- 余弦定理優(yōu)秀教學設計 推薦度:
- 相關推薦
余弦定理優(yōu)秀教學設計
在教學工作者開展教學活動前,就有可能用到教學設計,教學設計是一個系統(tǒng)設計并實現(xiàn)學習目標的過程,它遵循學習效果最優(yōu)的原則嗎,是課件開發(fā)質量高低的關鍵所在。教學設計要怎么寫呢?下面是小編整理的余弦定理優(yōu)秀教學設計,歡迎大家借鑒與參考,希望對大家有所幫助。
余弦定理優(yōu)秀教學設計1
一、教學內容分析
人教版《普通高中課程標準實驗教科書必修(五)》(第2版)第一章《解三角形》第一單元第二課《余弦定理》。通過利用向量的數(shù)量積方法推導余弦定理,正確理解其結構特征和表現(xiàn)形式,解決“邊、角、邊”和“邊、邊、邊”問題,初步體會余弦定理解決“邊、邊、角”,體會方程思想,激發(fā)學生探究數(shù)學,應用數(shù)學的潛能。
二、學生學習情況分析
本課之前,學生已經(jīng)學習了三角函數(shù)、向量基本知識和正弦定理有關內容,對于三角形中的邊角關系有了較進一步的認識。在此基礎上利用向量方法探求余弦定理,學生已有一定的學習基礎和學習興趣。總體上學生應用數(shù)學知識的意識不強,創(chuàng)造力較弱,看待與分析問題不深入,知識的系統(tǒng)性不完善,使得學生在余弦定理推導方法的探求上有一定的難度,在發(fā)掘出余弦定理的結構特征、表現(xiàn)形式的數(shù)學美時,能夠激發(fā)學生熱愛數(shù)學的思想感情;從具體問題中抽象出數(shù)學的本質,應用方程的思想去審視,解決問題是學生學習的一大難點。
三、設計思想
新課程的數(shù)學提倡學生動手實踐,自主探索,合作交流,深刻地理解基本結論的本質,體驗數(shù)學發(fā)現(xiàn)和創(chuàng)造的歷程,力求對現(xiàn)實世界蘊涵的一些數(shù)學模式進行思考,作出判斷;同時要求教師從知識的傳授者向課堂的設計者、組織者、引導者、合作者轉化,從課堂的執(zhí)行者向實施者、探究開發(fā)者轉化。本課盡力追求新課程要求,利用師生的互動合作,提高學生的數(shù)學思維能力,發(fā)展學生的數(shù)學應用意識和創(chuàng)新意識,深刻地體會數(shù)學思想方法及數(shù)學的應用,激發(fā)學生探究數(shù)學、應用數(shù)學知識的潛能。
四、教學目標
繼續(xù)探索三角形的邊長與角度間的具體量化關系、掌握余弦定理的兩種表現(xiàn)形式,體會向量方法推導余弦定理的思想;通過實踐演算運用余弦定理解決“邊、角、邊”及“邊、邊、邊”問題;深化與細化方程思想,理解余弦定理的本質。通過相關教學知識的聯(lián)系性,理解事物間的普遍聯(lián)系性。
五、教學重點與難點
教學重點是余弦定理的發(fā)現(xiàn)過程及定理的'應用;教學難點是用向量的數(shù)量積推導余弦定理的思路方法及余弦定理在應用求解三角形時的思路。
六、教學過程
七、教學反思
