成大在线免费视频,亚洲精品免费一级视频,日韩亚洲欧美大陆,又黄又爽免费国产视频

<style id="t465f"></style>
<legend id="t465f"><u id="t465f"><thead id="t465f"></thead></u></legend>

<acronym id="t465f"></acronym>

<sub id="t465f"><ol id="t465f"><nobr id="t465f"></nobr></ol></sub>
<sub id="t465f"></sub>

分數(shù)的基本性質教學設計

時間:2023-04-05 10:04:36 教學資源 投訴 投稿

分數(shù)的基本性質教學設計15篇

  作為一名專為他人授業(yè)解惑的人民教師,時常需要準備好教學設計,教學設計是根據(jù)課程標準的要求和教學對象的特點,將教學諸要素有序安排,確定合適的教學方案的設想和計劃。那么什么樣的教學設計才是好的呢?以下是小編為大家收集的分數(shù)的基本性質教學設計,僅供參考,大家一起來看看吧。

分數(shù)的基本性質教學設計15篇

分數(shù)的基本性質教學設計1

  教學目標

  1、使學生對數(shù)的整除的有關概念掌握得更加系統(tǒng)、牢固。

  2、進一步弄清各概念之間的聯(lián)系與區(qū)別。

  3、使學生對最大公約數(shù)和最小公倍數(shù)的求法掌握得更加熟練。

  4、掌握分數(shù)、小數(shù)的基本性質。

  教學重點

  通過對主要概念進行整理和復習,深化理解,形成知識網(wǎng)絡。

  教學難點

  弄清概念間的聯(lián)系和區(qū)別,理解易混淆的概念。

  教學步驟

  一、鋪墊孕伏

  教師談話:同學們,昨天老師讓大家在課下復習了第十冊課本中約數(shù)和倍數(shù)一章的內容,

  在這一章中我們學過了哪些概念呢?請同學們分組討論,討論時由一名同學做記錄、(學生匯報討論結果)

  揭示課題:在數(shù)的整除這部分知識中,有這么多的概念,那么這些概念之間又有怎樣的聯(lián)系呢?這節(jié)課,我們就把這些概念進行整理和復習、

  二、探究新知

 。ㄒ唬┙⒅R網(wǎng)絡、【演示課件數(shù)的整除】。

  1、思考:哪個概念是最基本的概念?并說一說概念的內容。

  反饋練習:

  在123=4、48=0、5、20、=20、3、20、8=4中,被除數(shù)能除盡除數(shù)的有()個;被除數(shù)能整除除數(shù)的有()個。

  教師提問:這四個算式中的被除數(shù)都能除盡除數(shù),為什么只有這一個算式中的除數(shù)能整除被除數(shù)呢?整除與除盡到底有怎樣的關系呢?

  教師說明:能除盡的不一定都能整除,但能整除的一定能除盡。

  2、說出與整除關系最密切的概念,并說一說概念的內容。

  反饋練習:下面的說法對不對,為什么?

  因為155=3,所以15是倍數(shù),5是約數(shù)、()。

  因為4、62=2、3,所以4、6是2的倍數(shù),2是4、6的約數(shù)、()。

  明確:約數(shù)和倍數(shù)是互相依存的,約數(shù)和倍數(shù)必須以整除為前提。

  3、教師提問:

  由一個數(shù)的倍數(shù),一個數(shù)的約數(shù)你又想到什么概念?并說一說這些概念的內容,根據(jù)一個數(shù)所含約數(shù)的個數(shù)的不同,還可以得到什么概念?

  互質數(shù)這個概念與哪個概念有關系?它們之間有怎樣的關系呢?

  互質數(shù)這個概念與公約數(shù)有關系,公約數(shù)只有1的.兩個數(shù)叫做互質數(shù)。

  4、討論互質數(shù)與質數(shù)之間有什么區(qū)別?

  互質數(shù)講的是兩個數(shù)的關系,這兩個數(shù)的公約數(shù)只有1,質數(shù)是對一個自然數(shù)而言的,它只有1和它本身兩個約數(shù)。

  5、教師提問:

  如果我們把24寫成幾個質數(shù)相乘的形式,那么這幾個質數(shù)叫做24的什么數(shù)?

  只有什么數(shù)才能做質因數(shù)?

  什么叫做分解質因數(shù)?

  只有什么數(shù)才能分解質因數(shù)?

  6、教師提問:

  誰還記得,能被2、5、3整除的數(shù)各有什么特征?

  由一個數(shù)能不能被2整除,又可以得到什么概念?

 。ǘ┍容^方法。

  1、練習:求16和24的最大公約數(shù)和最小公倍數(shù)。

  2、思考:求最大公約數(shù)和最小公倍數(shù)有什么聯(lián)系和區(qū)別?

  (三)分數(shù)、小數(shù)的基本性質。

  1、教師提問:

  分數(shù)的基本性質是什么?

  小數(shù)的基本性質是什么?

分數(shù)的基本性質教學設計2

  教學內容:人教版五年級數(shù)學下冊57頁內容及58、59頁練習。

  教學目標:

  知識與技能:通過教學使學生理解的掌握分數(shù)的基本性質,能運用分數(shù)的基本性質把一個分數(shù)化成指定分母(或分子)相同而大小不變的分數(shù),并能應用這一性質解決簡單的實際問題。

  過程與方法:引導學生在參與觀察、比較、猜想、驗證等學習活動的過程中,有條理,有根據(jù)地思考、探究問題,培養(yǎng)學生的抽象概括能力。

  情感、態(tài)度和價值觀:使學生受到數(shù)學思想方法的熏陶,培養(yǎng)樂于探究的學習態(tài)度。

  教學重點:理解和掌握分數(shù)的基本性質。

  教學難點:應用分數(shù)的基本性質解決問題。

  教學準備:預習生成單、作業(yè)紙、課件

  教學課時:一課時

  教學過程:

  一、導入新課,揭示課題

  1、師:通過昨天的預習,你知道我們今天要學習什么內容?(生:分數(shù)的基本性質)

  2、師:針對這個內容,同學們做了充分的預習,相信你們一定提出了不同的數(shù)學問題,現(xiàn)在請組長帶領組員提煉出你們組最想研究的問題。

  3、指名學生匯報。

  4、師:同學們,不管你們提出什么樣的問題,都與分數(shù)的基本性質有關,今天我們就帶著這些問題走進課堂。

  二、檢查預習,自主探究

  1.出示預習生成單:(師:我們已經預習了這部分內容,請同學們組內交流一下你們的預習成果,形成統(tǒng)一意見準備匯報。)

  2.指名上臺展示并匯報。(師:哪個組的同學愿意最先上來展示你們的成果?)

  3.(學生展示中注意分工匯報,在匯報中要注意學生用比一比的方法證明涂色部分相等,如果有用分數(shù)的意義的理解“都是相同紙的一半”或者“分子是分母的一半”理解也要給予肯定,教師應及時提出,照這樣一半的理解,提問:你能在寫出一個和他們大小一樣的'分數(shù)嗎?教師及時的板演,

  4.師:其他同學還有補充嗎?你們得出這個結論了嗎?

  三、合作交流,探究新知

  1.師:第一張紙涂色部分是這張紙的(學生說二分之一),第二張紙涂色部分是這張的(四分之二),第三張紙涂色部分是這張紙的(八分之四),涂色部分都相同,也就證明這三個分數(shù)的大小也(學生說相等),可是,它們的分子分母卻不相同,他們有沒有一定的變化規(guī)律呢?我們通過合作交流來探究這個問題。

  2.出示合作要求(課件),指名學生讀一讀。

  3.學生合作交流,探究學習。

  4.學生匯報中教師要及時糾正學生的語言要規(guī)范,同時,可以讓小組回想補充,特別是,跳躍的兩個分數(shù)的分子和分母之間的變化規(guī)律是怎樣?

  5.指導匯報,總結規(guī)律。誰能完整的說一下你們剛才總結出的規(guī)律?

  6.教師歸納板書:分數(shù)的分子和分母同時乘或者除以相同的數(shù),分數(shù)的大小不變。

  7.請同學們讀一讀這句話,想一想:還有需要補充的內容嗎?(0除外)

  8.再讀一讀,說說這句話中哪個詞比較關鍵。

  9.拓展深化,加深理解,完成練習,思考:分數(shù)的基本性質與商不變的性質之間的聯(lián)系。(練習一)這個過程也要看學生的生成在哪,教師及時的給予肯定。

  9.教師小結:通過剛才的學習,孩子們的表現(xiàn)特別出彩,老師相信你們接下來的表現(xiàn)會更棒。

  四、應用拓展,新知內化

  1.出示例2,指名讀題,理解題意。

  2.師:你覺得解決這道題應該利用什么知識?(生:分數(shù)的基本性質)

  3.學生獨立在練習本上完成,指名板演,集體訂正。

  4.小結:剛才,我們通過自主學習、小組探究知道了什么是分數(shù)的基本性質,下面就應用分數(shù)的基本性來解決一些實際問題。

  五、當堂檢測

 。ㄒ唬、下面每組中的兩個分數(shù)是否相等?相等的在括號里畫“√”,不相等的畫“X”。

  和()和()和()和()

 。ǘ⑻羁。

 。剑剑剑剑剑

 。ㄈ、把下列分數(shù)化成分母是10而大小不變的分數(shù)。

  ===

 。ㄋ模⑼可硎境雠c給定分數(shù)相等的分數(shù)。

 。ㄎ澹、如果一堂課40分鐘,哪個班做練習用的時間長?

  六、課堂小結:通過這節(jié)課的學習,你學會了什么?

  板書設計:

  分數(shù)的基本性質

  分數(shù)的分子和分母同時乘或除以相同的數(shù)(0除外),分數(shù)的大小不變。

  這節(jié)課最多的考慮就是分數(shù)的基本性質這個規(guī)律怎樣才能讓學生真正的夯實,怎樣設計才能讓學生水到渠成的加深了理解。在練習的設計和過渡語的設計都是關鍵。

分數(shù)的基本性質教學設計3

  教學目標:

  結合趣味故事經歷認識分數(shù)的基本性質的過程。

  初步理解分數(shù)的基本性質,會應用分數(shù)的基本性質進行分數(shù)的改寫。

  經歷觀察、操作和討論等學習活動,體驗數(shù)學學習的樂趣

  教學重點:

  理解掌握分數(shù)的基本性質。

  教學難點:

  歸納分數(shù)的性質。

  學生準備:

  長方形紙片。

  一、創(chuàng)設故事情境,激發(fā)學生學習興趣并揭示課題。

  編了一個唐僧師徒4人分西瓜的故事,利用孫悟空的機智聰明和豬八戒貪吃的特點。創(chuàng)設問題情境引起學生的探究興趣,通過把一個西瓜平均分成4塊,豬八戒吃了一塊,再把這西瓜平均分成8塊,豬八戒吃了2塊。最后把西瓜分16塊,豬八戒吃了4塊,設計這個故事的目的是使學生在已有生活經驗和分數(shù)知識的背景下,了解豬八戒沒有多吃到餅的事實,為理解分數(shù)的基本性質提供實踐經驗。在看完故事后向學生提問你了解到了哪些數(shù)學信息,想到了什么問題?

