成大在线免费视频,亚洲精品免费一级视频,日韩亚洲欧美大陆,又黄又爽免费国产视频

<style id="t465f"></style>
<legend id="t465f"><u id="t465f"><thead id="t465f"></thead></u></legend>

<acronym id="t465f"></acronym>

<sub id="t465f"><ol id="t465f"><nobr id="t465f"></nobr></ol></sub>
<sub id="t465f"></sub>

因式分解教案

時(shí)間:2025-04-21 17:25:14 小英 教案 投訴 投稿

關(guān)于因式分解教案(通用20篇)

  作為一位杰出的老師,就難以避免地要準(zhǔn)備教案,通過(guò)教案準(zhǔn)備可以更好地根據(jù)具體情況對(duì)教學(xué)進(jìn)程做適當(dāng)?shù)谋匾恼{(diào)整?靵(lái)參考教案是怎么寫(xiě)的吧!下面是小編為大家收集的因式分解教案,希望對(duì)大家有所幫助。

關(guān)于因式分解教案(通用20篇)

  因式分解教案 1

  因式分解

  教材分析

  因式分解是進(jìn)行代數(shù)式恒等變形的重要手段之一,因式分解是在學(xué)習(xí)整式四則運(yùn)算的基礎(chǔ)上進(jìn)行的,它不僅僅在多項(xiàng)式的除法、簡(jiǎn)便運(yùn)算中等有直接的應(yīng)用,也為以后學(xué)習(xí)分式的約分與通分、解方程(組)及三解函數(shù)式的恒等變形帶給了必要的基礎(chǔ),因此學(xué)好因式分解對(duì)于代數(shù)知識(shí)的后續(xù)學(xué)習(xí),具有相當(dāng)重要的好處。由于本節(jié)課后學(xué)習(xí)提取公因式法,運(yùn)用公式法,分組分解法來(lái)進(jìn)行因式分解,務(wù)必以理解因式分解的概念為前提,所以本節(jié)資料的重點(diǎn)是因式分解的概念。由整式乘法尋求因式分解的方法是一種逆向思維過(guò)程,而逆向思維對(duì)初一學(xué)生還比較生疏,理解起來(lái)有必須難度,再者本節(jié)還沒(méi)涉及因式分解的具體方法,所以理解因式分解與整式乘法的相互關(guān)系,并運(yùn)用它們之間的相互關(guān)系尋求因式分解的方法是教學(xué)中的難點(diǎn)。

  教學(xué)目標(biāo)

  認(rèn)知目標(biāo):(1)理解因式分解的概念和好處

 。2)認(rèn)識(shí)因式分解與整式乘法的相互關(guān)系——相反變形,并會(huì)運(yùn)用它們之間的相互關(guān)系尋求因式分解的方法。

  潛力目標(biāo):由學(xué)生自行探求解題途徑,培養(yǎng)學(xué)生觀察、分析、決定潛力和創(chuàng)新潛力,發(fā)展學(xué)生智能,深化學(xué)生逆向思維潛力和綜合運(yùn)用潛力。

  情感目標(biāo):培養(yǎng)學(xué)生理解矛盾的對(duì)立統(tǒng)一觀點(diǎn),獨(dú)立思考,勇于探索的精神和實(shí)事求是的科學(xué)態(tài)度。

  目標(biāo)制定的思想

  1.目標(biāo)具體化、明確化,從學(xué)生實(shí)際出發(fā),具有針對(duì)性和可行性,同時(shí)便于上課操作,便于檢測(cè)和及時(shí)反饋。

  2.課堂教學(xué)體現(xiàn)潛力立意。

  3.寓德育教育于教學(xué)之中。

  教學(xué)方法

  1.采用以設(shè)疑探究的引課方式,激發(fā)學(xué)生的求知欲望,提高學(xué)生的學(xué)習(xí)興趣和學(xué)習(xí)積極性。

  2.把因式分解概念及其與整式乘法的關(guān)系作為主線(xiàn),訓(xùn)練學(xué)生思維,以設(shè)疑——感知——概括——運(yùn)用為教學(xué)程序,充分遵循學(xué)生的認(rèn)知規(guī)律,使學(xué)生能順利地掌握重點(diǎn),突破難點(diǎn),提高潛力。

  3.在課堂教學(xué)中,引導(dǎo)學(xué)生體會(huì)知識(shí)的發(fā)生發(fā)展過(guò)程,堅(jiān)持啟發(fā)式,鼓勵(lì)學(xué)生充分地動(dòng)腦、動(dòng)口、動(dòng)手,用心參與到教學(xué)中來(lái),充分體現(xiàn)了學(xué)生的主動(dòng)性原則。

  4.在充分尊重教材的前提下,融教材練習(xí)、想一想于教學(xué)過(guò)程中,增設(shè)了由淺入深、各不相同卻又緊密相關(guān)的訓(xùn)練題目,為學(xué)生順利掌握因式分解概念及其與整式乘法關(guān)系創(chuàng)造了有利條件。

  5.改變傳統(tǒng)言傳身教的方式,利用計(jì)算機(jī)輔助教學(xué)手段進(jìn)行教學(xué),增大教學(xué)的容量和直觀性,提高教學(xué)效率和教學(xué)質(zhì)量。

  教學(xué)過(guò)程安排

  一、提出問(wèn)題,創(chuàng)設(shè)情境

  問(wèn)題:看誰(shuí)算得快?(計(jì)算機(jī)出示問(wèn)題)

 。1)若a=101,b=99,則a2—b2=(a+b)(a—b)=(101+99)(101—99)=400

 。2)若a=99,b=—1,則a2—2ab+b2=(a—b)2=(99+1)2=10000

 。3)若x=—3,則20x2+60x=20x(x+3)=20x(—3)(—3+3)=0

  二、觀察分析,探究新知

 。1)請(qǐng)每題想得最快的同學(xué)談思路,得出最佳解題方法(同時(shí)計(jì)算機(jī)出示答案)

 。2)觀察:a2—b2=(a+b)(a—b)①的.左邊是一個(gè)什么式子?右邊又是什么形式?

  a2—2ab+b2=(a—b)2②

  20x2+60x=20x(x+3)③

 。3)類(lèi)比小學(xué)學(xué)過(guò)的因數(shù)分解概念,(例42=2×3×7④)得出因式分解概念。

  板書(shū)課題:§7.1因式分解

  1.因式分解概念:把一個(gè)多項(xiàng)式化成幾個(gè)整式的積的形式叫做因式分解,也叫分解因式。

  三、獨(dú)立練習(xí),鞏固新知

  練習(xí)

  1.下列由左邊到右邊的變形,哪些是因式分解?哪些不是?為什么?(計(jì)算機(jī)演示)

  ①(x+2)(x—2)=x2—4

 、趚2—4=(x+2)(x—2)

 、踑2—2ab+b2=(a—b)2

 、3a(a+2)=3a2+6a

 、3a2+6a=3a(a+2)

 、辺2—4+3x=(x—2)(x+2)+3x

 、遦2++2=(k+)2

 、鄕—2—1=(x—1+1)(x—1—1)

 、18a3bc=3a2b·6ac

  2.因式分解與整式乘法的關(guān)系:

  因式分解

  結(jié)合:a2—b2=========(a+b)(a—b)

  整式乘法

  說(shuō)明:從左到右是因式分解其特點(diǎn)是:由和差形式(多項(xiàng)式)轉(zhuǎn)化成整式的積的形式;從右到左是整式乘法其特點(diǎn)是:由整式積的形式轉(zhuǎn)化成和差形式(多項(xiàng)式)。

  結(jié)論:因式分解與整式乘法正好相反。

  問(wèn)題:你能利用因式分解與整式乘法正好相反這一關(guān)系,舉出幾個(gè)因式分解的例子嗎?

  (如:由(x+1)(x—1)=x2—1得x2—1=(x+1)(x—1)

  由(x+2)(x—1)=x2+x—2得x2+x—2=(x+2)(x—1)等等)

  四、例題教學(xué),運(yùn)用新知:

  例:把下列各式分解因式:(計(jì)算機(jī)演示)

 。1)am+bm(2)a2—9(3)a2+2ab+b2

 。4)2ab—a2—b2(5)8a3+b6

  練習(xí)2:填空:(計(jì)算機(jī)演示)

 。1)∵2xy=2x2y—6xy2

  ∴2x2y—6xy2=2xy

 。2)∵xy=2x2y—6xy2

  ∴2x2y—6xy2=xy

  (3)∵2x=2x2y—6xy2

  ∴2x2y—6xy2=2x

  五、強(qiáng)化訓(xùn)練,掌握新知:

  練習(xí)3:把下列各式分解因式:(計(jì)算機(jī)演示)

 。1)2ax+2ay(2)3mx—6nx(3)x2y+xy2

 。4)x2+—x(5)x2—0.01(6)a3—1

  (讓學(xué)生上來(lái)板演)

  六、變式訓(xùn)練,擴(kuò)展新知(計(jì)算機(jī)演示)

  1。若x2+mx—n能分解成(x—2)(x—5),則m=,n=

  2.機(jī)動(dòng)題:(填空)x2—8x+m=(x—4),且m=

  七、整理知識(shí),構(gòu)成結(jié)構(gòu)(即課堂小結(jié))

  1.因式分解的概念因式分解是整式中的一種恒等變形

  2.因式分解與整式乘法是兩種相反的恒等變形,也是思維方向相反的兩種思維方式,因此,因式分解的思維過(guò)程實(shí)際也是整式乘法的逆向思維的過(guò)程。

  3.利用2中關(guān)系,能夠從整式乘法探求因式分解的結(jié)果。

  4.教學(xué)中滲透對(duì)立統(tǒng)一,以不變應(yīng)萬(wàn)變的辯證唯物主義的思想方法。

  八、布置作業(yè)

  1.作業(yè)本(一)中§7.1節(jié)

  2.選做題:①x2+x—m=(x+3),且m=。

 、趚2—3x+k=(x—5),且k=。

  評(píng)價(jià)與反饋

  1.透過(guò)由學(xué)生自己得出因式分解概念及其與整式乘法的關(guān)系的結(jié)論,了解學(xué)生觀察、分析問(wèn)題的潛力和逆向思維潛力及創(chuàng)新潛力。發(fā)現(xiàn)問(wèn)題,及時(shí)反饋。

  2.透過(guò)例題及練習(xí),了解學(xué)生對(duì)概念的理解程度和實(shí)際運(yùn)用潛力,最大限度地讓學(xué)生暴露問(wèn)題和認(rèn)知誤差,及時(shí)發(fā)現(xiàn)和彌補(bǔ)教與學(xué)中的遺漏和不足,從而及時(shí)調(diào)控教與學(xué)。

  3.透過(guò)機(jī)動(dòng)題,了解學(xué)生對(duì)概念的熟練程度和思維的靈敏性、深刻性、廣闊性及探研創(chuàng)造潛力,及時(shí)評(píng)價(jià),及時(shí)矯正。

  4.透過(guò)課后作業(yè),了解學(xué)生對(duì)知識(shí)的掌握狀況與綜合運(yùn)用知識(shí)及靈活運(yùn)用知識(shí)的潛力,教師及時(shí)批閱,及時(shí)反饋講評(píng),同時(shí)對(duì)個(gè)別學(xué)生面批作業(yè),能夠更及時(shí)、更準(zhǔn)確地了解學(xué)生思維發(fā)展的狀況,矯正的針對(duì)性更強(qiáng)。

  5.透過(guò)課堂小結(jié),了解學(xué)生對(duì)概念的熟悉程度和歸納概括潛力、語(yǔ)言表達(dá)潛力、知識(shí)運(yùn)用潛力,教師恰當(dāng)?shù)亟o予引導(dǎo)和啟迪。

  6.課堂上反饋信息除了語(yǔ)言和練習(xí)外,學(xué)生神情也是信息來(lái)源,而且這些信息更真實(shí)。學(xué)生神態(tài)、表情、坐姿都反映出學(xué)生對(duì)教師教學(xué)資料的理解和理解程度。教師應(yīng)用心捕捉學(xué)生在知識(shí)掌握、思維發(fā)展、潛力培養(yǎng)等各方面全方位的反饋信息,隨時(shí)評(píng)價(jià),及時(shí)矯正,隨時(shí)調(diào)節(jié)教學(xué)。

  因式分解教案 2

  學(xué)習(xí)目標(biāo)

  1、 學(xué)會(huì)用公式法因式法分解

  2、綜合運(yùn)用提取公式法、公式法分解因式

  學(xué)習(xí)重難點(diǎn) 重點(diǎn):

  完全平方公式分解因式.

