動(dòng)的學(xué)習(xí)方法,滲透數(shù)形結(jié)合的思想。
3、情感、態(tài)度和價(jià)值觀:通過(guò)用“鴿巢問(wèn)題”解決簡(jiǎn)單的實(shí)際問(wèn)題,激發(fā)學(xué)生的學(xué)習(xí)興趣,使學(xué)生感受數(shù)學(xué)的魅力。
教學(xué)重難點(diǎn)
重點(diǎn):應(yīng)用“鴿巢原理”解決實(shí)際問(wèn)題。引導(dǎo)學(xué)會(huì)把具體問(wèn)題轉(zhuǎn)化成“鴿巢問(wèn)題”。
難點(diǎn):理解“鴿巢原理”,找出”鴿巢問(wèn)題“解決的竅門進(jìn)行反復(fù)推理。
教學(xué)過(guò)程
一、復(fù)習(xí)導(dǎo)入
教師講《月黑風(fēng)高穿襪子》的故事。
一天晚上,毛毛房間的電燈突然壞了,伸手不見(jiàn)五指,時(shí)他又要出去,于是他就摸床底下的襪子,他有藍(lán)、白、灰色的襪子各一雙,由于他平時(shí)做事隨便,襪子亂丟,在黑暗中不知道哪些襪子顏色是相同的。毛毛想拿最少數(shù)目的襪子出去,在外面借街燈配成相同顏色的一雙。你們知道最少拿幾只襪子出去嗎?
在學(xué)生猜測(cè)的基礎(chǔ)上揭示課題。
教師:這節(jié)課我們利用鴿巢問(wèn)題解決生活中的實(shí)際問(wèn)題。
二、新課講授
1.教學(xué)例3.
盒子里有同樣大小的`紅球和藍(lán)球各4個(gè),要想摸出的球一定有2個(gè)同色的,最少要摸出幾個(gè)球?(出示一個(gè)裝了4個(gè)紅球和4個(gè)藍(lán)球的不透明盒子,晃動(dòng)幾下)
師:同學(xué)們,猜一猜老師在盒子里放了什么?
。ㄕ(qǐng)一個(gè)同學(xué)到盒子里摸一摸,并摸出一個(gè)給大家看)
師:如果這位同學(xué)再摸一個(gè),可能是什么顏色的?要想這位同學(xué)摸出的球,一定有2個(gè)同色的,最少要摸出幾個(gè)球?
請(qǐng)學(xué)生獨(dú)立思考后,先在小組內(nèi)交流自己的想法,驗(yàn)證各自的猜想。
指名按猜測(cè)的不同情況逐一驗(yàn)證,說(shuō)明理由。
摸2個(gè)球可能出現(xiàn)的情況:1紅1藍(lán);2紅;2藍(lán)
摸3個(gè)球可能出現(xiàn)的情況:2紅1藍(lán);2藍(lán)1紅;3紅;3藍(lán)
摸4個(gè)球可能出現(xiàn)的情況:2紅2藍(lán);1紅3藍(lán);1藍(lán)3紅;4紅;4藍(lán)
摸5個(gè)球可能出現(xiàn)的情況:4紅1藍(lán);3藍(lán)2紅;3紅2藍(lán);4藍(lán)1紅;5紅;5藍(lán)
教師:通過(guò)驗(yàn)證,說(shuō)說(shuō)你們得出什么結(jié)論。
小結(jié):盒子里有同樣大小的紅球和藍(lán)球各4個(gè)。想要摸出的球一定有2個(gè)同色的,最少要摸3個(gè)球。
2.引導(dǎo)學(xué)生把具體問(wèn)題轉(zhuǎn)化為“鴿巢問(wèn)題”。
教師:生活中像這樣的例子很多,我們不能總是猜測(cè)或動(dòng)手試驗(yàn)吧,能不能把這道題與前面所講的“鴿巢問(wèn)題”聯(lián)系起來(lái)進(jìn)行思考呢?
思考:
a.“摸球問(wèn)題”與“鴿巢問(wèn)題”有怎樣的聯(lián)系?
b.應(yīng)該把什么看成“鴿巢”?有幾個(gè)“鴿巢”?要分放的東西是什么?
c.得出什么結(jié)論?
學(xué)生討論,匯報(bào)。
教師講解:因?yàn)橐还灿屑t、藍(lán)兩種顏色的球,可以把兩種“顏色”看成兩個(gè)“鴿巢”,“同色”就意味著“同一個(gè)鴿巢”。這樣,把“摸球問(wèn)題”轉(zhuǎn)化“鴿巢問(wèn)題”,即“只要分的物體個(gè)數(shù)比鴿巢多,就能保證有一個(gè)鴿巢至少有兩個(gè)球”。
從最特殊的情況想起,假設(shè)兩種顏色的球各拿了1個(gè),也就是在兩個(gè)鴿巢里各拿了一個(gè)球,不管從哪個(gè)鴿巢里再拿一個(gè)球,都有兩個(gè)球是同色,假設(shè)最少摸a個(gè)球,即(a)÷2=1……(b)當(dāng)b=1時(shí),a就最小。所以一次至少應(yīng)拿出1×2+1=3個(gè)球,就能保證有兩個(gè)球同色。
結(jié)論:要保證摸出有兩個(gè)同色的球,摸出的數(shù)量至少要比顏色種數(shù)多一。
三、課堂作業(yè)
1.完成第70頁(yè)“做一做”的第2題。
(1)學(xué)生獨(dú)立思考。
。ㄌ崾荆喊咽裁纯醋鲽澇?有幾個(gè)鴿巢?要分的東西是什么?)