  讓學生討論并用自己的方法說明八戒沒有多吃到餅。讓學生親自動手折一折、分一分、比一比,通過課件從直觀上讓學生感受到這三個分數(shù)大小是相等的。而這兩個分數(shù)的分子和分母都不相等,可分數(shù)卻相等,這其中有什么規(guī)律呢,從而來揭示課題。

  二、小組合作,探究新知:

  1、動手操作、形象感知

  出示課件,讓學生觀察討論圖中分數(shù)的涂色部分是多少?

  A、談話:請同學們拿出課前準備好的一張正方形的紙,你能先對折,并涂出它的1/4嗎?

  B、追問:你能通過繼續(xù)對折,每次找一個和1/4相等的其他分數(shù)嗎?

  C、學生操作,并組織交流:每次對折后,正方形被平均分成多少份。涂色部分有幾份。并思考可以用什么分數(shù)表示涂色的部分,得到的分數(shù)與1/4是否相等。交流時讓不同對折方法的學生充分展示。

  2、觀察比較、探究規(guī)律

  (1)通過動手操作,你認為它們誰大?請到展示臺上一邊演示一邊講一講。

 。2既然這三個分數(shù)相等,那么我們可以用什么符號把它們連接起來?

  (3)這三個分數(shù)的分子、分母都不相同,為什么分數(shù)的大小卻相等的?你們能找出它們的變化規(guī)律嗎?請同學們四人為一組,討論這兩個問題

 。4)通過從左到右的觀察、比較、分析,你發(fā)現(xiàn)了什么?

  使學生認識到這四個正方形同樣大,雖然平均分的份數(shù)不一樣,但陰影部分的面積相等,四個分數(shù)也相等。課件出示連等式子。

  【通過展示不同的對折方法,使學生體會解決問題方法的多樣性,拓展學生的思維!

  3引導觀察:請大家觀察每個等式中的兩個分數(shù),它們的分子、分母是怎樣變化的?

  觀察思考后。在課文上填空,再在小組內交流。然后教師再集中指導觀察:

  先從左往右看:1/4是怎樣變?yōu)榕c它相等的2/8的?由2/8到4/16,分子、分母又是怎樣變化的?誰用一句話說出它的變化規(guī)律?再從右往左看:4/16是怎樣變化成與之相等的2/8的?2/8、1/4呢?用一句話說出它的變化規(guī)律?

  4、歸納規(guī)律

  提問:綜合以上兩種變化情況,誰能用一句話概括出其中的'規(guī)律?

  學生交流歸納,最后全班反饋“分數(shù)的分子和分母同時乘或除以相同的數(shù)﹙0除外﹚,分數(shù)的大小不變,這是分數(shù)的基本性質”

  6、小結

  同學們在這節(jié)課的學習中表現(xiàn)得很出色,說一說你有什么收獲或體會?

  【通過小結,既對整個課堂學習的內容有一個總結,又能讓學生產生后續(xù)學習和探究的欲望,將學生的學習興趣延伸到了下節(jié)課】

  四、鞏固強化,拓展應用

  多樣的練習可以讓學生及時鞏固所學知識,又調動了學生學習的積極性。

  五、游戲找朋友。

  六、布置作業(yè):

  教學反思

  在上這課之前,認真?zhèn)湔n,精心設計課堂思路,準備好教具。課前,活躍氣氛。開始可能是由于農村吧,基本上,上課都是用黑板,難得一次上課時利用多媒體上課的。學生對此也是很有興趣的,特別是在創(chuàng)設情景的時候,很開心的投入課堂氣氛來。緊接著動手操作等步驟都很好。唯一不足是學生沒感大膽發(fā)言。對于問題,答得不是很清晰。教師讓學生主動探索,逐步獲取規(guī)律,最后也都一一的解答并歸納分數(shù)的性質。對于從左到右的變化,分子分母都變大了,但分數(shù)大小不變。從右到左,分子分母都變小,分數(shù)大小不變。從而得出規(guī)律。對于這分數(shù)的性質要讓學生抓住幾個重點詞,“都”“乘以或除以”“相同的數(shù)”“零除外”重點讓學生熟記分數(shù)的性質。多層的鞏固練習。加深學生的理解。并且能運用分數(shù)的性質完成作業(yè)。最后,讓學生輕松愉快地應用著這節(jié)課所學的知識進行找朋友的游戲。

分數(shù)的基本性質教學設計4

  教材分析

  1.分數(shù)基本性質是約分和通分的基礎,而約分、通分又是分數(shù)四則運算的重要基礎,因此,理解分數(shù)基本性質顯得尤為重要。而分數(shù)與除法的關系以及除法中的商不變規(guī)律,與這部分知識緊密聯(lián)系,是學習這部分內容的基礎。

  2.教材安排了兩個學習活動,讓學生尋找相等的分數(shù),通過活動使學生初步體驗分數(shù)的大小相等關系,為觀察發(fā)現(xiàn)分數(shù)的基本性質提供的豐富的學習資料,然后引導學生分別觀察這兩組相等的分數(shù),尋找每組分數(shù)的分子、分母的變化規(guī)律,并展開充分的交流討論,在此基礎上歸納出:分數(shù)的分子和分母都乘或除以相同的'數(shù)(零除外),分數(shù)的大小不變。

  學情分析

  學生已明確商不變規(guī)律,分數(shù)與除法的關系等知識,這些都為本課學習做了知識上的鋪墊。五年級學生已經初步養(yǎng)成了合作學習的習慣,并具有了一定的分析和解決問題的能力,因此能夠在教師的引導下完成“質疑—探索——釋疑——應用”這一完整的學習過程。

  因此在教學中,我主要采用引導學生探索以及小組合作學習相結合的方法,讓學生探索出分數(shù)的基本性質,并會運用分數(shù)的基本性質把一個分數(shù)化成分母不同但大小相等的分數(shù),能有效地提高教學效率。

  教學目標

  經歷探索分數(shù)基本性質的過程,理解分數(shù)基本性質。

  能運用分數(shù)基本性質,把一個分數(shù)化成指定分母(或分子)而大小不變的分數(shù)。

  經歷觀察、操作和討論等學習活動,體驗數(shù)學學習的樂趣。

  教學重點和難點

  理解分數(shù)基本性質,能運用分數(shù)基本性質轉化分數(shù)。

  教學過程

  一、復習導入

  二、探究新知

  實踐操作,探究規(guī)律

  觀察發(fā)現(xiàn):初步概括分數(shù)基本性質

  括歸納分數(shù)基本性質

  三、課堂練習

  四、課堂小結

  出示復習題口答卡片, 復習商不變的規(guī)律、分數(shù)與除法的關系。1、 講述唐僧分餅的故事:“……貪吃的豬八戒搶著說要吃這個餅的9/12,孫悟空說要吃這個餅的6/8,沙僧說要吃這個餅的3/4。同學們可知道誰吃的餅最多?”

  提出問題: 這些分數(shù)都相等嗎?

  觀察這組相等的分數(shù),你發(fā)現(xiàn)了什么?把你的發(fā)現(xiàn)說給同伴聽。

  分子、分母都乘或除以一個數(shù),這個數(shù)可以是0嗎?為什么?

  1、課本P43的“試一試”2、數(shù)學游戲:說出相等的分數(shù)3、課本P44的“練一練”第1~2、4

  通過這節(jié)課的學習、你學會了那些知識

  口答

  小組討論

  拿出準備好的圓形紙片,折一折,畫一畫、涂一涂

  小組討論、交流

  小組討論、交流

  做練習,完成后集體交流。

  說說,讀分數(shù)基本性質

  復習舊知,為學習新知識作鋪墊。

  將例1改編成故事 提出問題,讓學生對故事中的人物進行直觀評價,為后續(xù)探究營造良好氛圍。

  讓學生通過實踐操作,激發(fā)學生參與學習探究的興趣,通過合作探究,初步感知有些分數(shù)的分子、分母不同,但分數(shù)的大小卻相等。

  引導學生通過不同形式的觀察,逐步總結出存在的規(guī)律,這樣由淺入深,循序漸進,有利于學生探究學習知識。

  在學生初步發(fā)現(xiàn)規(guī)律的基礎上,進一步理解分數(shù)的基本性質,并對分數(shù)的基本性質進行全面概括。

  讓學生利用分數(shù)的基本性質解決問題,使學生對分數(shù)的基本性質理解的更深刻,同時體驗解決問題的樂趣。

  對本節(jié)課的所學知識的回顧,及所學知識點的總結。

  板書設計(需要一直留在黑板上主板書)分數(shù)基本性質被除數(shù)和除數(shù)同時擴大或縮小相同的倍數(shù)(零除外),商不變,這就是商不變的規(guī)律分數(shù)的分子和分母都乘或除以相同的數(shù)(零除外),分數(shù)的大小不變,這叫做分數(shù)基本性質。

  教學反思:

  分數(shù)的基本性質在小學階段是數(shù)運算的又一次質的飛躍與擴展,是重要的一個環(huán)節(jié)。我在引導學生觀察探究中,重視學生的主動參與,多次組織學生小組討論交流,讓每個小組成員都能充分的說說自己的看法,相互交流,相互啟迪,以感知分數(shù)的分子、分母是按一定的規(guī)律變化而分數(shù)大小不變。體現(xiàn)了理解與掌握數(shù)與數(shù)之間聯(lián)系、變化的觀點。

  在本節(jié)課中,由于我對學困生關注度不高,,使得他們在分數(shù)基本性質應用的過程中產生了困難。小組合作探究中的小組學習亦要不斷地完善。

分數(shù)的基本性質教學設計5

  【教材依據(jù)】

  《分數(shù)的基本性質》是九年義務教育北師大版五年級上冊第三單元的內容。

  【設計理念】

  根據(jù)新課標的基本要求,我以培養(yǎng)學生的創(chuàng)新意識和實踐能力為重點,在教學中創(chuàng)設情境讓學生“自由大膽猜想——主動探究驗證——合作交流得到結果”的開放式教學流程。讓學生在問題情境中激活內在要求,大膽猜想,使實驗成為內在需求。通過觀察操作、經歷知識的形成。讓學生變被動的知識接受者為主動知識的探索者。

  【學情與教材分析】

  《分數(shù)的基本性質》是北師大版小學數(shù)學教材五年級上冊第三單元《分數(shù)》的教學內容,它既與整數(shù)除法的商不變性質有著內在的聯(lián)系,也是約分和通分的基礎,而約分和通分又是分數(shù)四則運算的重要基礎,因此,理解分數(shù)的基本性質顯得尤為重要。學生之前已經掌握了商不變的性質,在教學之后將其與分數(shù)的基本性質進行聯(lián)系,有意識地加強分數(shù)與除法的關系,以便把舊知識遷移到新的知識中來。

  【教學目標】

  1、經歷探索分數(shù)基本性質的過程,理解分數(shù)的基本性質。

  2、能運用分數(shù)基本性質,把一個數(shù)化成指定分母(或分子)大小不變的分數(shù)。

  3、經歷觀察、操作和討論等數(shù)學活動,體驗數(shù)學學習的樂趣及數(shù)學與日常生活密切聯(lián)系。

  【教學重點】運用分數(shù)的基本性質,把一個數(shù)化成指定分母(或分子)而大小不變的分數(shù)。

  【教學難點】聯(lián)系分數(shù)與除法的關系,理解分數(shù)的基本性質,溝通知識間的聯(lián)系。

  【教學準備】多媒體課件長方形白紙、圓片,彩色筆等。

  【教學過程】

  一、創(chuàng)設情境,激趣導入

  師:同學們,新的學期到來了,你們剛入校園時覺得我們學校都發(fā)生了哪些變化,(換了新課桌,有了新的洗手間,有了文化走廊,有了開心農場),說到開心農場,還有一個小故事,開學初,校長決定把這塊地的三分之一分給四年級,六分之二分給五年級,九分之三分給六年級,四年級同學認為校長不公平,分給六年級的同學多而分給他們的少,校長聽了,笑了,誰能根據(jù)自己的預習告訴老師校長笑什么?