  難點(diǎn):綜合運(yùn)用兩種公式法因式分解

  自學(xué)過(guò)程設(shè)計(jì)

  完全平方公式:

  完全平方公式的逆運(yùn)用:

  做一做:

  1.(1)16x2-8x+_______=(4x-1)2;

  (2)_______+6x+9=(x+3)2;

  (3)16x2+_______+9y2=(4x+3y)2;

  (4)(a-b)2-2(a-b)+1=(______-1)2.

  2.在代數(shù)式(1)a2+ab+b2;(2)4a2+4a+1;(3)a2-b2+2ab;(4)-4a2+12ab-9b2中,可用完全平方公式因式分解的是_________(填序號(hào))

  3.下列因式分解正確的'是( )

  A.x2+y2=(x+y)2 B.x2-xy+x2=(x-y)2

  C.1+4x-4x2=(1-2x)2 D.4-4x+x2=(x-2)2

  4.分解因式:(1)x2-22x+121 (2)-y2-14y-49 (3)(a+b)2+2(a+b)+1

  5.計(jì)算:20062-40102006+20052=___________________.

  6.若x+y=1,則 x2+xy+ y2的值是_________________.

  想一想

  你還有哪些地方不是很懂?請(qǐng)寫(xiě)出來(lái)。

  ____________________________________________________________________________________ 預(yù)習(xí)展示一:

  1.判別下列各式是不是完全平方式.

  2、把下列各式因式分解:

  (1)-x2+4xy-4y2

  (2)3ax2+6axy+3ay2

  (3)(2x+y)2-6(2x+y)+9

  應(yīng)用探究:

  1、用簡(jiǎn)便方法計(jì)算

  49.92+9.98 +0.12

  拓展提高:

  (1)( a2+b2)( a2+b2 10)+25=0 求a2+b2

  (2)4x2+y2-4xy-12x+6y+9=0

  求x、y關(guān)系

  (3)分解因式:m4+4

  教后反思 考察利用公式法因式分解的題目不會(huì)很難,但是需要學(xué)生記住公式的形式,之后利用公式把式子進(jìn)行變形,從而達(dá)到進(jìn)行因式分解的目的,但是這里有用到實(shí)際中去的例子,對(duì)學(xué)生來(lái)說(shuō)會(huì)難一些。

  因式分解教案 3

  【教學(xué)目標(biāo)】

  1、了解因式分解的概念和意義;

  2、認(rèn)識(shí)因式分解與整式乘法的相互關(guān)系——相反變形,并會(huì)運(yùn)用它們之間的相互關(guān)系尋求因式分解的方法。

  【教學(xué)重點(diǎn)、難點(diǎn)】

  重點(diǎn)是因式分解的概念,難點(diǎn)是理解因式分解與整式乘法的相互關(guān)系,并運(yùn)用它們之間的相互關(guān)系尋求因式分解的方法。

  【教學(xué)過(guò)程】

 、、情境導(dǎo)入

  看誰(shuí)算得快:(搶答)

  (1)若a=101,b=99,則a2-b2=___________;

  (2)若a=99,b=-1,則a2-2ab+b2=____________;

  (3)若x=-3,則20x2+60x=____________。

 、、探究新知

  1、請(qǐng)每題答得最快的同學(xué)談思路,得出最佳解題方法。(多媒體出示答案)(1)a2-b2=(a+b)(a-b)=(101+99)(101-99)=400;

  (2)a2-2ab+b2=(a-b) 2=(99+1)2 =10000;

  (3)20x2+60x=20x(x+3)=20x(-3)(-3+3)=0。

  2、觀察:a2-b2=(a+b)(a-b),a2-2ab+b2 = (a-b)2, 20x2+60x=20x(x+3),找出它們的特點(diǎn)。(等式的左邊是一個(gè)什么式子,右邊又是什么形式?)

  3、類(lèi)比小學(xué)學(xué)過(guò)的因數(shù)分解概念,得出因式分解概念。(學(xué)生概括,老師補(bǔ)充。)

  板書(shū)課題:§6.1 因式分解

  因式分解概念:把一個(gè)多項(xiàng)式化成幾個(gè)整式的積的形式叫做因式分解,也叫分解因式

  ㈢、前進(jìn)一步

  1、讓學(xué)生繼續(xù)觀察:(a+b)(a-b)= a2-b2, (a-b)2= a2-2ab+b2, 20x(x+3)= 20x2+60x,它們是什么運(yùn)算?與因式分解有何關(guān)系?它們有何聯(lián)系與區(qū)別?

  2、因式分解與整式乘法的關(guān)系:

  因式分解

  結(jié)合:a2-b2 (a+b)(a-b)

  整式乘法

  說(shuō)明:從左到右是因式分解其特點(diǎn)是:由和差形式(多項(xiàng)式)轉(zhuǎn)化成整式的積的`形式;從右到左是整式乘法其特點(diǎn)是:由整式積的形式轉(zhuǎn)化成和差形式(多項(xiàng)式)。

  結(jié)論:因式分解與整式乘法的相互關(guān)系——相反變形。

  ㈣、鞏固新知

  1、 下列代數(shù)式變形中,哪些是因式分解?哪些不是?為什么?

  (1)x2-3x+1=x(x-3)+1 ;(2)(m+n)(a+b)+(m+n)(x+y)=(m+n)(a+b+x+y);

  (3)2m(m-n)=2m2-2mn; (4)4x2-4x+1=(2x-1)2;(5)3a2+6a=3a(a+2);

  (6)x2-4+3x=(x-2)(x+2)+3x; (7)k2++2=(k+)2;(8)18a3bc=3a2b·6ac。

  2、你能寫(xiě)出整式相乘(其中至少一個(gè)是多項(xiàng)式)的兩個(gè)例子,并由此得到相應(yīng)的兩個(gè)多項(xiàng)式的因式分解嗎?把結(jié)果與你的同伴交流。

 、椤(yīng)用解釋

  例 檢驗(yàn)下列因式分解是否正確:

  (1)x2y-xy2=xy(x-y);(2)2x2-1=(2x+1)(2x-1);(3)x2+3x+2=(x+1)(x+2).

  分析:檢驗(yàn)因式分解是否正確,只要看等式右邊幾個(gè)整式相乘的積與右邊的多項(xiàng)式是否相等。

  練習(xí) 計(jì)算下列各題,并說(shuō)明你的算法:(請(qǐng)學(xué)生板演)

  (1)872+87×13

  (2)1012-992

 、、思維拓展

  1.若 x2+mx-n能分解成(x-2)(x-5),則m= ,n=

  2.機(jī)動(dòng)題:(填空)x2-8x+m=(x-4)( ),且m=

 、搿⒄n堂回顧

  今天這節(jié)課,你學(xué)到了哪些知識(shí)?有哪些收獲與感受?說(shuō)出來(lái)大家分享。

 、、布置作業(yè)

  作業(yè)本(1) ,一課一練

 。ň牛┙虒W(xué)反思:

  因式分解教案 4

  第十五章 整式的乘除與因式分解

  根據(jù)定義,我們不難得出a+b+c、t-5、3x+5+2z、 ab-3.12r2、x2+2x+18都是多項(xiàng)式.請(qǐng)分別指出它們的項(xiàng)和次數(shù).

  15.1.2 整式的加減

 。3)x-(1-2x+x2)+(-1-x2) (4)(8x-3x2)-5x-2(3x-2x2)

  四、提高練習(xí):

  1、已知A=a2+b2-c2,B=-4a2+2b2+3c2,并且A+B+C=0,問(wèn)C是什么樣的'多項(xiàng)式?

  2、設(shè)A=2x2-3x+2-x+2,B=4x2-6x+22-3x-,若│x-2a│+(+3)2=0,且B-2A=a,求A的值。

  3、已知有理數(shù)a、b、c在數(shù)軸上(0為數(shù)軸原點(diǎn))的對(duì)應(yīng)點(diǎn)如圖:

  試化簡(jiǎn):│a│-│a+b│+│c-a│+│b+c│

  小 結(jié):要善于在圖形變化中發(fā)現(xiàn)規(guī)律,能熟練的對(duì)整式加減進(jìn)行運(yùn)算。

  作 業(yè):課本P14習(xí)題1.3:1(2)、(3)、(6),2。

  《課堂感悟與探究》

  因式分解教案 5

  學(xué)習(xí)目標(biāo):經(jīng)歷探索同底數(shù)冪的乘法運(yùn)算性質(zhì)的過(guò)程,能用代數(shù)式和文字正確地表述,并會(huì)熟練地進(jìn)行計(jì)算。通過(guò)由特殊到一般的猜想與說(shuō)理、驗(yàn)證,發(fā)展推理能力和有條理的表達(dá)能力.

  學(xué)習(xí)重點(diǎn):同底數(shù)冪乘法運(yùn)算性質(zhì)的推導(dǎo)和應(yīng)用.

  學(xué)習(xí)過(guò)程:

  一、創(chuàng)設(shè)情境引入新課

  復(fù)習(xí)乘方an的意義:an表示個(gè)相乘,即an=.

  乘方的結(jié)果叫a叫做,n是

  問(wèn)題:一種電子計(jì)算機(jī)每秒可進(jìn)行1012次運(yùn)算,它工作103秒可進(jìn)行多少次運(yùn)算?

  列式為,你能利用乘方的意義進(jìn)行計(jì)算嗎?

