中學數(shù)學教學設計
作為一位杰出的教職工,常常需要準備教學設計,教學設計是把教學原理轉(zhuǎn)化為教學材料和教學活動的計劃。那么你有了解過教學設計嗎?以下是小編整理的中學數(shù)學教學設計,希望對大家有所幫助。
中學數(shù)學教學設計1
教學目標:
一、知識與技能
1.了解向量的實際背景,理解平面向量的概念和向量的幾何表示;掌握向量的模、零向
量、單位向量、平行向量、相等向量、共線向量等概念;并會區(qū)分平行向量、相等向量和共線向量。
2.通過對向量的學習,學生初步認識現(xiàn)實生活中的向量和數(shù)量的本質(zhì)區(qū)別.。
3.通過學生對向量與數(shù)量的識別能力的訓練,培養(yǎng)學生認識客觀事物的數(shù)學本質(zhì)的'能力。
二、過程與方法
引導發(fā)現(xiàn)法與討論相結(jié)合,通過學生主動參與到課堂教學中,提高學生的學習積極性。在教師的指導下,突出學生的主體地位與作用。
三、情感態(tài)度與價值觀
通過對平面向量和數(shù)量的比較,培養(yǎng)學生發(fā)現(xiàn)客觀事物的數(shù)學本質(zhì)的能力,并且意識到數(shù)學與實際生活間的密切關系,發(fā)現(xiàn)數(shù)學知識來源于生活又運用于生活的特性。
教學重點:理解并掌握向量、零向量、單位向量、相等向量、共線向量的概念,會表示向量。
教學難點:平行向量、相等向量和共線向量的區(qū)別和聯(lián)系。
中學數(shù)學教學設計2
變式教學法的核心是利用構(gòu)造一系列變式的方法,來展示知識的發(fā)生、發(fā)展過程,數(shù)學問題的結(jié)構(gòu)和演變過程,解決問題的思維過程,以及創(chuàng)設暴露思維障礙的情境,從而形成一種思維訓練的有效模式。它的主要作用在于凝聚學生的注意力,培養(yǎng)學生在相同條件下遷移、發(fā)散知識的能力。它能做到結(jié)構(gòu)清晰、層次分明,使各層次的學生各有所得,嘗試到成功的樂趣,并激發(fā)學生的學習熱情,達到舉一反三、觸類旁通的效果,使他們的應變能力得以提高,進而提高教學質(zhì)量。
一、變式教學的功效
1.克服思維的惰性狀態(tài),培養(yǎng)思維深刻性
教師通過不斷變換命題的形式,引申拓展,產(chǎn)生一個個既類似又有區(qū)別的問題,使學生產(chǎn)生濃厚的興趣,在挑戰(zhàn)中尋找樂趣,培養(yǎng)了思維的深刻性。
2.克服思維的封閉狀態(tài),培養(yǎng)思維的廣闊性
教師在數(shù)學變式教學過程中,不僅只重視問題解決的結(jié)果,而且針對教學和重難點,精心調(diào)設有層次、有坡度的,要求明確、題型多變的例(習)題。學生在討論歸納中,啟迪思維、開拓思路,在此基礎上通過多次訓練,既增長了知識,又培養(yǎng)了思思維能力。學生通過多次的漸進式的拓展訓練,在不斷探索解題捷徑的過程中,使思維主廣闊性得到不斷發(fā)展,并漸入佳境。
3.克服思維的保守狀態(tài),培養(yǎng)思維的靈活性
變式教學通過一題多變、一題多解的訓練,使學生從不同角度和側(cè)面去思考問題,用多種方法解決問題,深化所學知識,幫助學生克服了思維保守性,培養(yǎng)學生靈活運用知識解決實際問題的能力,從而達到培養(yǎng)學生思維的靈活性的目的。
4.運用變式教學,培養(yǎng)學生參與教學活動的持續(xù)的熱情
變式教學教學是對數(shù)學知識進行不同角度、不同層次、不同情形、不同背景的變式,以暴露問題的本質(zhì),揭示不同知識點的內(nèi)在聯(lián)系的一種教學方式。通過變式教學,使一題多用,多題重組,常給人以新鮮感,能夠喚起學生好奇心和求知欲,因而能夠產(chǎn)生主動參與的動力,保持其參與教學活動的興趣和熱情。
二、變式教學設計的原則
1.適度適量的原則