  生1:四、五、六年級分的地一樣多。

  生2:……

  師:到底校長分的公平不公平,我們來做個實驗吧?

  二、動手操作,探究新知

  1,小組合作,實驗探究。

  師:請同學們拿出你們準備好的學具,按平時的分組習慣四人一組,用你們的學具來代替這塊地,像校長一樣來分地吧。

  2,匯報結果

  師生交流:你們是怎樣做的?誰能說一說,請幾個同學上臺演示并口述演示過程。

  生1:用三張同樣的長方形的紙來代替這塊地,分別涂出其中的三分之一,六分之二,九分之三。經過對比發(fā)現(xiàn)三塊地一樣多。

  生2:用三個同樣的圓片分別涂出其中的三分之一,六分之二,九分之三。經過對比發(fā)現(xiàn)三塊地一樣多。

  生3:用三條線段分別畫出其中的三分之一,六分之二,九分之三。經過對比發(fā)現(xiàn)三塊地一樣多。

  生4:把分數(shù)化成小數(shù),他們的商也一樣,所以三塊地的面積一樣大。

  生5:……

  3、課件展示,得出結論。師:校長分的和你們一樣嗎?我們再來看看小電腦是如何拼的,(利用優(yōu)質資源課件演示分地的過程,師生共同觀察總結得到校長分的地一樣多。)

 。ㄔO計意圖:這樣設計的目的是為了更有利于學生主體個性的發(fā)揮,在探究活動中充分發(fā)揮學生的個體的潛能,給學生足夠的時間和想象的空間,進行小組合作式的探究活動,讓學生自由的猜想,使實驗成為自己的需要,同時讓學生思考用什么方法驗證,使學生帶著濃濃的興趣進入探究新的學習活動之中。)

  4、探索分數(shù)的基本性質。

  師:三個年級分的地一樣多,那么你們覺得、、這三個分數(shù)的大小怎么樣?

  生:相等。

  師:同學們請看這組分數(shù)有什么特點?(板書=)

  生:分數(shù)的分子分母發(fā)生了變化分數(shù)的大小不變。

  師:請同學們從左往右仔細觀察,第一個分數(shù)和第二個分數(shù)相比分子分母發(fā)生了什么變化?第一個和第二個,第二個和第三個呢?

  生:分子分母同時乘2,……

  師:誰能用一句換來描述一下這個規(guī)律?

  生:給分數(shù)的分子分母同時乘相同的數(shù)。(師隨著板書)

  師:同學們在反過來從右往左觀察,分數(shù)的分子、分母有什么變化規(guī)律?

  生:分數(shù)的分子分母同時除以相同的數(shù)。

  師:像這樣給分數(shù)的分子分母同時乘或(除以)相同的數(shù),分數(shù)的大小不變。就是我們這節(jié)課學習的新知識。(板書分數(shù)的基本性質)。

  師:結合我們的預習,對于分數(shù)的基本性質同學們還有什么不同的意見?

  生:0除外。

  師:為什么0要除外?

  生:因為分數(shù)的分母不能為0.

  師:(補充板書0除外)在分數(shù)的基本性質中,那幾個詞比較重要?

  生:同時相同0除外

  師:(把這三個詞用紅筆加重)同學們有沒有發(fā)現(xiàn)分數(shù)的'基本性質和誰比較相似?

  生:商不變的性質。

  師:為什么?

  生:我們學過分數(shù)與除法的關系,被除數(shù)相當于分子,除數(shù)相當于分母,所以他們是相通的。

  師:數(shù)學知識中有許多知識如像商不變性質與分數(shù)的基本性質是一致的。因此平時學習中我們要觸類旁通,靈活運用,才會舉一反三。

  三:應用新知,練習鞏固。

 。ㄒ唬┚氁痪

  (二)摸球游戲。老師手中有一個箱子,里面裝有許多水果,水果上面寫著不同的分數(shù),如果你摸到一個水果,說出一個與它大小相等,而分子分母不同的新分數(shù),這個水果就獎勵給你。

 。ǘ┡袛啵〒尨穑

  1、分數(shù)的分子、分母都乘過或除以相同的數(shù)分數(shù)的大小不變。

  2、把的分子縮小5倍,分母也縮小5倍分數(shù)的大小不變。

  3、給分數(shù)的分子加上4,要是分數(shù)的大小,分母也要加上4。

  (四)測一測

  1、把和都化成分母是10而大小不變的分數(shù)。

  2、把和都化成分子是4而大小不變的分數(shù)。

  3、的分子增加2,要是分數(shù)大小不變,分母應增加幾?

  四:總結。

  1、這節(jié)課大家表現(xiàn)的都很棒,誰能說說你這節(jié)課你都知道哪些知識?

  2、把板書最后補充成一條魚,希望大家擁有一雙明亮的眼睛,肚子里裝滿知識,在知識的海洋里遨游。(完成板書)

  五:作業(yè)練習冊2、4題

  【板書設計】

  分數(shù)的基本性質

  給分數(shù)的分子分母同時乘或除以相同的數(shù)(0除外)分數(shù)的大小不變。

  【教學反思】

  本節(jié)課教學,我讓學生在故事中感悟,激發(fā)了他們的學習興趣。在數(shù)學課上講故事,對孩子來說,無疑是新鮮有趣的。不僅如此,還能從中發(fā)現(xiàn)數(shù)學問題,這是多么美好的事情!

  這樣的設計真是激發(fā)了學生的學習興趣,學生帶著愉快的心情展開學習。課堂的故事導入就是引導學生以數(shù)學的視角來分析問題、解決問題,從而讓學生感受學習數(shù)學的價值。

  本節(jié)課教學是讓學生在感悟中自主探索。自主探索是學生學習活動的核心,它是讓每個學生根據(jù)自己的已有經驗、感受,用自己的思維方式,自由、開放地去探索、去發(fā)現(xiàn)、去創(chuàng)造。

  在學生通過聽故事、看圖片,讓學生猜想、、這三個分數(shù)是否真的相等,并聯(lián)想學過的知識或借助學具,怎樣證明你的聯(lián)想是正確的。學生想出了多種方法證明這三個分數(shù)也是相等的,體現(xiàn)了學生思維的廣度,這種設計克服了學生思維的惰性,有利于學生自主探索的學習習慣的養(yǎng)成。課堂給學生多設計這樣的開放性的問題,多給學生開展一些探索性的活動,相信不同的學生在數(shù)學上都會有不同的發(fā)展。

分數(shù)的基本性質教學設計6

  教學要求

 、偈箤W生理解分數(shù)的基本性質,并會應用分數(shù)的基本性質把不同分母的分數(shù)化成分母相同而大小不變的分數(shù)。

  ②培養(yǎng)學生觀察、分析和抽象概括能力。

  ③滲透“事物之間是相互聯(lián)系”的辯證唯物主義觀點。

  教學重點

理解分數(shù)的基本性質。

  教學用具

每位學生準備三張同樣的長方形紙條;教師:紙條、投影片等。

  教學過程

  一、創(chuàng)設情境

  1、120÷30的商是多少?被除數(shù)和除數(shù)都擴大3倍,商是多少?被除數(shù)和除數(shù)都縮小10倍呢?

  2、說一說:

  (1)商不變的性質是什么?

  (2)分數(shù)與除法的關系是什么?

  3、填空。

  1÷2=(1×2)÷(2×2)=。

  二、揭示課題

  讓學生大膽猜測:在除法里有商不變的性質,在分數(shù)里會不會也有類似的性質存在呢?這個性質是什么呢?

  隨著學生的回答,教師板書課題:分數(shù)的基本性質。

  三、探索研究

  1、動手操作,驗證性質。

 。1)讓學生拿出三張同樣的長方形紙條,分別平均分成2份、4份、6份,并分別把其中的1份、2份、3份涂上色,把涂色的部分用分數(shù)表示出來。

 。2)觀察比較后引導學生得出:

 。3)從左往右看:

  由變成,平均分的份數(shù)和表示的'份數(shù)有什么變化?

  把平均分的份數(shù)和表示的份數(shù)都乘以2,就得到,即==(板書)。

  把平均分的份數(shù)和表示的份數(shù)都乘以3,就得到,即:==(板書)。

  引導學生初步小結得出:分數(shù)的分子、分母同時乘以相同的數(shù),分數(shù)的大小不變。

  (4)從右往左看:

  引導學生觀察明確:的分子、分母同時除以2,得到。同理,的分子、分母同時除以3,也可以得到。

  板書:

  讓學生再次歸納:分數(shù)的分子、分母同時除以相同的數(shù),分數(shù)的大小不變。

 。5)引導學生概括出分數(shù)的基本性質,并與前面的猜想相回應。

  (6)提問:這里的“相同的數(shù)“,是不是任何數(shù)都可以呢?(補充板書:零除外)

  2、分數(shù)的基本性質與商不變的性質的比較。

  在除法里有商不變的性質,在分數(shù)里有分數(shù)的基本性質。

  想一想:根據(jù)分數(shù)與除法的關系以及整數(shù)除法中商不變的性質,你能說明分數(shù)的基本性質嗎?

  3、學習把分數(shù)化成指定分母而大小不變的分數(shù)。

 。1)出示例2,幫助學生理解題意。

 。2)啟發(fā):要把和化成分母是12而大小不變的分數(shù),分子應該怎樣變化?變化的根據(jù)是什么?

 。3)讓學生在書上填空,請一名學生口答。教師板書:

  4、練習。教材第108頁的做一做。

  四、課堂實踐。

  練習二十三的1、3題。

  五、課堂小結

  1、這節(jié)課我們學習了什么內容?

  2、什么是分數(shù)的基本性質?

  六、課堂作業(yè)

  練習二十三的第2題。

  七、思考練習

  練習二十三的第10題。

分數(shù)的基本性質教學設計7

  【教學內容】:

  【教學目標】:

  1、使學生理解和掌握分數(shù)的基本性質,并會應用分數(shù)的基本性質把不同分母的分數(shù)化成分母相同而大小不變的分數(shù)。

  2、通過猜想、驗證、歸納、總結等活動,讓學生經歷分數(shù)的基本性質的探究過程,體會舉具體事例、數(shù)形結合的思考方法,感受抽象、推理的基本數(shù)學思想。

  3、在自主探究與合作交流的過程中,感受數(shù)學知識之間的聯(lián)系,激發(fā)學生探究學習的興趣,提高學生發(fā)現(xiàn)問題的能力。

  【教學重點】:經歷質疑、猜想、驗證、觀察、歸納的學習過程,探究分數(shù)的基本性質。

  【教學難點】:理解和掌握分數(shù)的基本性質。

  【教學方法】:

  本節(jié)課我綜合采用了談話法,情境創(chuàng)設法、引導探究法、直觀演示法,組織學生經歷觀察,猜測,得出結論。

  【學法指導】:

  為了有效的'達成上述教學目標,秉著新課程標準的精神指導,在整個教學活動中力求充分體現(xiàn)學數(shù)學就是做數(shù)學,數(shù)學教學就是數(shù)學活動的教學的理念,以學生為主體,以學生發(fā)展為本。在本節(jié)課教學中,我主要采用觀察發(fā)現(xiàn)法、動手操作法、舉例驗證法。引導學生靜心傾聽、認真操作、積極思考、大膽表達,通過動手實踐、自主探究、合作交流等多種方式獲得廣泛的數(shù)學活動經驗。

  【教學準備】:

  1、媒體準備:白板

  2、資源準備:PPT

  【資源運用】:

  1、導入——課件出示問題-——喚醒舊知

  2、探究新知——PPT課件——突破重點、分解難點

  3、拓展延伸

  【教學過程】:

  一、聯(lián)系舊知,質疑引思。

  1、在自然數(shù)的范圍內,可以找到兩個大小相等但各個數(shù)位上數(shù)字又都不相同的自然數(shù)嗎?