本課的教學應具有承上啟下的目的。因此在教學設計時既要兼顧前后知識的聯(lián)系,又要使學生明確本課學習的重點,將新舊知識逐漸地融為一體,構建比較完整的知識系統(tǒng)。所以在余弦定理的表現(xiàn)方式、結構特征上重加指導,只有當學生正確地理解了余弦定理的本質,才能更好地應用求解問題。本課教學設計力求在型(模型、類型),質(實質、本質),思(思維、思想方法)上達到教學效果。本課之前學生已學習過三角函數(shù),平面幾何,平面向量、解析幾何、正弦定理等與本課緊密聯(lián)系的內容,使本課有了較多的處理工具,也使余弦定理的探討有了更加簡潔的工具。因此在本課的教學設計中抓住前后知識的聯(lián)系,重視數(shù)學思想的教學,加深對數(shù)學概念本質的理解,認識數(shù)學與實際的聯(lián)系,學會應用數(shù)學知識和方法解決一些實際問題。學生應用數(shù)學的意識不強,創(chuàng)造力不足、看待問題不深入,很大原因在于學生的知識系統(tǒng)不夠完善。因此本課運用聯(lián)系的觀點,從多角度看待問題,在提出問題、思考分析問題、解決問題等多方面對學生進行示范引導,將舊知識與新知識進行重組擬合及提高,幫助學生建立自己的良好知識結構。
余弦定理優(yōu)秀教學設計2
一、教學設計
1、教學背景
在近幾年教學實踐中我們發(fā)現(xiàn)這樣的怪現(xiàn)象:絕大多數(shù)學生認為數(shù)學很重要,但很難;學得很苦、太抽象、太枯燥,要不是升學,我們才不會去理會,況且將來用數(shù)學的機會很少;許多學生完全依賴于教師的講解,不會自學,不敢提問題,也不知如何提問題,這說明了學生一是不會學數(shù)學,二是對數(shù)學有恐懼感,沒有信心,這樣的心態(tài)怎能對數(shù)學有所創(chuàng)新呢?即使有所創(chuàng)新那與學生們所花代價也不成比例,其間扼殺了他們太多的快樂和個性特長。建構主義提倡情境式教學,認為多數(shù)學習應與具體情境有關,只有在解決與現(xiàn)實世界相關聯(lián)的問題中,所建構的知識才將更豐富、更有效和易于遷移。我們在20xx級進行了“創(chuàng)設數(shù)學情境與提出數(shù)學問題”的以學生為主的“生本課堂”教學實驗,通過一段時間的教學實驗,多數(shù)同學已能適應這種學習方式,平時能主動思考,敢于提出自己關心的問題和想法,從過去被動的接受知識逐步過渡到主動探究、索取知識,增強了學習數(shù)學的興趣。
2、教材分析
“余弦定理”是高中數(shù)學的主要內容之一,是解決有關斜三角形問題的兩個重要定理之一,也是初中“勾股定理”內容的直接延拓,它是三角函數(shù)一般知識和平面向量知識在三角形中的具體運用,是解可轉化為三角形計算問題的其它數(shù)學問題及生產、生活實際問題的重要工具,因此具有廣泛的應用價值。本節(jié)課是“正弦定理、余弦定理”教學的第二節(jié)課,其主要任務是引入并證明余弦定理。布魯納指出,學生不是被動的、消極的知識的接受者,而是主動的、積極的知識的探究者。教師的作用是創(chuàng)設學生能夠獨立探究的情境,引導學生去思考,參與知識獲得的過程。因此,做好“余弦定理”的教學,不僅能復習鞏固舊知識,使學生掌握新的有用的知識,體會聯(lián)系、發(fā)展等辯證觀點,而且能培養(yǎng)學生的應用意識和實踐操作能力,以及提出問題、解決問題等研究性學習的能力。
3、設計思路