適度,即是變式設計不能過繁榮適量,即是變式內(nèi)容設計不宜過多。要求過繁,學生思維往往會出現(xiàn)“卡殼”,使學生產(chǎn)生畏難情緒,影響問題我解決,降低學習效率,長期還會使學生產(chǎn)生逆反心理,對解題產(chǎn)生厭煩情緒,不利于學生主動探索精神的培養(yǎng);內(nèi)空過多,不但會再次造成是題海,還會增加無效勞動,加重學生的負擔,使學生持續(xù)的興奮強度降低。過繁過多的變式設計不僅對學生學習課內(nèi)知識沒有幫助,而且超出了學生的接受能力,教學效果也就自然大打折扣了。為此變式題要精選,要以不太難、不太繁但要學生動腦筋思考為度,使學生肯于思考,樂于思考,善于思考,從中發(fā)現(xiàn)規(guī)律。
2.充分有效的原則
抽象的知識不僅要通過熟悉的、廣泛的、眾多的事物才得以形成,而且在感性向理性的抽象思維活動中,教師除了提供常態(tài)的標準材料,還要變換材料的非本質(zhì)屬性,即提供充分的事物變式讓學生感知、比較。否則,學生對事物進行抽象概括是容易造成知識內(nèi)涵增加,外延縮小。
三、變式教學的方式
1.概念課中的變式教學
概念,在數(shù)學課中的比例較大,初中數(shù)學教學往往是從新概念入手。正確理解概念,是學生學好數(shù)學的關鍵。概念教學有其特殊性,它要求不僅學生識記其內(nèi)容,明確與它相關知識的內(nèi)在聯(lián)系,而且要能靈活運用它來解決相關的實際問題。概念往往比較抽象,從初中生心理發(fā)展程度來看,他們對這些枯燥的東西學習起來往往是索然無味,對抽象的概念的理解很困難。而采取變式教學卻能有效地解決這一難題,使學生度過難關。教師應通過變式,或前后知識對比,或聯(lián)系實際情況,或創(chuàng)設思維障礙情境,來散發(fā)學生學習興趣,變枯燥的東西為樂趣。
2.例題課中的變式教學
有的數(shù)學教師在例題講解方面采用的是“教師講例題,學生仿例題”的公式化的教學,這種單純性地講授和簡單地套用阻止了學生思維的發(fā)展。而教材中的例題富有典型性和深刻性,在中學數(shù)學教學例題變式教學這中,所選用的“源題”應以課本的習題為主,課本習題均是經(jīng)過專家學者多次篩選后的'題目的精品,我們沒有理由放棄它。在教學中,我們要精心設計和挖掘課本的習題,也可以是其它的題目,如選自輔導資料的題目或歷年高考、中考題等。編制一題多變、一題多解、一題多用和多題一解以提高學生靈活運用知識的能力。選取的范例應具有“四性”:針對性、基礎性、靈活性和可變性。即對所學知識的訓練有針對性;能用基本知識、基本方法加以解決;解法靈活多變;可以進行題目變式,聯(lián)題成片。
四、變式教學應注意的問題
1.變式數(shù)量的確定
數(shù)學變式的數(shù)量確定是一個首要的問題,原因是:第一,課堂時間有限,這個客觀條件促使我們必須考慮問題變式的數(shù)量;第二,即使將數(shù)學學習時間拓展到課堂以外,我們也不可能提供并且教授學生關于某個特定數(shù)學內(nèi)容的所有變式,因為不可能窮盡所有的變式,我們也沒必要提供并且教授學生關于某個特定數(shù)學內(nèi)容的所有變式。所以,數(shù)學教學就是教會學生通過體驗有限變異這樣一個過程學會面對未來變異的本領,其實這種理念在數(shù)學教學中早有體現(xiàn),如學會遷移、舉一反三、觸類旁通、靈活運用數(shù)學知識和數(shù)學方法、通過解有限道題的練習獲得解無限道題的能力就是這種理念的早期提法和樸素表達。
2.變式問題的合理性
由于變式數(shù)量的有限性,因此必須選擇好的問題進行變式,這里所說的好的問題主要是指:一是問題必須包含合理的變異,所謂的合理,既指形式上的,又指內(nèi)容上的,還指變異數(shù)量上的,形式應是有所變化的,內(nèi)容應是能夠接受的,數(shù)量應是恰如其分的;二是問題必須包含盡可能多的、不再重復的變異,只有這樣,有限的問題才能包含盡可能多的變異,從而就構(gòu)成有效的問題變式。