  2、在小數(shù)的范圍內,可以找到兩個大小相等但各個數(shù)位上數(shù)字又都不相同的小數(shù)嗎?

  3、在分數(shù)的范圍內,可以找到兩個大小相等但分子和分母又都不相同的分數(shù)嗎?

  誰能說一個與《分數(shù)的基本性質》教學設計石泉縣城關第二小學賈從先相等的分數(shù)?你怎么知道它們相等呢?如果讓你證明他們確實和《分數(shù)的基本性質》教學設計石泉縣城關第二小學賈從先相等,你準備怎么證明?

  【喚醒學生已有知識經驗而且引發(fā)學生的數(shù)學思考,為主動探究新知積聚動力。】

  二、自主操作,驗證猜想

  1、初步驗證

  (1)提出問題

  誰能說一個與《分數(shù)的基本性質》教學設計石泉縣城關第二小學賈從先相等的分數(shù)?你怎么知道它們相等呢?

  如果讓你證明他們確實和《分數(shù)的基本性質》教學設計石泉縣城關第二小學賈從先相等,你準備怎么證明?

 。2)匯報方法

  2、深入驗證:

 。1)在紙上寫上一組你認為可能相等的分數(shù);

 。2)用你喜歡的方法來證明。

  (3)學生操作。

 。4)匯報交流。

  3、概括性質,深化理解

  (1)在操作的過程中,你有什么發(fā)現(xiàn)?分子分母怎樣變化分數(shù)的大小才不變?

 。2)歸納概括,總結規(guī)律,揭示課題。

 。3)根據(jù)我們以前學過的分數(shù)與除法的關系,以及整數(shù)除法中商不變的性質,來說明分數(shù)的基本性質嗎?

  4、運用規(guī)律,完成例2。

  (1)理解題意

  (2)要把他們化成分母是12而大小不變的分數(shù),分子應該怎么變化?變化的根據(jù)是什么?

 。3)獨立完成,交流匯報

  【給學生提供開放的探究空間,滿足學生的探索欲望!

  三、知識應用,鞏固提升

  1、判斷

 。1)分數(shù)的分子、分母同時乘以或除以一個數(shù),分數(shù)的大小不變。

 。2)兩個分數(shù)的分子、分母都不相同,這兩個分數(shù)一定不相等。

 。3)《分數(shù)的基本性質》教學設計石泉縣城關第二小學賈從先的分子乘以3,分母除以3,分數(shù)的大小不變。

  2、五年級有《分數(shù)的基本性質》教學設計石泉縣城關第二小學賈從先的學生參加象棋活動,有《分數(shù)的基本性質》教學設計石泉縣城關第二小學賈從先的學生參加象棋活動,有《分數(shù)的基本性質》教學設計石泉縣城關第二小學賈從先的學生參加手工活動,參加哪個小組的人數(shù)多?

  3、把《分數(shù)的基本性質》教學設計石泉縣城關第二小學賈從先的分子加上10,分母怎樣變化,

  才能使分數(shù)的大小不變?

  四、回顧總結,完善認知

  通過本節(jié)課的學習,你有什么收獲?

  【教學反思】:

  1、課前準備不足,我用的20xx版做的,結果上課電腦是xxxx年版本的,展臺沒有試,影響教學流程。

  2、教學機智不足,沒有關注學情,總想到20分鐘的課,時間短,有些趕,知識落實不夠扎實。

  3、課堂提問語言不夠準確精煉,課堂評價不夠豐富、準確。例如開課語及結束語言有歧義。

分數(shù)的基本性質教學設計8

  一、教學目標:

  1、讓學生經歷分數(shù)基本性質的探究過程,理解和掌握分數(shù)的基本性質,初步建立數(shù)學模型。

  2、利用分數(shù)的基本性質把一個分數(shù)化為指定分母(或分子)而大小不變的分數(shù)。

  3、培養(yǎng)學生的觀察、概括等思維能力及(滲透變與不變)數(shù)學學習興趣。

  二、教學重點:

  理解掌握分數(shù)的基本性質,它是約分,通分的依據(jù)

  三、教學難點:

  理解和掌握分數(shù)的基本性質,初步建立數(shù)學模型。

  四、教學準備:

  課件、正方形的紙。

  五、教學設計過程:

  (一)遷移舊知.提出猜想

  1、回憶舊知

  猜信封:老師手上的信封里有一個數(shù)、一道算式,我抽出其中一張 ,誰能猜出另一張是什么?出示: 2÷3

  你為什么這樣猜呢?引導學生回憶分數(shù)與除法的關系。媒體演示:分數(shù)與除法的關系:

  被除數(shù)÷除數(shù)=

  誰能說一道與2÷3商一樣的除法算式?學生一邊說,教師一邊板書算式。你為什么認為這些算式的商是一樣的?引導學生回憶什么是商不變的性質?媒體出示:商不變的性質:

  被除數(shù)和除數(shù)同時乘或除以相同的數(shù)(零除外),商不變。

  2、提出猜想:

  既然分數(shù)與除法的'關系這么緊密.除法有商不變性質,那分數(shù)是否也會有這樣的性質,請大家大膽猜想一下。(學生可能根據(jù)商不變性質推導出分數(shù)的基本性質,學生匯報后投影出示:分數(shù)的分子和分母同時乘或除以相同的數(shù)(零除外),分數(shù)的大小不變。)

 。ǘ炞C猜想,建構新知

  A、 看圖分類

  下面是一組相等的正方形,請寫出每個圖形陰影部分所表示的分數(shù),并把相同的分數(shù)分在一起。

  B、 討論方法

  師:你是怎么判斷它們相等的?

  師:它們相等,用算式可以怎么表示?

  1/2 = 2/4 = 4/8

  C、研究規(guī)律

  師:這些相等的式子,除了我們從圖上看到的大小相等之外,還有沒有其他的秘密呢?

  利用研究卡進行研究。

  確定的研究對象

  分子和分母同時乘上或者

  除以一個相同的數(shù)

  得到的分數(shù)

  研究對象與得到的分數(shù)相等嗎?

  相等( )不相等( )

  猜想是否成立?

  成立( )不成立( )

  充分利用學生的生成資源:揭示課題:分數(shù)的分子和分母同時乘或除以相同的數(shù)(0除外),分數(shù)的大小不變。(板書)

  師:為什么要0除外?

  師:對于這句話,你是怎么理解的?(讓學生互相討論,并進行說明。)

  練習:2/3=( )/18、 6/21=2/( )、 3/5=21/( )、 27/39=( )/13

  師:這里面什么變了,什么不變?(生:分子和分母變了,但分數(shù)的大小不變)

  師:分子與分母是怎樣變化的?(同時乘或除以相同的數(shù),0除外)

  師:分數(shù)的基本性質與商不變性質有什么聯(lián)系?

  D、質疑完善

  3/4 = 3×( )/ 4×( )

  師:括號中可以填哪些數(shù)?

  預設:可以填無數(shù)個數(shù)

  師:如果只用一個數(shù)來表示,填什么數(shù)好?

  預設:字母

  師:這個字母有什么特殊要求嗎?(0除外)

  得到一個初級的數(shù)學模型。3/4= 3×X/ 4×X(X≠0)

  讓學生打開課本進行閱讀、內化,并想一想還有什么問題嗎?

 。ㄈ 練習升華

  1、5/7=( )/35 、3/4=9/( )、 3/( )=12/20、 16/24=( )/3

  2、把5/6和1/4都化為分母為12而大小不變的分數(shù)。

  3、把2/3和3/4都化為分子為6而大小不變的分數(shù)。

  4、把2/5的分子加上2以后,要使分數(shù)的大小不變,分母應加上多少?

  5、 和 哪一個分數(shù)大,你能講出判斷的依據(jù)嗎?

 。ㄋ模┛偨Y延伸

  師:這節(jié)課學了什么?

  師:如果一個分數(shù)為A/B,你能用一個式子來表示分數(shù)的基本性質嗎?

  A/B=A×X/ B×X(X≠0)或A/B=A÷X/ B÷X(X≠0)(板書)

  六、作業(yè)p87-1、2

  板書設計

  分數(shù)基本性質

  分數(shù)的分子和分母同時乘或除以相同的數(shù)(0除外),分數(shù)的大小不變。

  A/B=A×X/ B×X(X≠0)或A/B=A÷X/ B÷X(X≠0)

  6÷8

  3÷4

  12÷16

分數(shù)的基本性質教學設計9

  教學目標

  (一)理解和掌握分數(shù)的基本性質。

  (二)能運用分數(shù)的'基本性質把一個分數(shù)化成指定分母(或分子)而大小不變的分數(shù)。

  (三)培養(yǎng)學生觀察、分析和抽象概括的能力,滲透事物是相互聯(lián)系,發(fā)展變化的辯證唯物主義觀點。

  教學重點和難點

  (一)理解和掌握分數(shù)的基本性質。

  (二)歸納分數(shù)的基本性質,運用性質轉化分數(shù)。

  教學用具

  教具:投影片,三張相同的長方形紙,一面為白色,另一面分別給

  學具:每位同學準備三張相同的長方形紙片。

  教學過程設計

  (一)復習準備

  1.口答:(投影片)

  根據(jù)120÷30=4,不用計算直接說出結果:

  (120×3)÷(30×3)=();(120÷10)÷(30÷10)=()。

  2.說一說依據(jù)什么可以不用計算直接得出商的?

  3.說出商不變的性質。

  教師:除法有商不變性質,分數(shù)與除法又有關系,分數(shù)有沒有類似的性質呢?下面就來研究這個問題。

  (二)學習新課

  1.分數(shù)基本性質。

  (1)教師取出一張長方形白紙,說明這為單位“1”,再取出同樣的兩張白紙,重疊放在一起請學生觀察,問:三張紙重疊后完全重合,說明什么?(三個單位“1”同樣大)教師把三張紙分貼在黑板上。

  教師請同學取出自己準備的三張長方形紙,并比一比是不是同樣大。

  教師:請分別把它們平均分成2份;4份,6份(折出來),并分別給其中的1份,2份和3份涂上顏色或畫上陰影。然后把涂了顏色的部分用分數(shù)表示出來。

  學生口答后,老師把黑板上的紙片翻面,露出涂了色的一面,板書:

  教師:請比較這三個分數(shù)的大。

  你根據(jù)什么說這三個分數(shù)相等?

  學生口答后老師用等號連結上面三個分數(shù)。

  (2)教師:這幾個分數(shù)的分子和分母都不相同,但三個分數(shù)的大小是相等的,下面我們來研究在保持分數(shù)大小不變的情況下,分子分母的變化有沒有什么規(guī)律?