  二、探究新知:

  探一探:

  1根據(jù)乘方的意義填空

  (1)23×24=(2×2×2)×(2×2×2×2)=2();

  (2)55×54=_________=5();

  (3)(-3)3×(-3)2=_________________=(-3)();

  (4)a6a7=________________=a().

  (5)5m5n

  猜一猜:aman=(m、n都是正整數(shù))你能證明你的猜想嗎?

  說(shuō)一說(shuō):你能用語(yǔ)言敘述同底數(shù)冪的乘法法則嗎?

  同理可得:amanap=(m、n、p都是正整數(shù))

  三、范例學(xué)習(xí):

  【例1】計(jì)算:(1)103×104;(2)aa3;(3)mm3m5;(4)xmx3m+1(5)xx2+x2x

  1.填空:⑴10×109=;⑵b2×b5=;⑶x4x=;⑷x3x3=.

  2.計(jì)算:

  (1)a2a6;(2)(-x)(-x)3;(3)8m(-8)38n;(4)b3(-b2)(-b)4.

  【例2】:把下列各式化成(x+y)n或(x-y)n的.形式.

  (1)(x+y)4(x+y)3(2)(x-y)3(x-y)(y-x)

  (3)-8(x-y)2(x-y)(4)(x+y)2m(x+y)m+1

  四、學(xué)以致用:

  1.計(jì)算:⑴10n10m+1=⑵x7x5=⑶mm7m9=

 、-4444=⑸22n22n+1=⑹y5y2y4y=

  2.判斷題:判斷下列計(jì)算是否正確?并說(shuō)明理由

 、臿2a3=a6();⑵a2a3=a5();⑶a2+a3=a5();

  ⑷aa7=a0+7=a7();⑸a5a5=2a10();⑹25×32=67()。

  3.計(jì)算:

  (1)xx2+x2x(2)x2xn+1+xn-2x4-xn-1x4

  (3)-(-a)3(-a)2a5;(4)(a-b)3(b-a)2

  (5)(x+y)(x+y)(x+y)2+(x+y)2(x+y)2

  4.解答題:

  (1)已知xm+nxm-n=x9,求m的值.

  (2)據(jù)不完全統(tǒng)計(jì),每個(gè)人每年最少要用去106立方米的水,1立方米的水中約含有3.34×1019個(gè)水分子,那么,每個(gè)人每年要用去多少個(gè)水分子?

  因式分解教案 6

  課型 復(fù)習(xí)課 教法 講練結(jié)合

  教學(xué)目標(biāo)(知識(shí)、能力、教育)

  1.了解分解因式的意義,會(huì)用提公因式法、 平方差公式和完全平方公式(直接用公式不超過(guò)兩次)分解因式(指數(shù)是正整數(shù)).

  2.通過(guò)乘法公式 , 的逆向變形,進(jìn)一步發(fā)展學(xué)生觀察、歸納、類(lèi)比、概括等能力,發(fā)展有條理的思考及語(yǔ)言表達(dá)能力

  教學(xué)重點(diǎn) 掌握用提取公因式法、公式法分解因式

  教學(xué)難點(diǎn) 根據(jù)題目的形式和特征 恰當(dāng)選擇方法進(jìn)行分解,以提高綜合解題能力。

  教學(xué)媒體 學(xué)案

  教學(xué)過(guò)程

  一:【 課前預(yù)習(xí)】

  (一):【知識(shí)梳理】

  1.分解因式:把一個(gè)多項(xiàng)式化成 的形式,這種變形叫做把這個(gè)多項(xiàng)式分解因式.

  2.分解困式的方法:

 、盘峁珗F(tuán)式法:如果一個(gè)多項(xiàng)式的各項(xiàng)含有公因式,那么就可以把這個(gè)公因式提出來(lái),從而將多項(xiàng)式化成兩個(gè)因式乘積的形式,這種分解因式的方法叫做提公因式法.

 、七\(yùn)用公式法:平方差公式: ;

  完全平方公式: ;

  3.分解因式的步驟:

  (1)分解 因式時(shí),首先考慮是否有公因式,如果有公因式,一定先提取公團(tuán)式,然后再考慮是否能用公式法 分解.

  (2)在用公式時(shí),若是兩項(xiàng),可考慮用平方差公式;若是三項(xiàng),可考慮用完全平方公式;若是三項(xiàng)以上,可先進(jìn)行適當(dāng)?shù)姆纸M,然后分解因式。

  4.分解因式時(shí)常見(jiàn)的思維誤區(qū):

  提公因式時(shí),其公因式應(yīng)找字母指數(shù)最低的,而不是以首項(xiàng)為準(zhǔn).若有一項(xiàng)被全部提出,括號(hào)內(nèi)的項(xiàng) 1易漏掉.分解不徹底,如保留中括號(hào)形式,還能繼續(xù)分解等

  (二):【課前練習(xí)】

  1.下列各組多項(xiàng)式中沒(méi)有公因式的是( )

  A.3x-2與 6x2-4x B.3(a-b)2與11(b-a)3

  C.mxmy與 nynx D.aba c與 abbc

  2. 下列各題中,分解因式錯(cuò)誤的是( )

  3. 列多項(xiàng)式能用平方差公式分解因式的是()

  4. 分解因式:x2+2xy+y2-4 =_____

  5. 分解因式:(1) ;

  (2) ;(3) ;

  (4) ;(5)以上三題用了 公式

  二:【經(jīng)典考題剖析】

  1. 分解因式:

  (1) ;(2) ;(3) ;(4)

  分析:①因式分解時(shí),無(wú)論有幾項(xiàng),首先考慮提取公因式。提公因式時(shí),不僅注意數(shù),也要 注意字母,字母可能是單項(xiàng)式也可能是多項(xiàng)式,一次提盡。

  ②當(dāng)某項(xiàng)完全提出后,該項(xiàng)應(yīng)為1

 、圩⒁ ,

 、芊纸饨Y(jié)果(1)不帶中括號(hào);(2)數(shù)字因數(shù)在前,字母因數(shù)在后;單項(xiàng)式在前,多項(xiàng)式在后;(3)相同因式寫(xiě)成冪的形式;(4 )分解結(jié)果應(yīng)在指定范圍內(nèi)不能再分解為止;若無(wú)指定范圍,一般在有理數(shù)范圍內(nèi)分解。

  2. 分解因式:(1) ;(2) ;(3)

  分析:對(duì)于二次三項(xiàng)齊次式,將其中一個(gè)字母看作末知數(shù),另一個(gè)字母視為常數(shù)。首先考慮提公因式后,由余下因式的項(xiàng)數(shù)為3項(xiàng),可考慮完全平方式或十字相乘法繼續(xù)分解;如果項(xiàng)數(shù)為2,可考慮平方差、立方差、立方和公式。(3)題無(wú)公因式,項(xiàng)數(shù)為2項(xiàng),可考慮平方差公式先分解開(kāi),再由項(xiàng)數(shù)考慮選擇方法繼續(xù)分解。

  3. 計(jì)算:(1)

  (2)

  分析:(1)此題先分解因式后約分,則余下首尾兩數(shù)。

  (2)分解后,便有規(guī)可循,再求1到20xx的和。

  4. 分解因式:(1) ;(2)

  分析:對(duì)于四項(xiàng)或四項(xiàng)以上的多項(xiàng)式的`因式分解,一般采用分組分解法,

  5. (1)在實(shí)數(shù)范圍內(nèi)分解因式: ;

  (2)已知 、 、 是△ABC的三邊,且滿(mǎn)足 ,

  求證:△ABC為等邊三角形。

  分析:此題給出的是三邊之間的關(guān)系,而要證等邊三角形,則須考慮證 ,

  從已知給出的等式結(jié)構(gòu)看出,應(yīng)構(gòu)造出三個(gè)完全平方式 ,

  即可得證,將原式兩邊同乘以2即可。略證:

  即△ABC為等邊三角形。

  三:【課后訓(xùn)練】

  1. 若 是一個(gè)完全平方式,那么 的值是( )

  A.24 B.12 C.12 D.24

  2. 把多項(xiàng)式 因式分解的結(jié)果是( )

  A. B. C. D.

  3. 如果二次三項(xiàng)式 可分解為 ,則 的 值為( )

  A .-1 B.1 C. -2 D.2

  4. 已知 可以被在60~70之間的兩個(gè)整數(shù)整除,則這兩個(gè)數(shù)是( )

  A.61、63 B.61、65 C.61、67 D.63、65

  5. 計(jì)算:19982002= , = 。

  6. 若 ,那么 = 。

  7. 、 滿(mǎn)足 ,分解因式 = 。

  8. 因式分解:

  (1) ;(2)

  (3) ;(4)

  9. 觀察下列等式:

  想一想,等式左邊各項(xiàng)冪的底數(shù)與右邊冪的底數(shù)有何關(guān) 系?猜一猜可引出什么規(guī)律?用等式將其規(guī)律表示出來(lái): 。

  10. 已知 是△ABC的三邊,且滿(mǎn)足 ,試判斷△ABC的形狀。閱讀下面解題過(guò)程:

  解:由 得:

  ①

 、

  即 ③

  △ABC為Rt△。 ④

  試問(wèn):以上解題過(guò)程是否正確: ;若不正確,請(qǐng)指出錯(cuò)在哪一步?(填代號(hào)) ;錯(cuò)誤原因是 ;本題結(jié)論應(yīng)為 。

  四:【課后小結(jié)】

  布置作業(yè) 地綱

  因式分解教案 7

  教學(xué)目標(biāo)

  1、進(jìn)一步鞏固因式分解的概念;

  2、鞏固因式分解常用的三種方法

  3、選擇恰當(dāng)?shù)姆椒ㄟM(jìn)行因式分解

  4、應(yīng)用因式分解來(lái)解決一些實(shí)際問(wèn)題

  5、體驗(yàn)應(yīng)用知識(shí)解決問(wèn)題的樂(lè)趣

  教學(xué)重點(diǎn)

  靈活運(yùn)用因式分解解決問(wèn)題

  教學(xué)難點(diǎn):

  靈活運(yùn)用恰當(dāng)?shù)囊蚴椒纸獾姆椒,拓展練?xí)2、3

  教學(xué)過(guò)程

  一、創(chuàng)設(shè)情景:若a=101,b=99,求a2-b2的值

  利用因式分解往往能將一些復(fù)雜的運(yùn)算簡(jiǎn)單化,那么我們先來(lái)回顧一下什么是因式分解和怎樣來(lái)因式分解。

  二、知識(shí)回顧

  1、因式分解定義:把一個(gè)多項(xiàng)式化成幾個(gè)整式積的形式,這種變形叫做把這個(gè)多項(xiàng)式分解因式.

  判斷下列各式哪些是因式分解?(讓學(xué)生先思考,教師提問(wèn)講解,讓學(xué)生明確因式分解的概念以及與乘法的關(guān)系)

  (1).x2-4y2=(x+2y)(x-2y)因式分解(2).2x(x-3y)=2x2-6xy整式乘法

  (3).(5a-1)2=25a2-10a+1整式乘法(4).x2+4x+4=(x+2)2因式分解

  (5).(a-3)(a+3)=a2-9整式乘法(6).m2-4=(m+4)(m-4)因式分解

  (7).2πR+2πr=2π(R+r)因式分解

  2、.規(guī)律總結(jié)(教師講解):分解因式與整式乘法是互逆過(guò)程.