總之,在數(shù)學課堂教學設計中,遵循學生認知發(fā)展規(guī)律,根據(jù)教學內(nèi)容和目標設計變式訓練,起到鞏固基礎、培養(yǎng)思維、提高能力的作用。特別是,通過設計變式訓練培養(yǎng)學生敢于思考、敢于聯(lián)想、敢于懷疑的品質(zhì),培養(yǎng)學生自主探究能力與創(chuàng)新精神,這應該是一名數(shù)學教師努力和不斷的追求的遠大目標。
中學數(shù)學教學設計3
【教學目標】
1、知識與技能
。1)理解等差數(shù)列的定義,會應用定義判斷一個數(shù)列是否是等差數(shù)列:
。2)賬務等差數(shù)列的通項公式及其推導過程:
(3)會應用等差數(shù)列通項公式解決簡單問題。
2、過程與方法
在定義的理解和通項公式的推導、應用過程中,培養(yǎng)學生的觀察、分析、歸納能力和嚴密的邏輯思維的能力,體驗從特殊到一般,一般到特殊的認知規(guī)律,提高熟悉猜想和歸納的能力,滲透函數(shù)與方程的思想。
3、情感、態(tài)度與價值觀
通過教師指導下學生的自主學習、相互交流和探索活動,培養(yǎng)學生主動探索、用于發(fā)現(xiàn)的求知精神,激發(fā)學生的學習興趣,讓學生感受到成功的喜悅。在解決問題的過程中,使學生養(yǎng)成細心觀察、認真分析、善于總結(jié)的良好習慣。
【教學重點】
①等差數(shù)列的概念;②等差數(shù)列的通項公式
【教學難點】
、倮斫獾炔顢(shù)列“等差”的特點及通項公式的含義;②等差數(shù)列的通項公式的推導過程。
【學情分析】
我所教學的學生是我校高一(7)班的學生(平行班學生),經(jīng)過一年的高中數(shù)學學習,大部分學生知識經(jīng)驗已較為豐富,他們的智力發(fā)展已到了形式運演階段,具備了較強的抽象思維能力和演繹推理能力,但也有一部分學生的基礎較弱,學習數(shù)學的興趣還不是很濃,所以我在授課時注重從具體的生活實例出發(fā),注重引導、啟發(fā)、研究和探討以符合這類學生的心理發(fā)展特點,從而促進思維能力的進一步發(fā)展。
【設計思路】
1、教法
、賳l(fā)引導法:這種方法有利于學生對知識進行主動建構(gòu);有利于突出重點,突破難點;有利于調(diào)動學生的主動性和積極性,發(fā)揮其創(chuàng)造性。
、诜纸M討論法:有利于學生進行交流,及時發(fā)現(xiàn)問題,解決問題,調(diào)動學生的積極性。
、壑v練結(jié)合法:可以及時鞏固所學內(nèi)容,抓住重點,突破難點。
2、學法
引導學生首先從三個現(xiàn)實問題(數(shù)數(shù)問題、水庫水位問題、儲蓄問題)概括出數(shù)組特點并抽象出等差數(shù)列的概念;接著就等差數(shù)列概念的特點,推導出等差數(shù)列的通項公式;可以對各種能力的同學引導認識多元的推導思維方法。
【教學過程】
一、創(chuàng)設情境,引入新課
1、從0開始,將5的.倍數(shù)按從小到大的順序排列,得到的數(shù)列是什么?
2、水庫管理人員為了保證優(yōu)質(zhì)魚類有良好的生活環(huán)境,用定期放水清庫的辦法清理水庫中的雜魚。如果一個水庫的水位為18m,自然放水每天水位降低2.5m,最低降至5m.那么從開始放水算起,到可以進行清理工作的那天,水庫每天的水位(單位:m)組成一個什么數(shù)列?
3、我國現(xiàn)行儲蓄制度規(guī)定銀行支付存款利息的方式為單利,即不把利息加入本息計算下一期的利息。按照單利計算本利和的公式是:本利和=本金×(1+利率×存期)。按活期存入10000元錢,年利率是0.72%,那么按照單利,5年內(nèi)各年末的本利和(單位:元)組成一個什么數(shù)列?