  請同學觀察,思考和討論。投影出思考題:

  如何?

  結果如何?

  變,那么分子,分母同時乘以4,乘以5,乘以6呢?規(guī)律是什么?

  學生口答后,教師小結并板書:分數(shù)的分子和分母同時乘以相同的數(shù),分數(shù)大小不變。(留出“或者除以”的空位。)

  的變化規(guī)律是什么?(學生小組討論后匯報)教師板書:

  教師:試說一說這時分子、分母的變化規(guī)律?

  學生口答后老師小結:分數(shù)的分子和分母同時除以相同的數(shù),分數(shù)大小不變。板書補出“除以”。

  教師:想一想,分數(shù)的分子、分母都乘以或除以0可以嗎?為什么?(不行。)

  (3)請根據(jù)上面的研究,說一說你發(fā)現(xiàn)了什么規(guī)律?請概括地說一說。

  學生口述分數(shù)基本性質的內容,老師把板書補充完整。

  教師:這就是分數(shù)的基本性質,是這節(jié)課研究的問題。板書出課題:分數(shù)基本性質。

  請學生打開書讀兩遍。

  教師:想一想,如何用整數(shù)除法中商不變的性質說明分數(shù)基本性質?(舉例說明)

  用學生自己的例題說明后,用投影片再說明:

  口答填空:(投影片)

  2.把一個分數(shù)化成大小相等,而分子或分母是指定數(shù)的分數(shù)。

  分子應怎樣變化?誰隨著誰變?

  化?誰隨著誰變?

  教師:上面兩個分數(shù)的變化依據(jù)是什么?

  (2)口答練習(學生口答,老師板書。)

  教師:利用分數(shù)基本性質,可以把分數(shù)化成大小相等而分子或分母是指定數(shù)的分數(shù)。

  (三)鞏固反饋

  1.口答:(投影片)

  2.在括號里填上“=”或“≠”。(投影)

  3.在()里填上適當?shù)臄?shù)。(投影)

  4.判斷正誤,并說明理由。

  (四)課堂總結與課后作業(yè)

  1.分數(shù)基本性質。

  2.把分數(shù)化成大小相同而分子或分母是指定數(shù)的分數(shù)的'方法。

  3.作業(yè):課本108頁練習二十三,1,2,4,5。

  課堂教學設計說明

  分數(shù)基本性質是在分數(shù)大小不變的前提下研究分子、分母的變化規(guī)律。所以在教學過程中,抓住“變化”作為主線,設計思考題引導學生觀察、對比、分析,使學生在變化中找出規(guī)律、概括出分數(shù)的基本性質。安排例2,是讓學生運用規(guī)律使分數(shù)產生變化。這樣,從兩方面方面加深學生對分數(shù)基本性質的理解。

  在學生掌握了分數(shù)基本性質后,安排他們舉例討論,以溝通分數(shù)基本性質和商不變性質之間的內在聯(lián)系,便于學生能把新舊知識融為一體。

  在整個學習過程中都是學生活動為主,這樣有利于培養(yǎng)學生觀察、分析和抽象概括的能力。

  新課教學分為兩部分。

  第一部分學習分數(shù)基本性質。分三層,通過學生活動,學生從直觀上認識到分子、分母不相同的分數(shù)有可能相等;研究分子、分母的變化規(guī)律;概括分數(shù)基本性質,并用商不變性質來說明。

  第二部分是應用分數(shù)基本性質,使分數(shù)按要求進行變化。分兩層,根據(jù)分母需要,確定分子、分母需要擴大或縮小的倍數(shù);根據(jù)分子需要,確定分子、分母需要擴大或縮小的倍數(shù)。

分數(shù)的基本性質教學設計10

  一、教學內容

  分數(shù)的基本性質。(課本第75-76頁的例1、例2及“做一做”、第77頁練習十四的第1-3題)

  二、教材簡析

  《分數(shù)的基本性質》是人教版小學數(shù)學教材第十冊的內容之一,在小學數(shù)學學習中起著承前啟后、舉足輕重的作用,它既與整數(shù)除法的商不變性質有著內在的聯(lián)系,也是后面進一步學習分數(shù)的計算、比的基本性質的基礎。分數(shù)的基本性質是一種規(guī)律性知識,分數(shù)的分子分母變了,分數(shù)的大小會變嗎?分數(shù)的分子分母如何變化,分數(shù)的大小不變呢?學生在這種“變”與“不變”中發(fā)現(xiàn)規(guī)律。

  三、教材處理

  以前,教師通常把《分數(shù)的基本性質》看作一種靜態(tài)的數(shù)學知識,教學時先用幾個例子讓學生較快地概括出規(guī)律,然后更多地通過精心設計的練習鞏固應用規(guī)律,著眼于規(guī)律的結論和應用。隨著課程改革的深入,教師們越來越重視學生獲取知識的過程,但我們也看到這樣的現(xiàn)象:問題較碎,步子較小,放手不夠,探究的過程體現(xiàn)不夠充分!斗謹(shù)的基本性質》可不可以有別的教學思路呢?新的課程標準提出:“教師應向學生提供充分從事數(shù)學活動的機會,幫助他們在自主探索和合作交流的過程中真正理解和掌握基本的數(shù)學知識與技能、數(shù)學思想和方法”。根據(jù)這一新的理念,我認為教師可以為學生創(chuàng)設一種大問題背景下的探索活動,使學生在一種動態(tài)的探索過程中自己發(fā)現(xiàn)分數(shù)的基本性質,從而體驗發(fā)現(xiàn)真理的曲折和快樂,感受數(shù)學的思想方法,體會科學的學習方法。所以,教師的著眼點,不能只是規(guī)律的結論和應用,而應有意識地突出思想和方法;谝陨纤伎,我以讓學生探究發(fā)現(xiàn)分數(shù)基本性質的過程為教學重點,創(chuàng)設了一種“猜想——驗證——反思”的教學模式,以“猜想”貫穿全課,引導學生遷移舊知、大膽猜想——實驗操作、驗證猜想——質疑討論、完善猜想等,把這一系列探究過程放大,把過程性目標”凸顯出來。

  四、設計意圖:

  本課主要本著遵循小學數(shù)學課程標準“創(chuàng)設問題情境提出問題解決問題建立數(shù)學模型解釋數(shù)學模型運用數(shù)學模型拓展數(shù)學模型”的指導思想而設計的。

  1、通過故事創(chuàng)設問題情境,貼近學生生活,有利于激發(fā)學生學習興趣。

  2、從故事情境中提出問題,體現(xiàn)數(shù)學來源于生活。

  3、小組合作學習,共同探究解決問題,讓學生充分體驗知識產生的過程。

  4、從幾組分數(shù)中分析,找到分數(shù)的基本性質,從而初步建立數(shù)學模型。

  5、設計有坡度的練習,穿插師生互動,生生互動,讓整個運用知識的形式活潑有趣。

  6、在游戲活動中對數(shù)學知識進行拓展運用。

  五、教學目標

  1、知識與技能

  (1)經歷探索分數(shù)的基本性質的過程,理解分數(shù)的基本性質。

  (2)能運用分數(shù)的基本性質,把一個分數(shù)化成指定分母(或分子)而大小不變的分數(shù)。

  2、情感態(tài)度與價值觀

  (1)經歷觀察、操作和討論等數(shù)學學習活動,使學生進一步體驗數(shù)學學習的樂趣。(2)體驗數(shù)學與日常生活密切相關。

  3、過程與方法

  (1) 經歷觀察、操作和討論等學習活動,并在探索過程中,能進行有條理的思考,能對分

  數(shù)的基本性質作出簡要的、合理的說明。

  (2) 培養(yǎng)學生的觀察、比較、歸納、總結概括能力。

  (3)能根據(jù)解決問題的需要,收集有用的信息進行歸納,發(fā)展學生的歸納、推理能力。

  六、教學重點

  理解分數(shù)的基本性質

  七、教學難點

  能運用分數(shù)的基本性質,把一個分數(shù)化成指定分母(或分子)而大小不變的分數(shù)

  八、教學準備

  教師:電腦課件

  學生:圓紙片 長方形紙

  九、教學過程:

 。ㄒ唬┗仡檹土,舊知鋪墊。

  課件出示復習題

  1、商不變的性質

  12÷3=( )

 。12×10)÷(3×10)=( )

  (12÷3)÷(3÷3)=( )

  利用什么知識填空的?

  2、除法與分數(shù)的關系

  30 ÷ 120 =( )/( )

  ( )÷( ) =17/51

  利用什么知識填空的?

 。ǘ┕适乱,揭示課題。

  課件出示故事(動畫):從前有座山,山上有座廟,廟里有個老和尚和一個小和尚,哦不對,是三個小和尚。小和尚最喜歡吃老和尚做的餅啦。有一天,老和尚做三塊大小一樣的餅,想給小和尚吃,還沒給,小和尚就叫開了,“我要一塊”,“我要兩塊”,“嘻嘻,我不要多,只要四塊!崩虾蜕卸挍]說,把第一塊餅平均分成4塊,取出其中1塊給第一個和尚;把第二塊餅平均分成8塊,取其中2塊給高和尚。把第三塊餅平均分成16塊,取其中的4塊給了胖和尚。小朋友,你知道哪個和尚分得多嗎?

  生1:胖和尚吃的多。 生2:矮和尚吃的多。 ……

  師:到底誰回答得對呢?我們一起動手分餅來求證吧

  1、合作探究

  師:請同學們以兩人一組,拿出三個大小相等的圓,分別用陰影部分表示每個和尚分得的餅(教師觀察,學生小組合作,有平均分的,有涂色的,小組成員配合默契。)

  師:比較一下陰影部分的大小,結果怎樣?

  生:陰影部分的大小相等。

  師:陰影部分相等說明每個和尚分的餅相等.

  師:請同學們用分數(shù)表示陰影部分

  師:陰影部分相等說明這三個分數(shù)怎樣?

  生:三個分數(shù)相等。(隨著學生的回答,老師將板書的三個分數(shù)用“=”連接。)

  2、組織討論。

  師:仔細觀察這三個分數(shù)什么變了,什么沒有變?

  讓學生小組討論后答出:它們分數(shù)的分子和分母變化了,但分數(shù)的大小不變。

  師:它們各是按照什么規(guī)律變化的呢?我們今天就來共同研究這個變化規(guī)律。

  3、比較歸納

  同學們:從左往右觀察,這三個分數(shù)的分子和分母是按照什么規(guī)律變化的'才保證了分數(shù)的大小不變的?

  集體討論幾名學生回答后,要求學生試著歸納變化規(guī)律:分數(shù)的分子和分母都乘以相同的數(shù),分數(shù)的大小不變。(邊講邊板書)

  師:從右往左看,分數(shù)的分子和分母又是按照什么規(guī)律變化的?通過分析比較每組分數(shù)的分子和分母,得出:分數(shù)的分子和分母都除以相同的數(shù),分數(shù)的大小不變。(邊講邊板書)

  4、揭示規(guī)律

  教師小結:“剛才大家都觀察得很仔細,像分數(shù)的分子、分母發(fā)生的這種有規(guī)律的變化,它的大小不變。就是我們這節(jié)課學習的新知識。(板書課題:分數(shù)的基本性質)

  師:“什么叫做分數(shù)的基本性質呢?就你的理解,能把它歸納成一句話嗎?(小組討論發(fā)言)

  師:剛才同學們都用自己的語言說了分數(shù)的基本性質,我們的書上也總結了分數(shù)的基本性質,現(xiàn)在請打開書看到75頁?纯春臀覀兛偨Y的有什么不同,并用波浪線表出關鍵的詞。(如:同時,相同,0除外等)

  全班討論:為什么要規(guī)定0除外”?