  分解因式要注意以下幾點(diǎn):(1).分解的對(duì)象必須是多項(xiàng)式.

  (2).分解的結(jié)果一定是幾個(gè)整式的乘積的形式.(3).要分解到不能分解為止.

  3、因式分解的方法

  提取公因式法:-6x2+6xy+3x=-3x(2x-2y-1)公因式的概念;公因式的求法

  公式法:平方差公式:a2-b2=(a+b)(a-b)完全平方公式:a2+2ab+b2=(a+b)2

  4、強(qiáng)化訓(xùn)練

  教學(xué)引入

  師:教材在《四邊形》這一章《引言》里有這樣一句話(huà):把一個(gè)長(zhǎng)方形折疊就可以得到一個(gè)正方形,F(xiàn)在請(qǐng)同學(xué)們拿出一個(gè)長(zhǎng)方形紙條,按動(dòng)畫(huà)所示進(jìn)行折疊處理。

  動(dòng)畫(huà)演示:

  場(chǎng)景一:正方形折疊演示

  師:這就是我們得到的正方形。下面請(qǐng)同學(xué)們拿出三角板(刻度尺)和圓規(guī),我們來(lái)研究正方形的幾何性質(zhì)—邊、角以及對(duì)角線(xiàn)之間的關(guān)系。請(qǐng)大家測(cè)量各邊的長(zhǎng)度、各角的大小、對(duì)角線(xiàn)的長(zhǎng)度以及對(duì)角線(xiàn)交點(diǎn)到各頂點(diǎn)的長(zhǎng)度。

  [學(xué)生活動(dòng):各自測(cè)量。]

  鼓勵(lì)學(xué)生將測(cè)量結(jié)果與鄰近同學(xué)進(jìn)行比較,找出共同點(diǎn)。

  講授新課

  找一兩個(gè)學(xué)生表述其結(jié)論,表述是要注意糾正其語(yǔ)言的規(guī)范性。

  動(dòng)畫(huà)演示:

  場(chǎng)景二:正方形的性質(zhì)

  師:這些性質(zhì)里那些是矩形的性質(zhì)?

  [學(xué)生活動(dòng):尋找矩形性質(zhì)。]

  動(dòng)畫(huà)演示:

  場(chǎng)景三:矩形的性質(zhì)

  師:同樣在這些性質(zhì)里尋找屬于菱形的性質(zhì)。

  [學(xué)生活動(dòng);尋找菱形性質(zhì)。]

  動(dòng)畫(huà)演示:

  場(chǎng)景四:菱形的'性質(zhì)

  師:這說(shuō)明正方形具有矩形和菱形的全部性質(zhì)。

  及時(shí)提出問(wèn)題,引導(dǎo)學(xué)生進(jìn)行思考。

  師:根據(jù)這些性質(zhì),我們能不能給正方形下一個(gè)定義?怎么樣給正方形下一個(gè)準(zhǔn)確的定義?

  [學(xué)生活動(dòng):積極思考,有同學(xué)做躍躍欲試狀。]

  師:請(qǐng)同學(xué)們回想矩形與菱形的定義,可以根據(jù)矩形與菱形的定義類(lèi)似的給出正方形的定義。

  學(xué)生應(yīng)能夠向出十種左右的定義方式,其余作相應(yīng)鼓勵(lì),把以下三種板書(shū):

  “有一組鄰邊相等的矩形叫做正方形!

  “有一個(gè)角是直角的菱形叫做正方形!

  “有一個(gè)角是直角且有一組鄰邊相等的平行四邊形叫做正方形!

  [學(xué)生活動(dòng):討論這三個(gè)定義正確不正確?三個(gè)定義之間有什么共同和不同的地方?這出教材中采用的是第三種定義方式。]

  師:根據(jù)定義,我們把平行四邊形、矩形、菱形和正方形它們之間的關(guān)系梳理一下。

  試一試把下列各式因式分解:

  (1).1-x2=(1+x)(1-x)(2).4a2+4a+1=(2a+1)2

  (3).4x2-8x=4x(x-2)(4).2x2y-6xy2=2xy(x-3y)

  三、例題講解

  例1、分解因式

  (1)-x3y3+x2y+xy(2)6(x-2)+2x(2-x)

  (3)(4)y2+y+

  例2、分解因式

  1、a3-ab2=2、(a-b)(x-y)-(b-a)(x+y)=3、(a+b)2+2(a+b)-15=

  4、-1-2a-a2=5、x2-6x+9-y26、x2-4y2+x+2y=

  例3、分解因式

  1、72-2(13x-7)22、8a2b2-2a4b-8b3

  三、知識(shí)應(yīng)用

  1、(4x2-9y2)÷(2x+3y)2、(a2b-ab2)÷(b-a)

  3、解方程:(1)x2=5x(2)(x-2)2=(2x+1)2

  4、.若x=-3,求20x2-60x的值.5、1993-199能被200整除嗎?還能被哪些整數(shù)整除?

  四、拓展應(yīng)用

  1.計(jì)算:7652×17-2352×17解:7652×17-2352×17=17(7652-2352)=17(765+235)(765-235)

  2、20042+20xx被20xx整除嗎?

  3、若n是整數(shù),證明(2n+1)2-(2n-1)2是8的倍數(shù).

  五、課堂小結(jié):今天你對(duì)因式分解又有哪些新的認(rèn)識(shí)?

  因式分解教案 8

  學(xué)習(xí)目標(biāo)

  1、了解因式分解的意義以及它與正式乘法的關(guān)系。

  2、能確定多項(xiàng)式各項(xiàng)的公因式,會(huì)用提公因式法分解因式。

  學(xué)習(xí)重點(diǎn):

  能用提公因式法分解因式。

  學(xué)習(xí)難點(diǎn):

  確定因式的公因式。

  學(xué)習(xí)關(guān)鍵:

  在確定多項(xiàng)式各項(xiàng)公因式時(shí),應(yīng)抓住各項(xiàng)的公因式來(lái)提公因式。

  學(xué)習(xí)過(guò)程

  一.知識(shí)回顧

  1、計(jì)算

  (1)、n(n+1)(n-1)(2)、(a+1)(a-2)

  (3)、m(a+b)(4)、2ab(x-2y+1)

  二、自主學(xué)習(xí)

  1、閱讀課文P72-73的內(nèi)容,并回答問(wèn)題:

  (1)知識(shí)點(diǎn)一:把一個(gè)多項(xiàng)式化為幾個(gè)整式的xxxxxxxxxx的形式叫做xxxxxxxxxxxx,也叫做把這個(gè)多項(xiàng)式xxxxxxxxxx。

  (2)、知識(shí)點(diǎn)二:由m(a+b+c)=ma+mb+mc可得

  ma+mb+mc=m(a+b+c)

  我們來(lái)分析一下多項(xiàng)式ma+mb+mc的`特點(diǎn);它的每一項(xiàng)都含有一個(gè)相同的因式m,m叫做各項(xiàng)的xxxxxxxxx。如果把這個(gè)xxxxxxxxx提到括號(hào)外面,這樣

  ma+mb+mc就分解成兩個(gè)因式的積m(a+b+c),即ma+mb+mc=m(a+b+c)。這種xxxxxxxx的方法叫做xxxxxxxx。

  2、練一練。P73練習(xí)第1題。

  三、合作探究

  1、(1)m(a-b)=ma-mb(2)a(x-y+2)=ax-ay+2a,由上可知,整式乘法是一種變形,左邊是幾個(gè)整式乘積形式,右邊是一個(gè)多項(xiàng)式。、

  2、(1)ma-mb=m(a-b)(2)ax-ay+2a=a(x-y+2),由此可知,因式分解也是一種變形,左邊是xxxxxxxxxxxxx,右邊是xxxxxxxxxxxxx。

  3、下列是由左到右的變形,哪些屬于整式乘法,哪些屬于因式分解?

  (1)(a+b)(a-b)=a-b(2)a+2ab+b=(a+b)

  (3)-6x3+18x2-12x=-16(x2-3x+2)(4)(x-1)(x+1)=x2-1

  4、準(zhǔn)確地確定公因式時(shí)提公因式法分解因式的關(guān)鍵,確定公因式可分兩步進(jìn)行:

  (1)確定公因式的數(shù)字因數(shù),當(dāng)各項(xiàng)系數(shù)都是整數(shù)時(shí),他們的最大公約數(shù)就是公因式的數(shù)字因數(shù)。

  例如:8a2b-72abc公因式的數(shù)字因數(shù)為8。

  (2)確定公因式的字母及其指數(shù),公因式的字母應(yīng)是多項(xiàng)式各項(xiàng)都含有的字母,其指數(shù)取最低的。故8a2b-72abc的公因式是8ab

  四、展示提升

  1、填空(1)a2b-ab2=ab(xxxxxxxx)

  (2)-4a2b+8ab-4b分解因式為xxxxxxxxxxxxxxxxxx

  (3)分解因式4x2+12x3+4x=xxxxxxxxxxxxxxxxxx

  (4)xxxxxxxxxxxxxxxxxx=-2a(a-2b+3c)

  2、P73練習(xí)第2題和第3題

  五、達(dá)標(biāo)測(cè)試。

  1、下列各式從左到右的變形中,哪些是整式乘法?哪些是因式分解?哪些兩者都不是?

  (1)ax+bx+cx+m=x(a+b+c)+m(2)mx-2m=m(x-2)

  (3)2a(b+c)=2ab+2ac(4)(x-3)(x+3)=(x+3)(x-3)

  (5)x2-y2-1=(x+y)(x-y)-1(6)(x-2)(x+2)=x2-4

  2.課本P77習(xí)題8.5第1題

  學(xué)習(xí)反思

  一、知識(shí)點(diǎn)

  二、易錯(cuò)題

  三、你的困惑

  因式分解教案 9

  教學(xué)目標(biāo)

  教學(xué)知識(shí)點(diǎn)

  使學(xué)生了解因式分解的好處,明白它與整式乘法在整式變形過(guò)程中的相反關(guān)系。

  潛力訓(xùn)練要求。

  透過(guò)觀察,發(fā)現(xiàn)分解因式與整式乘法的關(guān)系,培養(yǎng)學(xué)生觀察潛力和語(yǔ)言概括潛力。

  情感與價(jià)值觀要求。

  透過(guò)觀察,推導(dǎo)分解因式與整式乘法的關(guān)系,讓學(xué)生了解事物間的因果聯(lián)系。

  教學(xué)重點(diǎn)

  1、理解因式分解的好處。

  2、識(shí)別分解因式與整式乘法的關(guān)系。

  教學(xué)難點(diǎn)透過(guò)觀察,歸納分解因式與整式乘法的關(guān)系。

  教學(xué)方法觀察討論法

  教學(xué)過(guò)程

  Ⅰ、創(chuàng)設(shè)問(wèn)題情境,引入新課

  導(dǎo)入:由(a+b)(a-b)=a2-b2逆推a2-b2=(a+b)(a-b)

  Ⅱ、講授新課

  1、討論993-99能被100整除嗎?你是怎樣想的?與同伴交流。

  993-99=99×98×100

  2、議一議

  你能?chē)L試把a(bǔ)3-a化成n個(gè)整式的乘積的形式嗎?與同伴交流。

  3、做一做

 。1)計(jì)算下列各式:①(m+4)(m-4)=_________;②(y-3)2=__________;

 、3x(x-1)=_______;④m(a+b+c)=_______;⑤a(a+1)(a-1)=________

  (2)根據(jù)上面的算式填空:

 、3x2-3x=()();②m2-16=()();③ma+mb+mc=()();

 、躽2-6y+9=()2。⑤a3-a=()()。

  定義:把一個(gè)多項(xiàng)式化成幾個(gè)整式的積的形式,叫做把這個(gè)多項(xiàng)式分解因式。

  4。想一想

  由a(a+1)(a-1)得到a3-a的.變形是什么運(yùn)算?由a3-a得到a(a+1)(a-1)的變形與這種運(yùn)算有什么不同?你還能舉一些類(lèi)似的例子加以說(shuō)明嗎?