教師:以上三個問題中的數(shù)蘊涵著三列數(shù)。
學生:
、0,5,10,15,20,25,…。
、18,15.5,13,10.5,8,5.5.
、10072,10144,10216,10288,10360.
(設置意圖:從實例引入,實質(zhì)是給出了等差數(shù)列的現(xiàn)實背景,目的是讓學生感受到等差數(shù)列是現(xiàn)實生活中大量存在的數(shù)學模型。通過分析,由特殊到一般,激發(fā)學生學習探究知識的自主性,培養(yǎng)學生的歸納能力。
二、觀察歸納,形成定義
、0,5,10,15,20,25,…。
、18,15.5,13,10.5,8,5.5.
、10072,10144,10216,10288,10360.
思考1上述數(shù)列有什么共同特點?
思考2根據(jù)上數(shù)列的共同特點,你能給出等差數(shù)列的一般定義嗎?
思考3你能將上述的文字語言轉(zhuǎn)換成數(shù)學符號語言嗎?
教師:引導學生思考這三列數(shù)具有的共同特征,然后讓學生抓住數(shù)列的特征,歸納得出等差數(shù)列概念。
學生:分組討論,可能會有不同的答案:前數(shù)和后數(shù)的差符合一定規(guī)律;這些數(shù)都是按照一定順序排列的…只要合理教師就要給予肯定。
教師引導歸納出:等差數(shù)列的定義;另外,教師引導學生從數(shù)學符號角度理解等差數(shù)列的定義。
。ㄔO計意圖:通過對一定數(shù)量感性材料的觀察、分析,提煉出感性材料的本質(zhì)屬性;使學生體會到等差數(shù)列的規(guī)律和共同特點;一開始抓住:“從第二項起,每一項與它的前一項的差為同一常數(shù)”,落實對等差數(shù)列概念的準確表達。)
三、舉一反三,鞏固定義
1、判定下列數(shù)列是否為等差數(shù)列?若是,指出公差d.
(1)1,1,1,1,1;
(2)1,0,1,0,1;
(3)2,1,0,-1,-2;
(4)4,7,10,13,16.
教師出示題目,學生思考回答。教師訂正并強調(diào)求公差應注意的問題。
注意:公差d是每一項(第2項起)與它的前一項的差,防止把被減數(shù)與減數(shù)弄顛倒,而且公差可以是正數(shù),負數(shù),也可以為0.
(設計意圖:強化學生對等差數(shù)列“等差”特征的理解和應用)。
2、思考4:設數(shù)列{an}的通項公式為an=3n+1,該數(shù)列是等差數(shù)列嗎?為什么?
(設計意圖:強化等差數(shù)列的證明定義法)
四、利用定義,導出通項
1、已知等差數(shù)列:8,5,2,…,求第200項?
2、已知一個等差數(shù)列{an}的首項是a1,公差是d,如何求出它的任意項an呢?
教師出示問題,放手讓學生探究,然后選擇列式具有代表性的上去板演或投影展示。根據(jù)學生在課堂上的具體情況進行具體評價、引導,總結(jié)推導方法,體會歸納思想以及累加求通項的方法;讓學生初步嘗試處理數(shù)列問題的常用方法。
。ㄔO計意圖:引導學生觀察、歸納、猜想,培養(yǎng)學生合理的推理能力。學生在分組合作探究過程中,可能會找到多種不同的解決辦法,教師要逐一點評,并及時肯定、贊揚學生善于動腦、勇于創(chuàng)新的品質(zhì),激發(fā)學生的創(chuàng)造意識。鼓勵學生自主解答,培養(yǎng)學生運算能力)
五、應用通項,解決問題
1、判斷100是不是等差數(shù)列2,9,16,…的項?如果是,是第幾項?
2、在等差數(shù)列{an}中,已知a5=10,a12=31,求a1,d和an.