  引導:現(xiàn)在同學們知道了聰明的老和尚是用運用什么規(guī)律來分餅,既滿足小和尚的要求,又分得那么公平?

 。ㄈ┦崂頊贤,靈活運用。

  1、分數(shù)的基本性質與商不變的性質的聯(lián)系。

  想一想,根據(jù)分數(shù)與除法的關系,以及整數(shù)除法中商不變的規(guī)律,你能說明分數(shù)的基本性質嗎?

  啟發(fā)學生說出它們之間的聯(lián)系:

 。1)分子相當于被除數(shù),分母相當于除數(shù);

 。2)被除數(shù)和除數(shù)同時乘以或除以相同的數(shù)就相當于分子和分母同時乘以或除

  以相同的數(shù);

 。3)“相同的數(shù)”中要求“0除外”;

 。4)商不變相當于分數(shù)的大小不變。

  2、分數(shù)基本性質的應用

  (1)出示課本第76頁例2,把2/3 和10/24 分別轉化成分母是12而大小不變的分數(shù)。

 。2)認真審題,弄清題意。

  要求學生讀題后歸納出題目的要求。

  a.分母都變成12

  b.分數(shù)的大小不變

 。3)想一想:怎么化,根據(jù)什么?

  過程要求:

  a.學生獨立思考,完成題目要求;

  b.全班反饋,教師課件顯示;

 。ㄋ模┒鄬泳毩暎柟躺罨。

  1、完成教科書第77頁練習十四的第1-3題。

  (1)第1題

  此題著重練習分數(shù)的相等和不等。練習時,讓學生按照題目的要求涂色。

 。2)第2題

  此題是運用分數(shù)的基本性質比較分數(shù)大小的實際問題,學生在練習中將2/5化成4/10,或者把4/10化成2/5,再作比較,都是可以的。

 。3)第3題,說出相等的分數(shù)(對口令)

  此題是運用分數(shù)基本性質的游戲練習.游戲時,讓學生以同桌為單位.仿照第3題的樣子,一個人先說一個分數(shù),另一個人回答一個相等的分數(shù),然后交換先后順序。

  2、教科書76頁 “做一做”

 。1)由學生獨立完成,然后同學交流.

  (2)全班反饋,說一說思維過程.

  (五)小結

  教師:同學們,通過今天的學習,你有什么收獲?

  ,題界知家數(shù)同時乘以或除以相同的數(shù)就相當于分子和分母同時乘以或除

  (六)動腦筋出教室游戲(機動)

  讓學生拿出課前發(fā)的寫有分數(shù)的紙片,要求學生看清手中的分數(shù)。與 相等的,報出自已的分數(shù)后先離場,與相等的再離場,與相等的最后離場。

  十、板書設計

  商不變的性質

  被除數(shù)和除數(shù)同時乘或除以相同的數(shù)(0除外),商不變。

  分數(shù)與除法的關系

  a÷b =a/b(b≠0)

  分數(shù)的基本性質

  分數(shù)的分子和分母同時乘或除以相同的數(shù)(0除外),分數(shù)的大小不變。

分數(shù)的基本性質教學設計11

  1.教材簡析

  《分數(shù)的基本性質》是蘇教版小學數(shù)學教材第十冊的內容之一,在小學數(shù)學學習中起著承前啟后、舉足輕重的作用,它既與整數(shù)除法的商不變性質有著內在的聯(lián)系,也是后面進一步學習分數(shù)的計算、比的基本性質的基礎。分數(shù)的基本性質是一種規(guī)律性知識,分數(shù)的分子分母變了,分數(shù)的大小會變嗎?分數(shù)的分子分母如何變化,分數(shù)的大小不變呢?學生在這種“變”與“不變”中發(fā)現(xiàn)規(guī)律。

  2.教材處理

  以前,教師通常把《分數(shù)的基本性質》看作一種靜態(tài)的數(shù)學知識,教學時先用幾個例子讓學生較快地概括出規(guī)律,然后更多地通過精心設計的練習鞏固應用規(guī)律,著眼于規(guī)律的結論和應用。隨著課程改革的深入,教師們越來越重視學生獲取知識的過程,但我們也看到這樣的現(xiàn)象:問題較碎,步子較小,放手不夠,探究的過程體現(xiàn)不夠充分!斗謹(shù)的基本性質》可不可以有別的教學思路呢?新的課程標準提出:“教師應向學生提供充分從事數(shù)學活動的機會,幫助他們在自主探索和合作交流的過程中真正理解和掌握基本的數(shù)學知識與技能、數(shù)學思想和方法”。根據(jù)這一新的理念,我認為教師可以為學生創(chuàng)設一種大問題背景下的探索活動,使學生在一種動態(tài)的探索過程中自己發(fā)現(xiàn)分數(shù)的基本性質,從而體驗發(fā)現(xiàn)真理的曲折和快樂,感受數(shù)學的思想方法,體會科學的學習方法。所以,教師的著眼點,不能只是規(guī)律的'結論和應用,而應有意識地突出思想和方法;谝陨纤伎,我以讓學生探究發(fā)現(xiàn)分數(shù)基本性質的過程為教學重點,創(chuàng)設了一種“猜想——驗證——反思”的教學模式,以“猜想”貫穿全課,引導學生遷移舊知、大膽猜想——實驗操作、驗證猜想——質疑討論、完善猜想等,把這一系列探究過程放大,把過程性目標”凸顯出來。

  設計意圖:

  本課主要本著遵循小學數(shù)學課程標準“創(chuàng)設問題情境提出問題解決問題建立數(shù)學模型解釋數(shù)學模型運用數(shù)學模型拓展數(shù)學模型”的指導思想而設計的。

  1、通過故事創(chuàng)設問題情境,貼近學生生活,有利于激發(fā)學生學習興趣。

  2、從故事情境中提出問題,體現(xiàn)數(shù)學來源于生活。

  3、小組合作學習,共同探究解決問題,讓學生充分體驗知識產生的過程。

  4、從幾組分數(shù)中分析,找到分數(shù)的基本性質,從而初步建立數(shù)學模型。

  5、設計有坡度的練習,穿插師生互動,生生互動,讓整個運用知識的形式活潑有趣。、

  6、在游戲活動中對數(shù)學知識進行拓展運用。

  教學目標

  1.知識與技能

  (1)經歷探索分數(shù)的基本性質的過程,理解分數(shù)的基本性質。

  (2)能運用分數(shù)的基本性質,把一個分數(shù)化成指定分母(或分子)而大小不變的分數(shù)。

  2.過程與方法

  (1) 經歷觀察、操作和討論等學習活動,并在探索過程中,能進行有條理的思考,能對分數(shù)的基本性質作出簡要的、合理的說明。

  (2) 培養(yǎng)學生的觀察、比較、歸納、總結概括能力。

  (3)能根據(jù)解決問題的需要,收集有用的信息進行歸納,發(fā)展學生的歸納、推理能力。

  3.情感態(tài)度與價值觀

  (1)經歷觀察、操作和討論等數(shù)學學習活動,使學生進一步體驗數(shù)學學習的樂趣。

  (2)體驗數(shù)學與日常生活密切相關。

  教學重點

  理解分數(shù)的基本性質

  教學難點

  能運用分數(shù)的基本性質,把一個分數(shù)化成指定分母(或分子)而大小不變的分數(shù)

  教學準備

  師:電腦課件 學生:圓紙片 長方形紙

  教學步驟:

  一、故事引人,揭示課題。

  1.教師講故事。

  話說唐僧師徒四人去西天去取經,這天走在路上,唐僧感覺餓了,就叫孫悟空去化齋,孫悟空答應了聲駕起筋斗云走了,不一會,他就帶回了三塊一樣大的餅,唐僧說:三塊餅,我們四個人怎么吃呢?孫悟空說:“你分給我一塊餅的四分之一就行了” 唐僧就把第一塊餅平均分成四塊,給了一塊給孫悟空。沙僧說:“我想要兩塊”

  唐僧把第二塊餅平均分成八塊,給了2塊給沙僧。豬八戒比較貪心,他說:“我要三塊,我要三塊”,于是唐僧把第三塊餅又平均分成12塊,給了豬八戒3塊。同學們,你知道孫悟空、豬八戒、沙僧三人誰分的多嗎?

  [ 一上課,先聽講一段故事,學生非常樂意,并會立即被吸引。思考故事當中提出的問題,學生自然興趣濃厚。通過故事設疑,激起了學生探求新知的欲望。]

  2、組織討論,動手操作。

  (1)小組討論,誰分的多

  (2)拿出三張紙,分別涂出它們的1/4、2/8、3/12。

  (3)比較涂色部分的大小,有什么發(fā)現(xiàn),得出什么結論。

  既然他們三個分得的餅同樣多,那么表示它們分得餅的分數(shù)是什么關系呢?這三個分數(shù)什么變了,什么沒有變?讓學生小組討論后答出:這三個分數(shù)是相等關系,1/4=2/8=3/12,它們平均分的份數(shù)和表示的份數(shù)也就是分數(shù)的分子和分母變化了,但分數(shù)的大小不變。

  (4)教師演示

  3、教學例1

  (1)引導比較。

  師問:這四個分數(shù),為什么分母不同呢?前兩個分數(shù)的分子為什么都是1?

  你知道其中哪些分數(shù)是相等的嗎?

  根據(jù)學生回答板書:1/3=2/6=3/9

  師追問:你是怎么知道這三個分數(shù)相等的?(圖中觀察出來的)

  (2)師演示驗證大小。

  (3)完成“練一練”第1題

  學生先涂色表示已知分數(shù),再在右圖中涂出相等部分。

  完成填空后,說說怎么想的。

  4、教學例2。

  (1)組織操作。

  師:取出正方形紙,先對折,用涂色部分表示它的1/2。

  學生完成折紙、涂色。

  師問:你能通過繼續(xù)對折,找出和1/2相等的其它分數(shù)嗎?

  學生在小組中操作,教師巡視指導。

  學生展開折法并匯報,可能出現(xiàn)的方法有:

  連續(xù)對折兩次,平均分成4份。如圖:

  1/2=1/4

 、谶B續(xù)對折三次,平均分成8份。如圖:

  1/2=4/8

  ③連續(xù)對折四次,平均分成16份。

  師追問:每次對折后,正方形被平均分成了多少份?涂色部分有多少份,可以用什么分數(shù)表示?

  得到的這些分數(shù)與1/2相等嗎?能不能再寫一些與1/2相等的數(shù)?

  板書:1/2=2/4=4/8=8/16=16/32……

  (2)發(fā)現(xiàn)規(guī)律。

  師:你有什么發(fā)現(xiàn)?(如學生觀察有困難,可進行以下提示)

 、、從左往右看,它們的分子、分母是怎樣變化的?你有什么發(fā)現(xiàn)?

  學生觀察、思考,在小組中交流。

  師問:觀察例1中的1/3=2/6=3/9,有這樣的規(guī)律嗎?