建構主義強調,學生并不是空著腦袋走進教室的。在日常生活中,在以往的學習中,他們已經(jīng)形成了豐富的經(jīng)驗,小到身邊的衣食住行,大到宇宙、星體的運行,從自然現(xiàn)象到社會生活,他們幾乎都有一些自己的看法。而且,有些問題即使他們還沒有接觸過,沒有現(xiàn)成的經(jīng)驗,但當問題一旦呈現(xiàn)在面前時,他們往往也可以基于相關的經(jīng)驗,依靠他們的認知能力,形成對問題的某種解釋。而且,這種解釋并不都是胡亂猜測,而是從他們的經(jīng)驗背景出發(fā)而推出的合乎邏輯的假設。所以,教學不能無視學生的這些經(jīng)驗,另起爐灶,從外部裝進新知識,而是要把學生現(xiàn)有的知識經(jīng)驗作為新知識的生長點,引導學生從原有的知識經(jīng)驗中“生長”出新的知識經(jīng)驗。
為此我們根據(jù)“情境—問題”教學模式,沿著“設置情境—提出問題—解決問題—反思應用”這條主線,把從情境中探索和提出數(shù)學問題作為教學的出發(fā)點,以“問題”為紅線組織教學,形成以提出問題與解決問題相互引發(fā)攜手并進的“情境—問題”學習鏈,使學生真正成為提出問題和解決問題的主體,成為知識的“發(fā)現(xiàn)者”和“創(chuàng)造者”,使教學過程成為學生主動獲取知識、發(fā)展能力、體驗數(shù)學的過程。根據(jù)上述精神,做出了如下設計:①創(chuàng)設一個現(xiàn)實問題情境作為提出問題的背景;②啟發(fā)、引導學生提出自己關心的現(xiàn)實問題,逐步將現(xiàn)實問題轉化、抽象成過渡性數(shù)學問題,解決問題時需要使用余弦定理,借此引發(fā)學生的認知沖突,揭示解斜三角形的必要性,并使學生產生進一步探索解決問題的動機。然后引導學生抓住問題的數(shù)學實質,引伸成一般的數(shù)學問題:已知三角形的兩條邊和他們的夾角,求第三邊。③為了解決提出的問題,引導學生從原有的知識經(jīng)驗中“生長”出新的知識經(jīng)驗,通過作邊BC的垂線得到兩個直角三角形,然后利用勾股定理和銳角三角函數(shù)得出余弦定理的表達式,進而引導學生進行嚴格的邏輯證明。證明時,關鍵在于啟發(fā)、引導學生明確以下兩點:一是證明的起點 ;二是如何將向量關系轉化成數(shù)量關系。④由學生獨立使用已證明的結論去解決中所提出的問題。
二、教學反思
本課中,教師立足于所創(chuàng)設的情境,通過學生自主探索、合作交流,親身經(jīng)歷了提出問題、解決問題、應用反思的過程,學生成為余弦定理的“發(fā)現(xiàn)者”和“創(chuàng)造者”,切身感受了創(chuàng)造的苦和樂,知識目標、能力目標、情感目標均得到了較好的落實,為今后的“定理教學”提供了一些有用的借鑒。
例如,新課的引入,我引導學生從向量的模下手思考:
生:利用向量的模并借助向量的數(shù)量積. .
教師:正確!由于向量 的`模長,夾角已知,只需將向量 用向量 來表示即可.易知 ,接下來只要把這個向量等式數(shù)量化即可.如何實現(xiàn)呢?
學生8:通過向量數(shù)量積的運算.
通過教師的引導,學生不難發(fā)現(xiàn) 還可以寫成 , 不共線,這是平面向量基本定理的一個運用.因此在一些解三角形問題中,我們還可以利用平面向量基本定理尋找向量等式,再把向量等式化成數(shù)量等式,從而解決問題.
(從學生的“最近發(fā)展區(qū)”出發(fā),證明方法層層遞進,激發(fā)學生探求新知的欲望,從而感受成功的喜悅.)