3、求等差數(shù)列3,7,11,…的第4項和第10項
教師:給出問題,讓學生自己操練,教師巡視學生答題情況。
學生:教師叫學生代表總結(jié)此類題型的解題思路,教師補充:已知等差數(shù)列的首項和公差就可以求出其通項公式
。ㄔO計意圖:主要是熟悉公式,使學生從中體會公式與方程之間的聯(lián)系。初步認識“基本量法”求解等差數(shù)列問題。)
中學數(shù)學教學設計4
教學目標:
(1)能夠根據(jù)實際問題,熟練地列出二次函數(shù)關系式,并求出函數(shù)的自變量的取值范圍。
。2)注重學生參與,聯(lián)系實際,豐富學生的感性認識,培養(yǎng)學生的良好的學習習慣
重點難點:
能夠根據(jù)實際問題,熟練地列出二次函數(shù)關系式,并求出函數(shù)的自變量的取值范圍。
教學過程:
一、試一試
1.設矩形花圃的垂直于墻的一邊AB的長為xm,先取x的一些值,算出矩形的另一邊BC的長,進而得出矩形的面積ym2.試將計算結(jié)果填寫在下表的空格中,
2.x的值是否可以任意取?有限定范圍嗎?
3.我們發(fā)現(xiàn),當AB的長(x)確定后,矩形的面積(y)也隨之確定,
y是x的函數(shù),試寫出這個函數(shù)的關系式,
對于1.,可讓學生根據(jù)表中給出的AB的長,填出相應的BC的長和面積,然后引導學生觀察表格中數(shù)據(jù)的變化情況,提出問題:(1)從所填表格中,你能發(fā)現(xiàn)什么?(2)對前面提出的問題的解答能作出什么猜想?讓學生思考、交流、發(fā)表意見,達成共識:當AB的長為5cm,BC的長為10m時,圍成的矩形面積最大;最大面積為50m2。 對于2,可讓學生分組討論、交流,然后各組派代表發(fā)表意見。形成共識,x的值不可以任意取,有限定范圍,其范圍是0 <x <10。 對于3,教師可提出問題,(1)當AB=xm時,BC長等于多少m?(2)面積y等于多少?并指出y=x(20-2x)(0 <x <10)就是所求的函數(shù)關系式.
二、提出問題
某商店將每件進價為8元的某種商品按每件10元出售,一天可銷出約100件.該店想通過降低售價、增加銷售量的'辦法來提高利潤,經(jīng)過市場調(diào)查,發(fā)現(xiàn)這種商品單價每降低0.1元,其銷售量可增加10件。將這種商品的售價降低多少時,能使銷售利潤最大? 在這個問題中,可提出如下問題供學生思考并回答:
1.商品的利潤與售價、進價以及銷售量之間有什么關系?
[利潤=(售價-進價)×銷售量]
2.如果不降低售價,該商品每件利潤是多少元?一天總的利潤是多少元?
[10-8=2(元),(10-8)×100=200(元)]
3.若每件商品降價x元,則每件商品的利潤是多少元?一天可銷售約多少件商品?
[(10-8-x);(100+100x)]
4.x的值是否可以任意取?如果不能任意取,請求出它的范圍,
[x的值不能任意取,其范圍是0≤x≤2]
5.若設該商品每天的利潤為y元,求y與x的函數(shù)關系式。
[y=(10-8-x) (100+100x)(0≤x≤2)]
將函數(shù)關系式y(tǒng)=x(20-2x)(0 <x <10=化為:
y=-2x2+20x(0<x<10)……………………………(1) 將函數(shù)關系式y(tǒng)=(10-8-x)(100+100x)(0≤x≤2)化為: y=-100x2+100x+20D (0≤x≤2)……………………(2)
三、觀察;概括
1.教師引導學生觀察函數(shù)關系式(1)和(2),提出以下問題讓學生思考回答;
(1)函數(shù)關系式(1)和(2)的自變量各有幾個?
(各有1個)
(2)多項式-2x2+20和-100x2+100x+200分別是幾次多項式? (分別是二次多項式)
(3)函數(shù)關系式(1)和(2)有什么共同特點?
(都是用自變量的二次多項式來表示的)
(4)本章導圖中的問題以及P1頁的問題2有什么共同特點? 讓學生討論、交流,發(fā)表意見,歸結(jié)為:自變量x為何值時,函
數(shù)y取得最大值。
2.二次函數(shù)定義:形如y=ax2+bx+c (a、b、、c是常數(shù),a≠0)的函數(shù)叫做x的二次函數(shù),a叫做二次函數(shù)的系數(shù),b叫做一次項的系數(shù),c叫作常數(shù)項.