  下面我們一起來(lái)總結(jié)一下。

  如:m(a+b+c)=ma+mb+mc(1)

  ma+mb+mc=m(a+b+c)(2)

  5、整式乘法與分解因式的聯(lián)系和區(qū)別

  ma+mb+mcm(a+b+c)。因式分解與整式乘法是相反方向的變形。

  6。例題下列各式從左到右的變形,哪些是因式分解?

  (1)4a(a+2b)=4a2+8ab;(2)6ax-3ax2=3ax(2-x);

 。3)a2-4=(a+2)(a-2);(4)x2-3x+2=x(x-3)+2。

 、、課堂練習(xí)

  P40隨堂練習(xí)

  Ⅳ、課時(shí)小結(jié)

  本節(jié)課學(xué)習(xí)了因式分解的好處,即把一個(gè)多項(xiàng)式化成幾個(gè)整式的積的形式;還學(xué)習(xí)了整式乘法與分解因式的關(guān)系是相反方向的變形。

  因式分解教案 10

  學(xué)習(xí)目標(biāo)

  1、 學(xué)會(huì)用公式法因式法分解

  2、綜合運(yùn)用提取公式法、公式法分解因式

  學(xué)習(xí)重難點(diǎn) 重點(diǎn):

  完全平方公式分解因式.

  難點(diǎn):綜合運(yùn)用兩種公式法因式分解

  自學(xué)過(guò)程設(shè)計(jì)

  完全平方公式:

  完全平方公式的逆運(yùn)用:

  做一做:

  1.(1)16x2-8x+_______=(4x-1)2;

  (2)_______+6x+9=(x+3)2;

  (3)16x2+_______+9y2=(4x+3y)2;

  (4)(a-b)2-2(a-b)+1=(______-1)2.

  2.在代數(shù)式(1)a2+ab+b2;(2)4a2+4a+1;(3)a2-b2+2ab;(4)-4a2+12ab-9b2中,可用完全平方公式因式分解的是_________(填序號(hào))

  3.下列因式分解正確的是( )

  A.x2+y2=(x+y)2 B.x2-xy+x2=(x-y)2

  C.1+4x-4x2=(1-2x)2 D.4-4x+x2=(x-2)2

  4.分解因式:(1)x2-22x+121 (2)-y2-14y-49 (3)(a+b)2+2(a+b)+1

  5.計(jì)算:20062-40102006+20052=___________________.

  6.若x+y=1,則 x2+xy+ y2的值是_________________.

  想一想

  你還有哪些地方不是很懂?請(qǐng)寫(xiě)出來(lái)。

  ____________________________________________________________________________________ 預(yù)習(xí)展示一:

  1.判別下列各式是不是完全平方式.

  2、把下列各式因式分解:

  (1)-x2+4xy-4y2

  (2)3ax2+6axy+3ay2

  (3)(2x+y)2-6(2x+y)+9

  應(yīng)用探究:

  1、用簡(jiǎn)便方法計(jì)算

  49.92+9.98 +0.12

  拓展提高:

  (1)( a2+b2)( a2+b2 10)+25=0 求a2+b2

  (2)4x2+y2-4xy-12x+6y+9=0

  求x、y關(guān)系

  (3)分解因式:m4+4

  教后反思 考察利用公式法因式分解的.題目不會(huì)很難,但是需要學(xué)生記住公式的形式,之后利用公式把式子進(jìn)行變形,從而達(dá)到進(jìn)行因式分解的目的,但是這里有用到實(shí)際中去的例子,對(duì)學(xué)生來(lái)說(shuō)會(huì)難一些。

  因式分解教案 11

  教學(xué)目標(biāo):

  1、學(xué)生能夠理解因式分解的概念。

  2、學(xué)生能夠應(yīng)用因式分解解決實(shí)際問(wèn)題。

  3、學(xué)生能夠簡(jiǎn)化代數(shù)式并解決相關(guān)的數(shù)學(xué)題目。

  教學(xué)準(zhǔn)備:

  1、白板、黑板或投影儀來(lái)展示教學(xué)內(nèi)容。

  2、學(xué)生練習(xí)冊(cè)或作業(yè)本。

  教學(xué)步驟:

  步驟1:引入因式分解概念(10分鐘)

  學(xué)生會(huì)發(fā)現(xiàn)數(shù)學(xué)中的代數(shù)式經(jīng)常出現(xiàn)多個(gè)項(xiàng)的乘積,比如(a+b)、(a-b)等。引入因式分解的概念,解釋代數(shù)式可以進(jìn)行因式分解,從而更好地理解和簡(jiǎn)化代數(shù)式。

  步驟2:理解因式分解的重要性(15分鐘)

  在這一部分,老師可以通過(guò)大量的實(shí)例,如多項(xiàng)式的乘積、簡(jiǎn)化分?jǐn)?shù)等,來(lái)幫助學(xué)生理解因式分解在求解問(wèn)題和簡(jiǎn)化計(jì)算中的重要性。

  步驟3:展示因式分解的步驟(10分鐘)

  解釋因式分解的步驟,例如將代數(shù)式進(jìn)行拆分,找到公因子,應(yīng)用分配律,最終將代數(shù)式簡(jiǎn)化為乘積的形式。通過(guò)在黑板上解決一些示例問(wèn)題,讓學(xué)生理解具體的步驟。

  步驟4:實(shí)際應(yīng)用案例(20分鐘)

  給學(xué)生一些實(shí)際的'應(yīng)用案例,如利用因式分解解決面積和周長(zhǎng)的問(wèn)題,解決一元二次方程的根等。讓學(xué)生通過(guò)解題來(lái)鞏固他們對(duì)因式分解的理解并應(yīng)用所學(xué)知識(shí)。

  步驟5:團(tuán)隊(duì)合作活動(dòng)(15分鐘)

  將學(xué)生分成小組,給每個(gè)小組一個(gè)因式分解的問(wèn)題。要求學(xué)生協(xié)作解決問(wèn)題,并在規(guī)定時(shí)間內(nèi)完成,然后展示他們的解決方案。通過(guò)這種互動(dòng)活動(dòng),學(xué)生可以互相學(xué)習(xí)并鞏固因式分解的知識(shí)。

  步驟6:總結(jié)和擴(kuò)展(10分鐘)

  總結(jié)因式分解的概念和步驟,并鼓勵(lì)學(xué)生在課后進(jìn)一步探索因式分解的應(yīng)用,如解決更復(fù)雜的代數(shù)問(wèn)題,求解方程等。鼓勵(lì)學(xué)生發(fā)現(xiàn)數(shù)學(xué)中的因式分解的重要性,并將其擴(kuò)展到更廣泛的數(shù)學(xué)領(lǐng)域。

  擴(kuò)展活動(dòng):

  1、請(qǐng)學(xué)生自行搜索因式分解的應(yīng)用實(shí)例,并在下節(jié)課上進(jìn)行分享。

  2、提供更復(fù)雜的代數(shù)式讓學(xué)生進(jìn)行因式分解,并進(jìn)行討論和解釋。

  3、給學(xué)生類(lèi)似于迷思或解謎的數(shù)學(xué)問(wèn)題,讓他們運(yùn)用因式分解的技巧解決問(wèn)題。

  教學(xué)評(píng)估方式:

  1、在課堂上觀察學(xué)生對(duì)因式分解概念的理解程度。

  2、讓學(xué)生解決一些基本的因式分解題目,并批改他們的答案。

  3、觀察學(xué)生在團(tuán)隊(duì)合作活動(dòng)中的表現(xiàn)和解決問(wèn)題的能力。

  結(jié)語(yǔ):

  通過(guò)這份因式分解英語(yǔ)教案,學(xué)生能夠在實(shí)際例子和互動(dòng)活動(dòng)中更好地理解因式分解的概念和步驟,并學(xué)會(huì)應(yīng)用因式分解解決數(shù)學(xué)問(wèn)題。這樣的教學(xué)方法將幫助學(xué)生培養(yǎng)數(shù)學(xué)思維能力和解決問(wèn)題的技巧。通過(guò)互動(dòng)和擴(kuò)展活動(dòng),學(xué)生還能夠深入探索因式分解在數(shù)學(xué)中的更多應(yīng)用,進(jìn)一步拓寬他們的知識(shí)面。

  因式分解教案 12

  一、案例背景

  現(xiàn)代教育理論認(rèn)為,教師為主導(dǎo),學(xué)生為主體,教師應(yīng)當(dāng)充分調(diào)動(dòng)學(xué)生的學(xué)習(xí)積極性,使之主動(dòng)地探索、研究,讓學(xué)生都參與到課堂活動(dòng)中,透過(guò)學(xué)生自我感受,培養(yǎng)學(xué)生觀察、分析、歸納的潛力,逐步提高自學(xué)潛力,獨(dú)立思考的潛力,發(fā)現(xiàn)問(wèn)題和解決問(wèn)題的潛力,逐漸養(yǎng)成良好的個(gè)性品質(zhì)。

  因式分解是代數(shù)式的一種重要恒等變形。它是學(xué)習(xí)分式的基礎(chǔ),又在恒等變形、代數(shù)式的運(yùn)算、解方程、函數(shù)中有廣泛的應(yīng)用。

  二、案例分析

  教學(xué)過(guò)程設(shè)計(jì)

 。ㄒ唬呵榫骋搿

  情境一:如何計(jì)算375×2.8+375×4.9+375×2.3你是怎樣想的

  問(wèn)題:為什么375×2.8+375×4.9+375×2.3能夠?qū)懗?75×(2.4+4.9+2.3)依據(jù)是什么

  【評(píng)析】:(1)、復(fù)習(xí)舊知,加深記憶,同時(shí)為下面的學(xué)習(xí)作鋪墊。

 。2)、學(xué)生對(duì)這樣的問(wèn)題有興趣,能迅速找出一些不同的速算方法,很快想出乘法分配律的逆向變形,設(shè)置這樣的情境,由數(shù)推廣到式,效率較高。還為新課資料的學(xué)習(xí)創(chuàng)設(shè)了良好的情緒和氛圍。