分數(shù)的基本性質教學設計12

  一、故事引人,揭示課題。

  1.教師講故事。猴山上的猴子最喜歡吃猴王做的餅了。有一天,猴王做了三塊大小一樣的餅分給小猴們吃,它先把第一塊餅平均切成四塊,分給猴1一塊。猴2見到說:“太少了,我要兩塊。”猴王就把第二塊餅平均切成八塊,分給猴2兩塊。猴3更貪,它搶著說:“我要三塊,我要三塊。”于是,猴王又把第三塊餅平均切成十二塊,分給猴3三塊。同學們,你知道哪只猴子分得多嗎?

  討論:哪只猴子分得的多?讓學生發(fā)表自己的意見,教師出示三塊大小一樣的餅,通過師生分餅、觀察和驗證,得出結論:三只猴子分得的餅一樣多。

  引導:聰明的猴王是用什么辦法來滿足小猴子們的要求,又分得那么公平的呢?同學們想知道嗎?學習了“分數(shù)的基本性質”就清楚了。(板書課題)

  [一上課,先聽講一段故事,學生非常樂意,并會立即被吸引。思考故事當中提出的問題,學生自然興趣濃厚。通過故事設疑,激起了學生探求新知的欲望。]

  2.組織討論。

 。1)既然三只猴子分得的餅同樣多,那么表示它們分得餅的分數(shù)是什么關系呢?這三個分數(shù)什么變了,什么沒有變?讓學生小組討論后答出:這三個分數(shù)是相等關系,1/4=2/8=3/12,它們平均分的份數(shù)和表示的份數(shù)也就是分數(shù)的分子和分母變化了,但分數(shù)的大小不變。

  (2)猴王把三塊大小一樣的餅分給小猴子一部分后,剩下的部分大小相等嗎?你還能說出一組相等的分數(shù)嗎?通過觀察演示得出:3/4=6/8=9/12。

 。3)我們班有50名同學,分成了五組,每組10人。那么第一、二組學生的人數(shù)占全班學生人數(shù)的幾分之幾?引導學生用不同的分數(shù)表示,然后得出:1/2=2/4=20/40。

  3.引入新課:黑板上三組相等的分數(shù)有什么共同的特點?學生回答后板書:

  分數(shù)的分子和分母變化了, 分數(shù)的大小不變。

  它們各是按照什么規(guī)律變化的呢?我們今天就來共同研究這個變化規(guī)律。

  3.出示例2:把1/2和10/24化成分母是12而大小不變的分數(shù)。

  思考:要把1/2和10/24化成分母是12而大小不變的分數(shù),分子怎么不變?變化的依據(jù)是什么?

  4.討論:猴王運用什么規(guī)律來分餅的?如果小猴子要四塊,猴王怎么分才公平呢?如果要五塊呢?

  [得出性質后,再讓學生說出猴王的想法,并回答如果小猴子要四塊,猴王怎么辦?既前后照應,又讓學生在輕松愉快的幫猴王想辦法的過程中,運用新知解決實際問題。]

  5.質疑:讓學生看看課本和板書,回顧剛才學習的過程,提出疑問和見解,師生答疑。

  通過舉例,溝通分數(shù)的基本性質與商不變性質之間的聯(lián)系。引導學生運用分數(shù)與除數(shù)的關系,以及整數(shù)除法中商不變的性質,說明分數(shù)的基本性質。如:3/4=3÷4=(3×3)÷(4×3)=9÷12=9/12

  [有助于學生順利地運用分數(shù)與除法的關系,以及整數(shù)除法中商不變性質說明分數(shù)的基本性質,實現(xiàn)新知化歸舊知。]它們各是按照什么規(guī)律變化的呢?我們今天就來共同研究這個變化規(guī)律。

  二、比較歸納,揭示規(guī)律。

  1.出示思考題。

  2.比較每組分數(shù)的分子和分母:

 。1)從左往右看,是按照什么規(guī)律變化的?

 。2)從右往左看,又是按照什么規(guī)律變化的?

  讓學生帶著上面的思考題,看一看,想一想,議一議,再翻開教科書看看書上是怎么說的。

  2.集體討論,歸納性質。(1)從左往右看,由3/4到6/8,分子、分母是怎么變化的?引導學生回答出:把3/4的分子、分母都乘以2,就得到6/8。原來把單位“1”平均分成4份,表示這樣的3份,現(xiàn)在把分的份數(shù)和表示份數(shù)都擴大2倍,就得到6/8。

  板書:

 。2)3/4是怎樣變化成9/12的呢?怎么填?學生回答后填空。

 。3)引導口述:3/4的分子、分母都乘以2,得到6/8,分數(shù)的大小不變。

 。4)在其它幾組分數(shù)中,分子、分母的變化規(guī)律怎樣?幾名學生回答后,要求學生試著歸納變化規(guī)律:分數(shù)的分子和分母都乘以相同的數(shù),分數(shù)的`大小不變。

 。ò鍟憾汲艘 相同的數(shù))

 。5)從右往左看,分數(shù)的分子和分母又是按照什么規(guī)律變化的?通過分析比較每組分數(shù)的分子和分母,得出:分數(shù)的分子和分母都乘以相同的數(shù),分數(shù)的大小不變。

 。ò鍟憾汲 )

 。6)引導思考:都乘以、都除以兩個“都”字,去掉一個怎么改?(去掉第二“都”字,換成“或者”)再對照教科書中的分數(shù)基本性質,讓學生說出少了什么?(少了“零除外”)討論:為什么性質中要規(guī)定“零除外”?

 。ò鍟毫愠猓

  (7)齊讀分數(shù)的基本性質。先讓學生找出性質中關鍵的字、詞,如“都”、“相同的數(shù)”、“零除外”等。然后要求關鍵的字詞要重讀。師生共同讀出黑板上板書的分數(shù)基本性質。

  [新知識力求讓學生主動探索,逐步獲取!昂锿醴诛灐焙头治霭嗉墝W生人數(shù)得出的三組相等的分數(shù)為學生探索新知提供材料,出示的思考題是學生探求新知、獨立思考的指南,教師環(huán)緊扣的提問以及引導學生逐步展開的充分的討論,幫助學生一步步走向結論。]

分數(shù)的基本性質教學設計13

  教學目標:

  知識與技能:理解和掌握分數(shù)的基本性質,知道分數(shù)基本性質與整數(shù)除法中商不變性質的關系。能運用分數(shù)的基本性質把一個分數(shù)化成分母相同而大小不變的分數(shù);培養(yǎng)學生觀察比較、抽象概括及動手實踐的能力,進一步發(fā)展學生的思維。

  過程與方法:經歷探究分數(shù)基本性質的過程,感受“變與不變”,“轉化”等數(shù)學思想方法。情感態(tài)度與價值觀:激發(fā)學生積極主動的情感狀態(tài),養(yǎng)成注意傾聽的習慣,體驗互助合作的樂趣。

  教學重點:理解和掌握分數(shù)的基本性質,會運用分數(shù)的基本性質。

  教學難點:自主探究出分數(shù)的基本性質

  教學準備:PPT課件、每小組準備三個同樣大小的圓形紙片、三張完全一樣的長方形(正方形)紙、直尺、彩筆等。

  教學流程:

  一、故事導入激趣引思

  引言:細心的同學一定聽出來了,剛剛老師播放的是哪部動畫片的主題歌?對,我們今天的學習就從西游記的故事說起。

  講故事:話說唐僧師徒四人去西天取經,一路上歷經磨難。一天,他們走得又累又餓,幸好路過一個村莊,化緣得到三塊同樣大小的餅。唐僧心想:三塊餅,四個人不太好分呀!但是很快他就想到了一個分餅的方案,他對徒弟們說:我準備將第一塊餅,平均分成2份,八戒吃其中的二分之一;將第二塊餅平均分成4份,沙和尚吃其中的四分之二;將第三塊餅平均分成8份,悟空吃其中的'八分之四,你們同意這樣的分配方案嗎?師父的話音未落,豬八戒便跳出來說:“我不同意這樣的分法,師父你太偏心了,憑什么猴哥吃那么多有八分之四,而我卻吃那么少才二分之一。同學們,請你們判斷一下,豬八戒說的對嗎,師父真的偏心嗎?

  生發(fā)表見解。

  二、自主合作探索規(guī)律

  1、反饋引導:1/2=2/4=4/8!叭齻徒弟分得的餅一樣多---等式---仔細瞧瞧這組分數(shù)等式的分子分母相同么?但是它們的大小卻?再用變化的眼光瞧瞧,(師畫正反向兩箭頭)我們發(fā)現(xiàn)分數(shù)的分子分母改變了,什么卻沒有變?師貼板帖分數(shù)可真與眾不同呵!

  2、提出探究任務:那如果我讓們動手做或者聯(lián)系生活實際想,像這樣大小相等的分數(shù),只有一組嗎?你們能不能找出一些給老師看看?找之前請位同學為我們讀一讀小組合作學習要求:

 。1)每個小組找出一組大小相等的分數(shù),并想辦法證明這組分數(shù)大小相等。

  (2)思考:在寫分數(shù)的過程中你們發(fā)現(xiàn)了什么規(guī)律?

  組內商量一下然后開始行動!

  3、小組研究教師巡視

  4、全班匯報

  交流評價(教師相機板書)圓紙片匯報長方形紙匯報正方形紙匯報及聯(lián)系一組人數(shù)說發(fā)現(xiàn)規(guī)律把每組數(shù)從左往右或者從右向左仔細觀察你能發(fā)現(xiàn)分子分母的怎樣的變化規(guī)律?(可以舉例說演繹推理深入)隨機更換貼圖

  板書課題:分數(shù)的基本性質打出幻燈

  5、反思規(guī)律看書對照找出關鍵詞要求重讀共同讀

  6、引證規(guī)律:3/4=12/16剛剛動手做我們驗證了這組大小相等的分數(shù)的正確性并由此發(fā)現(xiàn)了分數(shù)的基本性質那你能否利用分數(shù)與除法的關系以及整數(shù)除法中商不變性質,再一次說明分數(shù)的基本性質。

  三、自學例題運用規(guī)律

  過渡:同學們剛剛的精彩表現(xiàn)展示出了你們強大的學習能力,所以在接下來的一段時間里,老師請你們自學課本96頁的例2并完成相應“練一練”,F(xiàn)在開始

  生自學

  集體評議:例2練一練1和2,請說說你的根據(jù)和想法!重點讓學生說說根據(jù)什么,分母、分子是如何變化的。

  四、多層練習鞏固深化

  1、判斷對錯并說明理由

  2/9=8/36,4/9=2/3,3/4=3a/4a,5/10=3/6,1/5=4/8

  2、把6/20,70/100,45/50,1/2,4/5化成分母相同而大小不變的分數(shù)

  思考:分數(shù)的分母相同,能有什么作用?