四、課堂練習
1.(口答)下列函數(shù)中,哪些是二次函數(shù)?
(1)y=5x+1 (2)y=4x2-1
(3)y=2x3-3x2 (4)y=5x4-3x+1
2.P3練習第1,2題。
五、小結(jié)
1.請敘述二次函數(shù)的定義.
2,許多實際問題可以轉(zhuǎn)化為二次函數(shù)來解決,請你聯(lián)系生活實際,編一道二次函數(shù)應用題,并寫出函數(shù)關系式。
六、作業(yè):
中學數(shù)學教學設計5
教學目標
知識與技能目標:
本節(jié)的中心任務是研究導數(shù)的幾何意義及其應用,概念的形成分為三個層次:
(1)通過復習舊知“求導數(shù)的兩個步驟”以及“平均變化率與割線斜率的關系”,解決了平均變化率的幾何意義后,明確探究導數(shù)的幾何意義可以依據(jù)導數(shù)概念的形成尋求解決問題的途徑。
(2)從圓中割線和切線的變化聯(lián)系,推廣到一般曲線中用割線逼近的方法直觀定義切線。
(3)依據(jù)割線與切線的變化聯(lián)系,數(shù)形結(jié)合探究函數(shù)導數(shù)的幾何意義教案在導數(shù)的幾何意義教案處的導數(shù)導數(shù)的幾何意義教案的幾何意義,使學生認識到導數(shù)導數(shù)的幾何意義教案就是函數(shù)導數(shù)的幾何意義教案的圖象在導數(shù)的幾何意義教案處的切線的斜率。即:
導數(shù)的幾何意義教案=曲線在導數(shù)的幾何意義教案處切線的斜率k
在此基礎上,通過例題和練習使學生學會利用導數(shù)的幾何意義解釋實際生活問題,加深對導數(shù)內(nèi)涵的理解。在學習過程中感受逼近的思想方法,了解“以直代曲”的數(shù)學思想方法。
過程與方法目標:
(1)學生通過觀察感知、動手探究,培養(yǎng)學生的動手和感知發(fā)現(xiàn)的能力。
(2)學生通過對圓的切線和割線聯(lián)系的認識,再類比探索一般曲線的情況,完善對切線的認知,感受逼近的思想,體會相切是種局部性質(zhì)的本質(zhì),有助于數(shù)學思維能力的提高。
(3)結(jié)合分層的探究問題和分層練習,期望各種層次的學生都可以憑借自己的能力盡力走在教師的前面,獨立解決問題和發(fā)現(xiàn)新知、應用新知。
情感、態(tài)度、價值觀:
(1)通過在探究過程中滲透逼近和以直代曲思想,使學生了解近似與精確間的辨證關系;通過有限來認識無限,體驗數(shù)學中轉(zhuǎn)化思想的意義和價值;
(2)在教學中向他們提供充分的從事數(shù)學活動的機會,如:探究活動,讓學生自主探究新知,例題則采用練在講之前,講在關鍵處。在活動中激發(fā)學生的學習潛能,促進他們真正理解和掌握基本的數(shù)學知識技能、數(shù)學思想方法,獲得廣泛的數(shù)學活動經(jīng)驗,提高綜合能力,學會學習,進一步在意志力、自信心、理性精神等情感與態(tài)度方面得到良好的發(fā)展。
教學重點與難點
重點:理解和掌握切線的新定義、導數(shù)的幾何意義及應用于解決實際問題,體會數(shù)形結(jié)合、以直代曲的思想方法。
難點:發(fā)現(xiàn)、理解及應用導數(shù)的幾何意義。
教學過程
一、復習提問
1.導數(shù)的定義是什么?求導數(shù)的三個步驟是什么?求函數(shù)y=x2在x=2處的導數(shù).
定義:函數(shù)在導數(shù)的幾何意義教案處的導數(shù)導數(shù)的幾何意義教案就是函數(shù)在該點處的瞬時變化率。
求導數(shù)的步驟:
第一步:求平均變化率導數(shù)的幾何意義教案;
第二步:求瞬時變化率導數(shù)的幾何意義教案.