  情境二:分析比較

  把單項(xiàng)式乘多項(xiàng)式的乘法法則

  a(b+c+d)=ab+ac+ad①

  反過(guò)來(lái),就得到

  ab+ac+ad=a(b+c+d)②

  思考(1)你是怎樣認(rèn)識(shí)①式和②式之間的關(guān)系的

 。2)②式左邊的多項(xiàng)式的每一項(xiàng)有相同的因式嗎你能說(shuō)出這個(gè)因式嗎

  【評(píng)析】:(1)、探索因式分解的方法,事實(shí)上是對(duì)整式乘法的再認(rèn)識(shí),因此,在教學(xué)過(guò)程中,教師要借助學(xué)生已有的整式乘法運(yùn)算的基礎(chǔ),給他們留下充分探索與交流的時(shí)間和空間,讓他們經(jīng)歷從整式乘法到因式分解的這種互逆變形的過(guò)程。

  (2)、本題注重培養(yǎng)學(xué)生觀察、分析、歸納的潛力,并向?qū)W生滲透比較、類(lèi)比的數(shù)學(xué)思想方法。

  (二)『探究因式分解』

  1、認(rèn)識(shí)公因式

 。1)、【概念1】:

  (2)、議一議

  下列多項(xiàng)式的各項(xiàng)是否有公因式如果有,試找出公因式。

  ①多項(xiàng)式a2b+ab2的公因式是ab,……公因式是字母;

 、诙囗(xiàng)式3x2—3y的公因式是3,……公因式是數(shù)字系數(shù);

 、鄱囗(xiàng)式3x2—6x3的公因式是3x2,……公因式是數(shù)學(xué)系數(shù)與字母的乘積。

  分析并猜想

  確定一個(gè)多項(xiàng)式的公因式時(shí),要從和兩方面,分別進(jìn)行思考。

  ①如何確定公因式的數(shù)字系數(shù)

 、谌绾未_定公因式的字母字母的指數(shù)怎樣定

  練一練:寫(xiě)出下列多項(xiàng)式各項(xiàng)的公因式

 。1)8x—16(2)2a2b—ab2

 。3)4x2—2x(4)6m2n—4m3n3—2mn

  【評(píng)析】:(1)、教師不要直接給出找多項(xiàng)式公因式的方法和解釋?zhuān)枪膭?lì)學(xué)生自主探索,根據(jù)自己的體驗(yàn)來(lái)積累找公因式的方法和經(jīng)驗(yàn),并能透過(guò)相互間的交流來(lái)糾正解題中的常見(jiàn)錯(cuò)誤。

  (2)、對(duì)公因式的理解是因式分解的基礎(chǔ),所以在解決這個(gè)問(wèn)題時(shí)要注意配以練習(xí),個(gè)性是多次方及系數(shù)的公因式,要讓學(xué)生注意。

 。3)、找公因式的一般步驟可歸納為:一看系數(shù)二看字母三看指數(shù)。

  2、認(rèn)識(shí)因式分解

  【概念2】:把一個(gè)多項(xiàng)式化成幾個(gè)整式積的形式的叫做把這個(gè)多項(xiàng)式因式分解。

 。ㄕn本)P71練一練第1題

 。1)、下列各式由左邊到右邊的變形,哪些是因式分解,哪些不是

  ①。ab+ac+d=a(b+c)+d

 、凇2—1=(a+1)(a—1)

 、。(a+1)(a—1)=a2—1

  (2)、你認(rèn)為提公因式法分解因式和單項(xiàng)式乘多項(xiàng)式這兩種變形是怎樣的關(guān)系從中你得到什么啟發(fā)

  【評(píng)析】:(1)、本題主要是為了加深學(xué)生對(duì)因式分解概念的理解,使學(xué)生清楚因式分解的結(jié)果應(yīng)是整式乘積的形式。

  (2)、教師安排本題意圖就是引導(dǎo)學(xué)生進(jìn)行分析討論,鼓勵(lì)學(xué)生勤于思考,各抒己見(jiàn),培養(yǎng)學(xué)生的邏輯思維潛力和表達(dá)、交流潛力。讓學(xué)生在主動(dòng)學(xué)習(xí)中掌握了因式分解是整式乘法的互逆的過(guò)程,以及理解利用它們之間的關(guān)系進(jìn)行因式分解的這種思想,從而降低了本節(jié)課的難點(diǎn)。

 。ㄈ豪}研究』

  例1:把下列各式分解因式

 。1)6a3b—9a2b2c(2)—2m3+8m2—12m

  解:(1)6a3b—9a2b2c

  =3a2b·2a—3a2b·3bc(找公因式,把各項(xiàng)分成公因式與一個(gè)單項(xiàng)式的乘積的形式)

  =3a2b(2a—3bc)(提取公因式)

 。2)—2m3+8m2—12m

  =—(2m·m2—2m·4m+2m·6)(首項(xiàng)符號(hào)為負(fù),先將多項(xiàng)式放在帶負(fù)號(hào)的括號(hào)內(nèi),注意放入括號(hào)中各項(xiàng)符號(hào)的變化。)

  =—2m(m2—4m+6)(提取公因式)

  【評(píng)析】:(1)、因式分解的概念和好處需要學(xué)生多層次的感受,教師不要期望一次透徹的講解和分析就能讓學(xué)生完全掌握。這時(shí)先讓學(xué)生進(jìn)行初步的感受,再透過(guò)不同形式的練習(xí)增強(qiáng)對(duì)概念的理解例。

 。2)、教師在講解例題時(shí),應(yīng)鼓勵(lì)學(xué)生自己動(dòng)手找公因式,讓學(xué)生透過(guò)動(dòng)手動(dòng)腦、實(shí)際操作,教師可在下面收集錯(cuò)誤,再加以點(diǎn)評(píng),加深對(duì)因式分解方法的理解。

 。3)、教學(xué)中教師不能簡(jiǎn)單地要求學(xué)生記憶運(yùn)算法則,更要重視學(xué)生對(duì)算理的理解,讓學(xué)生嘗試說(shuō)出每一步運(yùn)算的道理,有意識(shí)地培養(yǎng)學(xué)生有條理地思考和語(yǔ)言表達(dá)潛力。

  本題的易錯(cuò)點(diǎn):

 。1)、漏項(xiàng):提公因式后括號(hào)中的項(xiàng)數(shù)應(yīng)與原多項(xiàng)式的項(xiàng)數(shù)一樣,這樣可檢查是否漏項(xiàng)。

 。2)、符號(hào):由于添括號(hào)法則在上學(xué)期沒(méi)有涉及,所以有必要在此處強(qiáng)調(diào),添括號(hào)法則:括號(hào)前面是“+”號(hào),括到括號(hào)里的各項(xiàng)都不變號(hào);括號(hào)前面是“—”號(hào),括到括號(hào)里的各項(xiàng)都要變號(hào)。

  (四)『鞏固練習(xí)』

  練一練:辨別下列因式分解的正誤

 。1)8a3b2—12ab4+4ab=4ab(2a2b—3b3)

  (2)4x2—12x3=2x2(2—6x)

 。3)a3—a2=a2(a—1)=a3—a2

  解(1)錯(cuò)誤,分解因式后,括號(hào)內(nèi)的多項(xiàng)式的項(xiàng)數(shù)漏掉了一項(xiàng)。

 。2)錯(cuò)誤,分解因式后,括號(hào)內(nèi)的多項(xiàng)式中仍有公因式。

  (3)錯(cuò)誤,分解因式后,又回到到了整式的乘法。

  【評(píng)析】:(1)、這些多是學(xué)生易錯(cuò)的,本題設(shè)置的目的`是讓學(xué)生運(yùn)用例1的成果準(zhǔn)確辨別因式分解中的常見(jiàn)錯(cuò)誤,對(duì)因式分解的認(rèn)識(shí)更加清晰。本例仍采用小組討論、交流的方式,讓學(xué)生都參與到課堂活動(dòng)中。

 。2)、當(dāng)多項(xiàng)式的某一項(xiàng)恰好是公因式時(shí),這一項(xiàng)應(yīng)看成它與1的乘積,提公因式后剩下的應(yīng)是1.1作為項(xiàng)的系數(shù)通?墒÷,但如果單獨(dú)成一項(xiàng)時(shí),它在因式分解時(shí)不能漏項(xiàng)。

 。3)、進(jìn)行多項(xiàng)式分解因式時(shí),務(wù)必把每一個(gè)因式都分解到不能分解為止。

  (4)、教師安排這一過(guò)程,完全放手讓學(xué)生自主進(jìn)行,充分暴露學(xué)生的思維過(guò)程,展現(xiàn)學(xué)生生動(dòng)活潑、主動(dòng)求知和富有的個(gè)性,使學(xué)生真正成為學(xué)習(xí)的主體,使因式分解與整式的乘法的關(guān)系得到真正強(qiáng)化,也分散了本節(jié)課的難點(diǎn)。

 。ㄎ澹合胍幌搿唬

  如何把多項(xiàng)式3a(x+y)—2b(x+y)分解因式

  解:3a(x+y)—2b(x+y)=(x+y)(3a—2b)

  評(píng)析:公因式(x+y)是多項(xiàng)式,屬較高要求,當(dāng)多項(xiàng)式中有相同的整體(多項(xiàng)式)時(shí),不要把它拆開(kāi),提取公因式時(shí)把它整體提出來(lái),有時(shí)還需要做適當(dāng)變形,如:(2—a)=—(a—2),教學(xué)時(shí)可初步滲透換元思想,將換元思想引入因式分解,可使問(wèn)題化繁為簡(jiǎn)。

  【概念3】把多項(xiàng)式化成公因式與另一個(gè)多項(xiàng)式的積的形式,這種分解因式的方法叫做提公因式法。

  初中因式分解教學(xué)反思

  1、本節(jié)課根據(jù)學(xué)生的知識(shí)結(jié)構(gòu),采用的教學(xué)流程是:提出問(wèn)題—實(shí)際操作—?dú)w納方法—課堂小結(jié)—布置作業(yè)六部分,這一流程體現(xiàn)了知識(shí)發(fā)生、構(gòu)成和發(fā)展的過(guò)程,讓學(xué)生進(jìn)一步發(fā)展觀察、歸納、類(lèi)比、概括、逆向思考等潛力,發(fā)展有條理思考及語(yǔ)言表達(dá)潛力;