。2)同桌討論。
(3)匯報(bào)交流。
2.完成教材第71頁(yè)練習(xí)十三的4—6題。
四、課堂小結(jié)
本節(jié)課你有什么收獲?
教學(xué)反思
注重培養(yǎng)學(xué)生的“模型”思想。通過(guò)一系列的操作活動(dòng),學(xué)生對(duì)于枚舉法和假設(shè)法有一定的認(rèn)識(shí),加以比較,分析兩種方法在解決抽屜原理的優(yōu)越性和局限性,使學(xué)生逐步學(xué)會(huì)運(yùn)用一般性的數(shù)學(xué)方法來(lái)思考問(wèn)題。在活動(dòng)中引導(dǎo)學(xué)生感受數(shù)學(xué)的魅力。本節(jié)課的“抽屜原理”的建立是學(xué)生在觀察、操作、思考與推理的基礎(chǔ)上理解和發(fā)現(xiàn)的,學(xué)生學(xué)的積極主動(dòng)。特別以游戲引入,又以游戲結(jié)束,既調(diào)動(dòng)了學(xué)生學(xué)習(xí)的積極性,又學(xué)到了抽屜原理的知識(shí),同時(shí)鍛煉了學(xué)生的思維。在整節(jié)課的教學(xué)活動(dòng)中使學(xué)生感受了數(shù)學(xué)的魅力。
《鴿巢問(wèn)題》教學(xué)設(shè)計(jì) 15
教學(xué)目標(biāo):
1.通過(guò)數(shù)學(xué)活動(dòng)讓學(xué)生了解鴿巢原理,學(xué)會(huì)簡(jiǎn)單的鴿巢原理分析方法。
2.結(jié)合具體的實(shí)際問(wèn)題,通過(guò)實(shí)驗(yàn)、觀察、分析、歸納等數(shù)學(xué)活動(dòng),讓學(xué)生通過(guò)獨(dú)立思考與合作交流等活動(dòng)提高解決實(shí)際問(wèn)題的能力。
3.在主動(dòng)參與數(shù)學(xué)活動(dòng)的過(guò)程中,讓學(xué)生切實(shí)體會(huì)到探索的樂(lè)趣,讓學(xué)生切實(shí)體會(huì)到數(shù)學(xué)與生活的'緊密結(jié)合。
教學(xué)重點(diǎn):
理解鴿巢原理,掌握先平均分,再調(diào)整的方法。
教學(xué)難點(diǎn):
理解總有至少的意義,理解至少數(shù)=商數(shù)+1。
教學(xué)過(guò)程:
一、游戲引入
出示一副撲克牌。
教師:今天老師要給大家表演一個(gè)魔術(shù)。取出大王和小王,還剩下52張牌,下面請(qǐng)5位同學(xué)上來(lái),每人隨意抽一張,不管怎么抽,至少有2張牌是同花色的。同學(xué)們相信嗎?
5位同學(xué)上臺(tái),抽牌,亮牌,統(tǒng)計(jì)。
教師:這類問(wèn)題在數(shù)學(xué)上稱為鴿巢問(wèn)題(板書(shū))。因?yàn)?2張撲克牌數(shù)量較大,為了方便研究,我們先來(lái)研究幾個(gè)數(shù)量較小的同類問(wèn)題。
二、探索新知
1.教學(xué)例1。
。1)教師:把3支鉛筆放到2個(gè)鉛筆盒里,有哪些放法?請(qǐng)同桌二人為一組動(dòng)手試一試。
教師:誰(shuí)來(lái)說(shuō)一說(shuō)結(jié)果?
教師根據(jù)學(xué)生回答在黑板上畫(huà)圖表示兩種結(jié)果
教師:不管怎么放,總有一個(gè)鉛筆盒里至少有2支鉛筆,這句話說(shuō)得對(duì)嗎?
教師:這句話里總有是什么意思?
教師:這句話里至少有2支是什么意思?
。2)教師:把4支鉛筆放到3個(gè)鉛筆盒里,有哪些放法?請(qǐng)4人為一組動(dòng)手試一試。
教師:誰(shuí)來(lái)說(shuō)一說(shuō)結(jié)果?
(教師根據(jù)學(xué)生回答在黑板上畫(huà)圖表示四種結(jié)果)
引導(dǎo)學(xué)生仿照上例得出不管怎么放,總有一個(gè)鉛筆盒里至少有2支鉛筆。
假設(shè)法(反證法)
教師:前面我們是通過(guò)動(dòng)手操作得出這一結(jié)論的,想一想,能不能找到一種更為直接的方法得到這個(gè)結(jié)論呢?小組討論一下。
如果每個(gè)盒子里放1支鉛筆,最多放3支,剩下的1支不管放進(jìn)哪一個(gè)盒子里,總有一個(gè)盒子里至少有2支鉛筆。首先通過(guò)平均分,余下1支,不管放在哪個(gè)盒子里,一定會(huì)出現(xiàn)總有一個(gè)盒子里至少有2支鉛筆。這就是平均分的方法。
【《鴿巢問(wèn)題》教學(xué)設(shè)計(jì)】相關(guān)文章:
《鴿巢問(wèn)題》教學(xué)設(shè)計(jì)12-20
鴿巢問(wèn)題教學(xué)設(shè)計(jì)12-06
《鴿巢問(wèn)題》教學(xué)設(shè)計(jì)(經(jīng)典10篇)12-01
鴿巢問(wèn)題教學(xué)設(shè)計(jì)經(jīng)典(10篇)11-17
鴿巢問(wèn)題的教學(xué)反思08-04
鴿巢問(wèn)題教學(xué)設(shè)計(jì)【集錦10篇】06-30