。磳(shù)的幾何意義教案,平均變化率趨近于的確定常數(shù)就是該點導數(shù))
2.觀察函數(shù)導數(shù)的幾何意義教案的圖象,平均變化率導數(shù)的幾何意義教案在圖形中表示什么?
生:平均變化率表示的是割線PQ的斜率.導數(shù)的幾何意義教案
師:這就是平均變化率(導數(shù)的幾何意義教案)的幾何意義,3.瞬時變化率(導數(shù)的幾何意義教案)在圖中又表示什么呢?
如圖2-1,設曲線C是函數(shù)y=f(x)的圖象,點P(x0,y0)是曲線C上一點.點Q(x0+Δx,y0+Δy)是曲線C上與點P鄰近的任一點,作割線PQ,當點Q沿著曲線C無限地趨近于點P,割線PQ便無限地趨近于某一極限位置PT,我們就把極限位置上的直線PT,叫做曲線C在點P處的切線.
導數(shù)的幾何意義教案
追問:怎樣確定曲線C在點P的切線呢?因為P是給定的,根據(jù)平面解析幾何中直線的點斜式方程的知識,只要求出切線的斜率就夠了.設割線PQ的傾斜角為導數(shù)的幾何意義教案,切線PT的傾斜角為導數(shù)的幾何意義教案,易知割線PQ的斜率為導數(shù)的幾何意義教案。既然割線PQ的極限位置上的直線PT是切線,所以割線PQ斜率的極限就是切線PT的斜率導數(shù)的幾何意義教案,即導數(shù)的幾何意義教案。
由導數(shù)的定義知導數(shù)的幾何意義教案導數(shù)的幾何意義教案。
導數(shù)的幾何意義教案
由上式可知:曲線f(x)在點(x0,f(x0))處的切線的斜率就是y=f(x)在點x0處的導數(shù)f'(x0).今天我們就來探究導數(shù)的幾何意義。
。妙悓W生回答第1題,A,B類學生回答第2題在學生回答基礎上教師重點講評第3題,然后逐步引入導數(shù)的幾何意義.
二、新課
1、導數(shù)的幾何意義:
函數(shù)y=f(x)在點x0處的導數(shù)f'(x0)的幾何意義,就是曲線y=f(x)在點(x0,f(x0))處切線的斜率.
即:導數(shù)的幾何意義教案
口答練習:
。1)如果函數(shù)y=f(x)在已知點x0處的導數(shù)分別為下列情況f'(x0)=1,f'(x0)=1,f'(x0)=-1,f'(x0)=2.試求函數(shù)圖像在對應點的切線的傾斜角,并說明切線各有什么特征。
。ǎ脤訉W生做)
(2)已知函數(shù)y=f(x)的圖象(如圖2-2),分別為以下三種情況的直線,通過觀察確定函數(shù)在各點的導數(shù).(A、B層學生做)
導數(shù)的幾何意義教案
2、如何用導數(shù)研究函數(shù)的增減?
小結(jié):附近:瞬時,增減:變化率,即研究函數(shù)在該點處的瞬時變化率,也就是導數(shù)。導數(shù)的正負即對應函數(shù)的增減。作出該點處的切線,可由切線的升降趨勢,得切線斜率的正負即導數(shù)的正負,就可以判斷函數(shù)的增減性,體會導數(shù)是研究函數(shù)增減、變化快慢的有效工具。
同時,結(jié)合以直代曲的思想,在某點附近的切線的變化情況與曲線的變化情況一樣,也可以判斷函數(shù)的增減性。都反應了導數(shù)是研究函數(shù)增減、變化快慢的有效工具。
例1函數(shù)導數(shù)的幾何意義教案上有一點導數(shù)的幾何意義教案,求該點處的導數(shù)導數(shù)的`幾何意義教案,并由此解釋函數(shù)的增減情況。
導數(shù)的幾何意義教案
函數(shù)在定義域上任意點處的瞬時變化率都是3,函數(shù)在定義域內(nèi)單調(diào)遞增。(此時任意點處的切線就是直線本身,斜率就是變化率)
3、利用導數(shù)求曲線y=f(x)在點(x0,f(x0))處的切線方程.
例2求曲線y=x2在點M(2,4)處的切線方程.
解:導數(shù)的幾何意義教案
∴y'|x=2=2×2=4.
∴點M(2,4)處的切線方程為y-4=4(x-2),即4x-y-4=0.