  2、分解因式是一種變形,變形的結(jié)果應(yīng)是整式的積的形式,分解因式與整式的乘法是互逆關(guān)系,即把分解因式看作是一個(gè)變形的過(guò)程,那么整式乘法又是分解因式的逆過(guò)程,這種互逆關(guān)系一方面體現(xiàn)二者之間的密切聯(lián)系,另一方面又說(shuō)明了二者之間的根本區(qū)別。探索因式分解的方法,事實(shí)上是對(duì)整式乘法的再認(rèn)識(shí),因此,在教學(xué)過(guò)程中,教師要借助學(xué)生已有的整式乘法運(yùn)算的基礎(chǔ),給學(xué)生帶給豐富搞笑的問(wèn)題情境,并給他們留下充分探索與交流的時(shí)間和空間,讓他們經(jīng)歷從整式乘法到因式分解的這種互逆變形的過(guò)程;

  3、在提公因式方面,學(xué)生對(duì)公因式的認(rèn)識(shí)不足,對(duì)提公因式的要求不清楚,造成了學(xué)生在做分解因式時(shí)出現(xiàn)了以下錯(cuò)誤:

 。1)公因式找錯(cuò);

 。2)公因式找不完整(如:漏掉公因式的系數(shù)(或系數(shù)不是取各項(xiàng)系數(shù)的最大公約數(shù))、公因式中內(nèi)含多項(xiàng)式時(shí),漏掉系數(shù)或字母因數(shù)),導(dǎo)致因式分解不徹底;

  4、由于在七年級(jí)上冊(cè)教材中沒(méi)有涉及添括號(hào)法則,所以學(xué)生在分解第一項(xiàng)系數(shù)是負(fù)數(shù)的多項(xiàng)式時(shí),出現(xiàn)了很多符號(hào)錯(cuò)誤;

  因式分解是一個(gè)重點(diǎn),也是一個(gè)難點(diǎn),以上存在問(wèn)題在以后的教學(xué)中有待進(jìn)一步加強(qiáng)。

  因式分解教案 13

  教學(xué)目標(biāo):

  1.知識(shí)與技能:掌握運(yùn)用提公因式法、公式法分解因式,培養(yǎng)學(xué)生應(yīng)用因式分解解決問(wèn)題的能力.

  2.過(guò)程與方法:經(jīng)歷探索因式分解方法的過(guò)程,培養(yǎng)學(xué)生研討問(wèn)題的方法,通過(guò)猜測(cè)、推理、驗(yàn)證、歸納等步驟,得出因式分解的方法.

  3.情感態(tài)度與價(jià)值觀:通過(guò)因式分解的學(xué)習(xí),使學(xué)生體會(huì)數(shù)學(xué)美,體會(huì)成功的自信和團(tuán)結(jié)合作精神,并體會(huì)整體數(shù)學(xué)思想和轉(zhuǎn)化的數(shù)學(xué)思想.

  教學(xué)重、難點(diǎn):用提公因式法和公式法分解因式.

  教具準(zhǔn)備:多媒體課件(小黑板)

  教學(xué)方法:活動(dòng)探究法

  教學(xué)過(guò)程:

  引入:在整式的變形中,有時(shí)需要將一個(gè)多項(xiàng)式寫(xiě)成幾個(gè)整式的乘積的形式,這種變形就是因式分解.什么叫因式分解?

  知識(shí)詳解

  知識(shí)點(diǎn)1 因式分解的定義

  把一個(gè)多項(xiàng)式化成幾個(gè)整式的積的形式,這種變形叫做把這個(gè)多項(xiàng)式因式分解,也叫做把這個(gè)多項(xiàng)式分解因式.

  【說(shuō)明】 (1)因式分解與整式乘法是相反方向的變形.

  例如:

  (2)因式分解是恒等變形,因此可以用整式乘法來(lái)檢驗(yàn).

  怎樣把一個(gè)多項(xiàng)式分解因式?

  知識(shí)點(diǎn)2 提公因式法

  多項(xiàng)式ma+mb+mc中的各項(xiàng)都有一個(gè)公共的因式m,我們把因式m叫做這個(gè)多項(xiàng)式的公因式.ma+mb+mc=m(a+b+c)就是把ma+mb+mc分解成兩個(gè)因式乘積的形式,其中一個(gè)因式是各項(xiàng)的公因式m,另一個(gè)因式(a+b+c)是ma+mb+mc除以m所得的商,像這種分解因式的方法叫做提公因式法.例如:x2-x=x(x-1),8a2b-4ab+2a=2a(4ab-2b+1).

  探究交流

  下列變形是否是因式分解?為什么?

  (1)3x2y-xy+y=y(3x2-x); (2)x2-2x+3=(x-1)2+2;

  (3)x2y2+2xy-1=(xy+1)(xy-1); (4)xn(x2-x+1)=xn+2-xn+1+xn.

  典例剖析 師生互動(dòng)

  例1 用提公因式法將下列各式因式分解.

  (1) -x3z+x4y; (2) 3x(a-b)+2y(b-a);

  分析:(1)題直接提取公因式分解即可,(2)題首先要適當(dāng)?shù)淖冃? 再把b-a化成-(a-b),然后再提取公因式.

  小結(jié) 運(yùn)用提公因式法分解因式時(shí),要注意下列問(wèn)題:

  (1)因式分解的結(jié)果每個(gè)括號(hào)內(nèi)如有同類(lèi)項(xiàng)要合并,而且每個(gè)括號(hào)內(nèi)不能再分解.

  (2)如果出現(xiàn)像(2)小題需統(tǒng)一時(shí),首先統(tǒng)一,盡可能使統(tǒng)一的個(gè)數(shù)少。這時(shí)注意到(a-b)n=(b-a)n(n為偶數(shù)).

  (3)因式分解最后如果有同底數(shù)冪,要寫(xiě)成冪的形式.

  學(xué)生做一做 把下列各式分解因式.

  (1) (2a+b)(2a-3b)+(2a+5b)(2a+b) ;(2) 4p(1-q)3+2(q-1)2

  知識(shí)點(diǎn)3 公式法

  (1)平方差公式:a2-b2=(a+b)(a-b).即兩個(gè)數(shù)的平方差,等于這兩個(gè)數(shù)的和與這個(gè)數(shù)的差的積.例如:4x2-9=(2x)2-32=(2x+3)(2x-3).

  (2)完全平方公式:a2±2ab+b2=(a±b)2.其中,a2±2ab+b2叫做完全平方式.即兩個(gè)數(shù)的平方和加上(或減去)這兩個(gè)數(shù)的積的.2倍,等于這兩個(gè)數(shù)的和(或差)的平方.例如:4x2-12xy+9y2=(2x)2-2·2x·3y+(3y)2=(2x-3y)2.

  探究交流

  下列變形是否正確?為什么?

  (1)x2-3y2=(x+3y)(x-3y);(2)4x2-6xy+9y2=(2x-3y)2;(3)x2-2x-1=(x-1)2.

  例2 把下列各式分解因式.

  (1) (a+b)2-4a2;(2)1-10x+25x2;(3)(m+n)2-6(m+n)+9.

  分析:本題旨在考查用完全平方公式分解因式.

  學(xué)生做一做 把下列各式分解因式.

  (1)(x2+4)2-2(x2+4)+1; (2)(x+y)2-4(x+y-1).

  綜合運(yùn)用

  例3 分解因式.

  (1)x3-2x2+x; (2) x2(x-y)+y2(y-x);

  分析:本題旨在考查綜合運(yùn)用提公因式法和公式法分解因式.

  小結(jié) 解因式分解題時(shí),首先考慮是否有公因式,如果有,先提公因式;如果沒(méi)有公因式是兩項(xiàng),則考慮能否用平方差公式分解因式. 是三項(xiàng)式考慮用完全平方式,最后,直到每一個(gè)因式都不能再分解為止.

  探索與創(chuàng)新題

  例4 若9x2+kxy+36y2是完全平方式,則k= .

  分析:完全平方式是形如:a2±2ab+b2即兩數(shù)的平方和與這兩個(gè)數(shù)乘積的2倍的和(或差).

  學(xué)生做一做 若x2+(k+3)x+9是完全平方式,則k= .

  課堂小結(jié)

  用提公因式法和公式法分解因式,會(huì)運(yùn)用因式分解解決計(jì)算問(wèn)題.

  各項(xiàng)有"公"先提"公",首項(xiàng)有負(fù)常提負(fù),某項(xiàng)提出莫漏"1",括號(hào)里面分到"底"。

  自我評(píng)價(jià) 知識(shí)鞏固

  1.若x2+2(m-3)x+16是完全平方式,則m的值等于( )

  A.3 B.-5 C.7. D.7或-1

  2.若(2x)n-81=(4x2+9)(2x+3)(2x-3),則n的值是( )

  A.2 B.4 C.6 D.8

  3.分解因式:4x2-9y2= .

  4.已知x-y=1,xy=2,求x3y-2x2y2+xy3的值.

  5.把多項(xiàng)式1-x2+2xy-y2分解因式

  思考題 分解因式(x4+x2-4)(x4+x2+3)+10.

  因式分解教案 14

  教學(xué)目標(biāo):

  1、掌握用平方差公式分解因式的方法;掌握提公因式法,平方差公式法分解因式綜合應(yīng)用;能利用平方差公式法解決實(shí)際問(wèn)題。

  2、經(jīng)歷探究分解因式方法的過(guò)程,體會(huì)整式乘法與分解因式之間的聯(lián)系。

  3、通過(guò)對(duì)公式的探究,深刻理解公式的應(yīng)用,并會(huì)熟練應(yīng)用公式解決問(wèn)題。

  4、通過(guò)探究平方差公式特點(diǎn),學(xué)生根據(jù)公式自己取值設(shè)計(jì)問(wèn)題,并根據(jù)公式自己解決問(wèn)題的過(guò)程,讓學(xué)生獲得成功的體驗(yàn),培養(yǎng)合作交流意識(shí)。

  教學(xué)重點(diǎn):

  應(yīng)用平方差公式分解因式.

  教學(xué)難點(diǎn):

  靈活應(yīng)用公式和提公因式法分解因式,并理解因式分解的要求.

  教學(xué)過(guò)程:

  一、復(fù)習(xí)準(zhǔn)備 導(dǎo)入新課

  1、什么是因式分解?判斷下列變形過(guò)程,哪個(gè)是因式分解?

  ①(x+2)(x-2)= ②

 、

  2、我們已經(jīng)學(xué)過(guò)的因式分解的方法有什么?將下列多項(xiàng)式分解因式。

  x2+2x

  a2b-ab

  3、根據(jù)乘法公式進(jìn)行計(jì)算:

  (1)(x+3)(x-3)= (2)(2y+1)(2y-1)= (3)(a+b)(a-b)=

  二、合作探究 學(xué)習(xí)新知

  (一) 猜一猜:你能將下面的多項(xiàng)式分解因式嗎?

 。1)= (2)= (3)=

  (二)想一想,議一議: 觀察下面的'公式:

  =(a+b)(a—b)(

  這個(gè)公式左邊的多項(xiàng)式有什么特征:_____________________________________

  公式右邊是__________________________________________________________

  這個(gè)公式你能用語(yǔ)言來(lái)描述嗎? _______________________________________

  (三)練一練:

  1、下列多項(xiàng)式能否用平方差公式來(lái)分解因式?為什么?