創(chuàng)設數(shù)學情境是“情境·問題·反思·應用”教學的基礎環(huán)節(jié),教師必須對學生的身心特點、知識水平、教學內容、教學目標等因素進行綜合考慮,對可用的情境進行比較,選擇具有較好的教育功能的情境。
從應用需要出發(fā),創(chuàng)設認知沖突型數(shù)學情境,是創(chuàng)設情境的常用方法之一!坝嘞叶ɡ怼本哂袕V泛的應用價值,故本課中從應用需要出發(fā)創(chuàng)設了教學中所使用的數(shù)學情境。該情境源于教材解三角形應用舉例的例1。實踐說明,這種將教材中的例題、習題作為素材改造加工成情境,是創(chuàng)設情境的一條有效途徑。只要教師能對教材進行深入、細致、全面的研究,便不難發(fā)現(xiàn)教材中有不少可用的素材。
“情境·問題·反思·應用”教學模式主張以問題為“紅線”組織教學活動,以學生作為提出問題的主體,如何引導學生提出問題是教學成敗的關鍵,教學實驗表明,學生能否提出數(shù)學問題,不僅受其數(shù)學基礎、生活經(jīng)歷、學習方式等自身因素的影響,還受其所處的環(huán)境、教師對提問的態(tài)度等外在因素的制約。因此,教師不僅要注重創(chuàng)設適宜的數(shù)學情境(不僅具有豐富的內涵,而且還具有“問題”的誘導性、啟發(fā)性和探索性),而且要真正轉變對學生提問的態(tài)度,提高引導水平,一方面要鼓勵學生大膽地提出問題,另一方面要妥善處理學生提出的問題。關注學生學習的結果,更關注學生學習的過程;關注學生數(shù)學學習的水平,更關注學生在數(shù)學活動中所表現(xiàn)出來的情感與態(tài)度;關注是否給學生創(chuàng)設了一種情境,使學生親身經(jīng)歷了數(shù)學活動過程.把“質疑提問”,培養(yǎng)學生的數(shù)學問題意識,提高學生提出數(shù)學問題的能力作為教與學活動的起點與歸宿。
余弦定理優(yōu)秀教學設計3
一、教材分析
《余弦定理》選自人教A版高中數(shù)學必修五第一章第一節(jié)第一課時。本節(jié)課的主要教學內容是余弦定理的內容及證明,以及運用余弦定理解決“兩邊一夾角”“三邊”的解三角形問題。
余弦定理的學習有充分的基礎,初中的勾股定理、必修一中的向量知識、上一課時的正弦定理都是本節(jié)課內容學習的知識基礎,同時又對本節(jié)課的學習提供了一定的方法指導。其次,余弦定理在高中解三角形問題中有著重要的地位,是解決各種解三角形問題的常用方法,余弦定理也經(jīng)常運用于空間幾何中,所以余弦定理是高中數(shù)學學習的一個十分重要的內容。
二、教學目標
知識與技能:
1、理解并掌握余弦定理和余弦定理的推論。
2、掌握余弦定理的推導、證明過程。
3、能運用余弦定理及其推論解決“兩邊一夾角”“三邊”問題。
過程與方法:
1、通過從實際問題中抽象出數(shù)學問題,培養(yǎng)學生知識的遷移能力。
2、通過直角三角形到一般三角形的過渡,培養(yǎng)學生歸納總結能力。
3、通過余弦定理推導證明的過程,培養(yǎng)學生運用所學知識解決實際問題的能力。
情感態(tài)度與價值觀:
1、在交流合作的過程中增強合作探究、團結協(xié)作精神,體驗解決問題的.成功喜悅。
2、感受數(shù)學一般規(guī)律的美感,培養(yǎng)數(shù)學學習的興趣。
三、教學重難點
重點:余弦定理及其推論和余弦定理的運用。
難點:余弦定理的發(fā)現(xiàn)和推導過程以及多解情況的判斷。
四、教學用具
普通教學工具、多媒體工具(以上均為命題教學的準備)。
【余弦定理優(yōu)秀教學設計】相關文章:
《正弦定理和余弦定理》復習課教學設計12-03
余弦定理教案01-11
優(yōu)秀教學設計12-31
優(yōu)秀的教學設計06-16
《春》優(yōu)秀教學設計02-17
《夾竹桃》優(yōu)秀教學設計03-21
母雞優(yōu)秀教學設計03-09
《掌聲》優(yōu)秀教學設計03-07
《南轅北轍》優(yōu)秀教學設計03-23