  3、圈分數(shù)游戲圈出與1/2相等的分數(shù)

  4、對對碰與1/2,2/3,3/4生生組組師生互動

  五、課堂小結課堂作業(yè)

  結語:你看,運用數(shù)學知識玩游戲,也是樂趣無窮。這節(jié)課我們就上到這兒,

  作業(yè):余下來的時間請完成課本97頁練習十八的1-3題,做在書上。

分數(shù)的基本性質教學設計14

  教學目標:

  情感態(tài)度:培養(yǎng)學生觀察、比較、抽象、概括的邏輯思維能力,并且滲透事物間相互聯(lián)系,發(fā)展變化的辯證唯物主義觀點。

  知識技能:理解分數(shù)的基本性質,并且能夠靈活應用。

  過程方法:動手操作、觀察、討論

  教學重、難點:理解并掌握分數(shù)的基本性質并靈活應用。

  教具準備:自制多媒體課件、圖(2組)、拼圖畫一幅、實物投影儀。

  學具準備:拼圖12組。

  教學設計理念:

  《新課標》要求,讓學生在動手操作中觀察、思考,在生動具體的情境中學習數(shù)學,參與知識的發(fā)現(xiàn)過程。在教學分數(shù)的基本性質時,選擇了學生喜聞樂見的游戲形式,在學生人人參與的教學情境中,讓學生發(fā)現(xiàn)問題——討論問題——解決問題。力求通過學生動手實踐,自主探索和合作交流的學習方式,新知識的教學,訓練學生思維,引導學生把所學數(shù)學知識應用于實際中。感受數(shù)學的價值,本課設計完全從學生發(fā)展為本,在教學中大膽的把課堂還給學生,讓學生成為課堂真正的主人。

  教學過程:

  一、 創(chuàng)設情境,激趣導入。

  設計意圖:讓學生在喜聞樂見的游戲情境中,以濃厚的興趣參與學習,激發(fā)學生探索數(shù)學問題欲望,并訓練學生小組合作學習的方法和習慣。

  師:請看這幅拼圖漂亮嗎?老師這還有三幅漂亮的圖片(投影展示)可愛的青蛙,朝氣彭勃的太陽,誘人的蘋果,用你們靈巧的雙手能不能把他們拼出來?請小組合作完成。同學們,準備好了嗎?我宣布:拼圖比賽現(xiàn)在開始。

  請看拼圖要求:1、用所給材料拼成三個完全一樣圖形。

  2、用分數(shù)表示陰影部分占整幅圖的幾分之幾,并寫出來。

  二、合作交流,探究規(guī)律。

  設計意圖:讓學生在具體的情境中充分利用現(xiàn)有資源,增強學生的學習興趣,既有張揚個性的獨立思考,又有發(fā)揮集體力量的小組合作學習,培養(yǎng)學生敢于探索的精神與大膽嘗試的能力,同時讓學生選擇自己喜歡的方式,既尊重了學生,又激發(fā)了學生的學習興趣,體現(xiàn)了主體性。

  (一)拼圖,寫分數(shù)。

 。1)教師組織小組活動,并巡視,參與,指導小組活動。學生拼好圖后寫出分數(shù)。

  (2)匯報優(yōu)勝組介紹經驗,并展示作品。(體會小組合作的有效性)教師貼圖并板書分數(shù)。( = = )

  (二)找分數(shù)間的大小關系。

  (1)師:請同學們用自己喜歡的方法找一找每組中三個分數(shù)的大小關系,學生獨立思考后與同桌交流方法。

 。2)匯報:每組中三個分數(shù)大小相等。

  比較方法。(1)看圖比較(2)化小數(shù)比較(3)利用商不變的性質比較(4)……

 。ㄈ┨骄恳(guī)律

  (1)每組中三個分數(shù)看似不同,實質大小相等,它們之間到底有什么聯(lián)系?小組討論探究規(guī)律。

  (2)交流自己的發(fā)現(xiàn)。①每組中三個分數(shù)平均分的份數(shù)不同取的分數(shù)也不同?②分子,分母都擴大了2倍(3倍)③……

 。3)師:分數(shù)的分子和分母怎樣變化時,分數(shù)的大小才會不變,學生自由發(fā)言,教師給予肯定和鼓勵。

 。4)師結合圖依據(jù)分數(shù)的.意義講解變化規(guī)律。

 。5)小結分數(shù)的基本性質:強調“相同”“同時”組織討論:“相同的數(shù)”可以是哪些數(shù)?

  (四)對比分數(shù)的基本性質和商不變的性質。

  學生對比,說出兩個性質間的區(qū)別與聯(lián)系。

  三、應用。

  設計意圖:本環(huán)節(jié)所設計是由易到難,緊扣本課的重難點,練習具有針對性、實用性、開放性。通過變式練習讓學生的思維得到訓練,激發(fā)探究熱情,培養(yǎng)創(chuàng)新能力。

  1、填空

 。1)學生獨立思考。(2)交流口答,并說明依據(jù),同時訓練學生應用所學知識解決實際問題的能力。

  2、比較 和 的大小。

  四、游戲"找朋友”。

  設計意圖:游戲的情境,形式活潑,讓學生通過大小相等的分數(shù)找到自己的朋友。游戲規(guī)則新穎而恰當,既鞏固新知又體會到數(shù)學與生活的密切聯(lián)系。

  同學們拿出課前老師發(fā)給你的紙,紙上所寫分數(shù)大小相等的同學,你們是“好朋友”。請學生讀自己的分數(shù),與他所讀分數(shù)大小相等的同學舉起來確定后手拉手離場。

  ,五年級數(shù)學分數(shù)的基本性質教學設計

分數(shù)的基本性質教學設計15

  教學內容:

  人教版小學數(shù)學第十冊第107頁至108頁。

  教學目標:

  1、知識目標:通過教學使學生理解和掌握分數(shù)的基本性質,能利用它改變分數(shù)的分子和分母,而使分數(shù)的大小不變。

  2、能力目標:培養(yǎng)學生的觀察能力、動手操作能力和分析概括能力等。

  3、情感目標:讓學生在學習過程中養(yǎng)成互相幫助、團結協(xié)作的良好品德。

  教學準備:

  長方形紙片、彩筆、各種分數(shù)卡片。

  教學過程

  一、創(chuàng)設情境,激發(fā)興趣

  1.課件示故事。同學們,今天是快樂的,老師祝愿同學們節(jié)日快樂!在我們歡慶自己的節(jié)日時,花果山圣地也早已是一派節(jié)日喜慶的氣氛。

  【六一節(jié)到了,猴山上張燈結彩,小猴們享受著節(jié)日的快樂。猴王給小猴們做了三塊他們愛吃的餅。它先把第一塊餅平均切成四塊,分給第一只小猴貝貝一塊。第二只小猴佳佳見到說:“太小了,我要兩塊。”猴王就把第二塊餅平均切成八塊,分給第二只小猴兩塊。第三只小猴丁丁急了,它搶著說:“我要三塊,我要三塊。”于是,猴王又把第三塊餅平均切成十二塊,分給第三只小猴丁丁三塊。貝貝、佳佳見了,連忙說:“猴爺爺,不公平,不公平,我們要分得和丁丁的同樣多!薄

  “同學們,猴王真的分得不公平嗎?”

  二、動手操作、導入新課

  同學們,這個故事告訴了我們什么?猜想一下猴王分得公平嗎?為什么公平?我們平常怎樣去做?讓我們也來分分看。請每組拿出課前準備的三張長方形紙片,共同來分一分,并完成操作報告(課件出示操作報告)。請小組長分工一下,明確記錄的同學。

  任選一小組的同學臺前展示實驗報告,并匯報結論。

  教師根據(jù)學生匯報板書:14=28=312

  2.組織討論。

  (1)通過操作我們發(fā)現(xiàn)三只猴子分得的餅同樣多,表示它們分得餅的分數(shù)是相等關系。那么,這三個分數(shù)什么變了,什么沒有變?讓學生小組討論后答出:它們平均分的份數(shù)和表示的份數(shù)也就是分數(shù)的分子和分母變化了,但分數(shù)的大小不變。

 。2)猴王把三塊大小一樣的餅分給小猴子一部分后,剩下的部分大小相等嗎?你還能說出一組相等的分數(shù)嗎?學生通過觀察演示得出結論教師板書:34=68=912。

  3.引入新課:黑板上二組相等的分數(shù)有什么共同的特點?學生回答后板書:分數(shù)的.分子和分母, 分數(shù)的大小不變。雖然他們的分子和分母變化了,但是它們的大小卻不變。那么他們的分子和分母變化有規(guī)律嗎?我們今天就來共同探討這個變化規(guī)律。

  三、比較歸納,揭示規(guī)律。

  請每組拿出探究報告,任意選擇黑板上的二組相等分數(shù)中的一組,共同討論、探究,并完成探究報告。

  1.課件出示探究報告。

  2.分組匯報,歸納性質。

  (1)從左往右看,分子、分母的變化規(guī)律怎樣?選擇一組學生根據(jù)探究報告,到黑板上邊說邊用箭頭表示出分子、分母的變化過程。

 。ǜ鶕(jù)學生回答板書:同時乘上 相同的數(shù))

 。2)從右往左看,分數(shù)的分子和分母又是按照什么規(guī)律變化的?

 。ǜ鶕(jù)學生的回答板書:除以 )

 。3)有與這一組探究的分數(shù)不一樣的嗎?你們得出的規(guī)律是什么?

  (4)綜合剛才的探究,你發(fā)現(xiàn)什么規(guī)律?

  根據(jù)學生的回答,揭示課題,

 。ā@叫做板書:分數(shù)的基本性質)

  對這句話你還有什么要補充的?(補充“零除外”)

  討論:為什么性質中要規(guī)定“零除外”?

 。t筆板書:零除外)

 。5)齊讀分數(shù)的基本性質。在分數(shù)的基本性質中,你認為要提醒大家注意些什么?(同時、相同的數(shù)、0除外)。為什么?你能舉例說明嗎?教師則根據(jù)學生回答,在相應的字下面點上著重號。

  師生共同讀出黑板上板書的分數(shù)基本性質(要求關鍵的字詞要重讀)。

  3、智慧眼(下列的式子是否正確?為什么?)

 。1)35=3×25=65 (生:35的分子與分母沒有同時乘以2,分數(shù)的大小改變。)

 。2)512=5÷512÷6=12 (生:512的分子除以5,分母除以6,除數(shù)的大小不同,分數(shù)的大小也不同)

 。3)112=1×312÷3=34 (生:112的分子乘以3,而分母除以3,沒有同時乘以或除以,分數(shù)的大小不相等。)

 。4)25=2×x5×x=2x5x (生:x在這里代表任何數(shù),當x=0時,分數(shù)的大小改變。)

  4、示課件討論:現(xiàn)在你知道猴王運用什么規(guī)律來分餅的?如果小猴子要四塊,猴王怎么分才公平呢?用分數(shù)表示為?如果要五塊呢?

  三、回歸書本,探源獲知

  1、瀏覽課本第107—108頁的內容。

  2、看了書,你又有什么收獲?還有什么疑問嗎?

  3、師生答疑。

  你會運用分數(shù)與除數(shù)的關系,以及整數(shù)除法中商不變的性質,說明分數(shù)的基本性質嗎?

  4、自主學習并完成例2,請二名學生說出思路。

  四、多層練習,鞏固深化。

  1、熱身房。35=3×( )5×( )=9( )

  824=8÷( )24÷( )=( )3

  學生口答后,要求說出是怎樣想的?

【分數(shù)的基本性質教學設計】相關文章:

分數(shù)的基本性質教學設計06-01

《分數(shù)基本性質》教學設計01-19

分數(shù)的基本性質教學設計04-05

《分數(shù)基本性質》教學設計范文03-13

關于《分數(shù)的基本性質》教學設計05-11

《分數(shù)的基本性質》優(yōu)秀教學設計范文03-07

分數(shù)的基本性質教學設計7篇03-19

《分數(shù)基本性質》教學設計15篇04-02

《分數(shù)基本性質》教學設計(15篇)04-04

Copyright©2013-2024duanmeiwen.com版權所有