由上例可歸納出求切線方程的兩個步驟:
(1)先求出函數(shù)y=f(x)在點x0處的導數(shù)f'(x0).
(2)根據(jù)直線方程的點斜式,得切線方程為y-y0=f'(x0)(x-x0).
提問:若在點(x0,f(x0))處切線PT的傾斜角為導數(shù)的幾何意義教案導數(shù)的幾何意義教案,求切線方程。(因為這時切線平行于y軸,而導數(shù)不存在,不能用上面方法求切線方程。根據(jù)切線定義可直接得切線方程導數(shù)的幾何意義教案)
(先由C類學生來回答,再由A,B補充.)
例3已知曲線導數(shù)的幾何意義教案上一點導數(shù)的幾何意義教案,求:(1)過P點的切線的斜率;
(2)過P點的切線的方程。
解:(1)導數(shù)的幾何意義教案,導數(shù)的幾何意義教案
y'|x=2=22=4.∴在點P處的切線的斜率等于4.
。ǎ玻┰邳cP處的切線方程為導數(shù)的幾何意義教案即12x-3y-16=0.
練習:求拋物線y=x2+2在點M(2,6)處的切線方程.
(答案:y'=2x,y'|x=2=4切線方程為4x-y-2=0).
B類學生做題,A類學生糾錯。
三、小結(jié)
1.導數(shù)的幾何意義.(C組學生回答)
2.利用導數(shù)求曲線y=f(x)在點(x0,f(x0))處的切線方程的步驟.
。˙組學生回答)
四、布置作業(yè)
1.求拋物線導數(shù)的幾何意義教案在點(1,1)處的切線方程。
2.求拋物線y=4x-x2在點A(4,0)和點B(2,4)處的切線的斜率,切線的方程.
3.求曲線y=2x-x3在點(-1,-1)處的切線的傾斜角
__4.已知拋物線y=x2-4及直線y=x+2,求:(1)直線與拋物線交點的坐標;(2)拋物線在交點處的切線方程;
(C組學生完成1,2題;B組學生完成1,2,3題;A組學生完成2,3,4題)
教學反思:
本節(jié)內(nèi)容是在學習了“變化率問題、導數(shù)的概念”等知識的基礎上,研究導數(shù)的幾何意義,由于新教材未設計極限,于是我盡量采用形象直觀的方式,讓學生通過動手作圖,自我感受整個逼近的過程,讓學生更加深刻地體會導數(shù)的幾何意義及“以直代曲”的思想。
本節(jié)課主要圍繞著“利用函數(shù)圖象直觀理解導數(shù)的幾何意義”和“利用導數(shù)的幾何意義解釋實際問題”兩個教學重心展開。先回憶導數(shù)的實際意義、數(shù)值意義,由數(shù)到形,自然引出從圖形的角度研究導數(shù)的幾何意義;然后,類比“平均變化率——瞬時變化率”的研究思路,運用逼近的思想定義了曲線上某點的切線,再引導學生從數(shù)形結(jié)合的角度思考,獲得導數(shù)的幾何意義——“導數(shù)是曲線上某點處切線的斜率”。
完成本節(jié)課第一階段的內(nèi)容學習后,教師點明,利用導數(shù)的幾何意義,在研究實際問題時,某點附近的曲線可以用過此點的切線近似代替,即“以直代曲”,從而達到“以簡單的對象刻畫復雜對象”的目的,并通過兩個例題的研究,讓學生從不同的角度完整地體驗導數(shù)與切線斜率的關系,并感受導數(shù)應用的廣泛性。本節(jié)課注重以學生為主體,每一個知識、每一個發(fā)現(xiàn),總設法由學生自己得出,課堂上給予學生充足的思考時間和空間,讓學生在動手操作、動筆演算等活動后,再組織討論,本教師只是在關鍵處加以引導。從學生的作業(yè)看來,效果較好。
【中學數(shù)學教學設計】相關文章:
中學數(shù)學教學總結(jié)05-17
中學數(shù)學教學反思04-16
中學數(shù)學教學工作總結(jié)12-31
中學數(shù)學教師教學反思04-08
《冰花》教學設計 冰花教學設計12-12
欣賞與設計教學設計05-24
《頭飾設計》教學設計06-06
中學數(shù)學教師教學反思6篇04-18