  ① ② ③ ④

  2、你能把下列的數(shù)或式寫(xiě)成冪的形式嗎?

  (1)( ) (2)( ) (3)( ) (4)= ( ) (5) 36a4=( )2 (6) 0.49b2=( )2 (7) 81n6=( )2 (8) 100p4q2=( )2

 。ㄋ模┳鲆蛔觯

  例3 分解因式:

  (1) 4x2- 9 (2) (x+p)2- (x+q)2

  (五)試一試:

  例4 下面的式子你能用什么方法來(lái)分解因式呢?請(qǐng)你試一試。

  (1) x4- y4 (2) a3b- ab

 。┫胍幌耄

  某學(xué)校有一個(gè)邊長(zhǎng)為85米的正方形場(chǎng)地,現(xiàn)在場(chǎng)地的四個(gè)角分別建一個(gè)邊長(zhǎng)為5米的正方形花壇,問(wèn)場(chǎng)地還剩余多大面積供學(xué)生課間活動(dòng)使用?

  因式分解教案 15

  (一)學(xué)習(xí)目標(biāo)

  1、會(huì)用因式分解進(jìn)行簡(jiǎn)單的多項(xiàng)式除法

  2、會(huì)用因式分解解簡(jiǎn)單的方程

 。ǘ學(xué)習(xí)重難點(diǎn)重點(diǎn):因式分解在多項(xiàng)式除法和解方程中兩方面的應(yīng)用。

  難點(diǎn):應(yīng)用因式分解解方程涉及到的較多的推理過(guò)程是本節(jié)課的難點(diǎn)。

 。ㄈ教學(xué)過(guò)程設(shè)計(jì)

  看一看

  1.應(yīng)用因式分解進(jìn)行多項(xiàng)式除法.多項(xiàng)式除以多項(xiàng)式的一般步驟:

  ①________________②__________

  2.應(yīng)用因式分解解簡(jiǎn)單的一元二次方程.

  依據(jù)__________,一般步驟:__________

  做一做

  1.計(jì)算:

  (1)(-a2b2+16)÷(4-ab);

  (2)(18x2-12xy+2y2)÷(3x-y).

  2.解下列方程:

  (1)3x2+5x=0;

  (2)9x2=(x-2)2;

  (3)x2-x+=0.

  3.完成課后練習(xí)題

  想一想

  你還有哪些地方不是很懂?請(qǐng)寫(xiě)出來(lái)。

  ____________________________________

 。ㄋ模預(yù)習(xí)檢測(cè)

  1.計(jì)算:

  2.先請(qǐng)同學(xué)們思考、討論以下問(wèn)題:

  (1)如果A×5=0,那么A的值

  (2)如果A×0=0,那么A的`值

  (3)如果AB=0,下列結(jié)論中哪個(gè)正確( )

 、貯、B同時(shí)都為零,即A=0,

  且B=0;

  ②A、B中至少有一個(gè)為零,即A=0,或B=0;

  (五)應(yīng)用探究

  1.解下列方程

  2.化簡(jiǎn)求值:已知x-y=-3,-x+3y=2,求代數(shù)式x2-4xy+3y2的值

 。拓展提高:

  解方程:

  1、(x2+4)2-16x2=0

  2、已知a、b、c為三角形的三邊,試判斷a2-2ab+b2-c2大于零?小于零?等于零?

  (七)堂堂清練習(xí)

  1.計(jì)算

  2.解下列方程

 、7x2+2x=0

 、趚2+2x+1=0

 、踴2=(2x-5)2

 、躼2+3x=4x

  因式分解教案 16

  學(xué)習(xí)目標(biāo)

  1、學(xué)會(huì)用平方差公式進(jìn)行因式法分解

  2、學(xué)會(huì)因式分解的而基本步驟.

  學(xué)習(xí)重難點(diǎn)重點(diǎn)

  用平方差公式進(jìn)行因式法分解.

  難點(diǎn)

  因式分解化簡(jiǎn)的過(guò)程

  自學(xué)過(guò)程設(shè)計(jì)教學(xué)過(guò)程設(shè)計(jì)

  看一看

  平方差公式:

  平方差公式的逆運(yùn)用:

  做一做:

  1.填空題.

  (1)25a2-_______=(5a+2b)(5a-2b);(2)x2-=(x-)(________).

  (3)-a2+b2=(b+a)(________);(4)36x2-81y2=9(_______)(_______).

  2.把下列各式分解因式結(jié)果為-(x-2y)(x+2y)的多項(xiàng)式是()

  A.x2-4yB.x2+4y2C.-x2+4y2D.-x2-4y2

  3.多項(xiàng)式-1+0.04a2分解因式的結(jié)果是()

  A.(-1+0.2a)2B.(1+0.2a)(1-0.2a)

  C.(0.2a+1)(0.2a-1)D.(0.04a+1)(0.04a-1)

  4.把下列各式分解因式:

  (1)4x2-25y2;(2)0.81m2-n2;

  (3)a3-9a;(4)8x3y3-2xy.

  5.把下列各式分解因式:

  (1)(3a+2b)2-(a-b)2;(2)4(x+2y)2-25(x-y)2.

  6.用簡(jiǎn)便方法計(jì)算:3492-2512.

  想一想

  你還有哪些地方不是很懂?請(qǐng)寫(xiě)出來(lái)。

  ____________________________________________________________________________________

 預(yù)習(xí)展示一:

  1、下列多項(xiàng)式能否用平方差公式分解因式?

  說(shuō)說(shuō)你的理由。

  4x2+y2

  4x2-(-y)2

  -4x2-y2-4x2+y2

  a2-4a2+3

  2.把下列各式分解因式:

  (1)16-a2

  (2)0.01s2-t2

  (4)-1+9x2

  (5)(a-b)2-(c-b)2

  (6)-(x+y)2+(x-2y)2

  應(yīng)用探究:

  1、分解因式

  4x3y-9xy3

  變式:把下列各式分解因式

 、賦4-81y4

  ②2a-8a

  2、從前有一位張老漢向地主租了一塊“十字型”土地(尺寸如圖)。為便于種植,他想換一塊相同面積的'長(zhǎng)方形土地。同學(xué)們,你能幫助張老漢算出這塊長(zhǎng)方形土地的長(zhǎng)和寬嗎?w

  3、在日常生活中如上網(wǎng)等都需要密碼.有一種因式分解法產(chǎn)生的密碼方便記憶又不易破譯.

  例如用多項(xiàng)式x4-y4因式分解的結(jié)果來(lái)設(shè)置密碼,當(dāng)取x=9,y=9時(shí),可得一個(gè)六位數(shù)的密碼“018162”.你想知道這是怎么來(lái)的嗎?

  小明選用多項(xiàng)式4x3-xy2,取x=10,y=10時(shí)。用上述方法產(chǎn)生的密碼是什么?(寫(xiě)出一個(gè)即可)

  拓展提高:

  若n為整數(shù),則(2n+1)2-(2n-1)2能被8整除嗎?請(qǐng)說(shuō)明理由.

  教后反思考察利用公式法因式分解的題目不會(huì)很難,但是需要學(xué)生記住公式的形式,之后利用公式把式子進(jìn)行變形,從而達(dá)到進(jìn)行因式分解的目的。

  因式分解教案 17

  教學(xué)目標(biāo):

  1、 理解運(yùn)用平方差公式分解因式的方法。

  2、 掌握提公因式法和平方差公式分解因式的綜合運(yùn)用。

  3、 進(jìn)一步培養(yǎng)學(xué)生綜合、分析數(shù)學(xué)問(wèn)題的能力。

  教學(xué)重點(diǎn):

  運(yùn)用平方差公式分解因式。

  教學(xué)難點(diǎn):

  高次指數(shù)的轉(zhuǎn)化,提公因式法,平方差公式的靈活運(yùn)用。

  教學(xué)案例:

  我們數(shù)學(xué)組的觀課議課主題:

  1、關(guān)注學(xué)生的合作交流

  2、如何使學(xué)困生能積極參與課堂交流。

  在精心備課過(guò)程中,我設(shè)計(jì)了這樣的自學(xué)提示:

  1、整式乘法中的平方差公式是___,如何用語(yǔ)言描述?把上述公式反過(guò)來(lái)就得到_____,如何用語(yǔ)言描述?

  2、下列多項(xiàng)式能用平方差公式分解因式嗎?若能,請(qǐng)寫(xiě)出分解過(guò)程,若不能,說(shuō)出為什么?

  ①-x2+y2 ②-x2-y2 ③4-9x2

 、 (x+y)2-(x-y)2 ⑤ a4-b4

  3、試總結(jié)運(yùn)用平方差公式因式分解的條件是什么?

  4、仿照例4的分析及旁白你能把x3y-xy因式分解嗎?

  5、試總結(jié)因式分解的步驟是什么?

  師巡回指導(dǎo),生自主探究后交流合作。

  生交流熱情很高,但把全部問(wèn)題分析完已用了30分鐘。

  生展示自學(xué)成果。

  生1: -x2+y2能用平方差公式分解,可分解為(y+x)(y-x)

  生2: -x2+y2=-(x2-y2)=-(x+y)(x-y)

  師:這兩種方法都可以,但第二種方法提出負(fù)號(hào)后,一定要注意括號(hào)里的各項(xiàng)要變號(hào)。

  生3:4-9x2 也能用平方差公式分解,可分解為(2+9x)(2-9x)

  生4:不對(duì),應(yīng)分解為(2+3x)(2-3x),要運(yùn)用平方差公式必須化為兩個(gè)數(shù)或整式的平方差的形式。

  生5: a4-b4可分解為(a2+b2)(a2-b2)

  生6:不對(duì),a2-b2 還能繼續(xù)分解為a+b)(a-b)

  師:大家爭(zhēng)論的很好,運(yùn)用平方差公式分解因式,必須化為兩個(gè)數(shù)或兩個(gè)整式的平方的差的`形式,另因式分解必須分解到不能再分解為止!

  反思:這節(jié)課我備課比較認(rèn)真,自學(xué)提示的設(shè)計(jì)也動(dòng)了一番腦筋,為讓學(xué)生順利得出運(yùn)用平方差公式因式分解的條件,我設(shè)計(jì)了問(wèn)題2,為讓學(xué)生能更容易總結(jié)因式分解的步驟,我又設(shè)計(jì)了問(wèn)題4,自認(rèn)為,本節(jié)課一定會(huì)上的非常成功,學(xué)生的交流、合作,自學(xué)展示一定會(huì)很精彩,結(jié)果卻出乎我的意料,本節(jié)課沒(méi)有按計(jì)劃完成教學(xué)任務(wù),學(xué)生練習(xí)很少,作業(yè)有很大一部分同學(xué)不能獨(dú)立完成,反思這節(jié)課主要有以下幾個(gè)問(wèn)題:

  (1) 我在備課時(shí),過(guò)高估計(jì)了學(xué)生的能力,問(wèn)題2中的③、④、⑤ 多數(shù)學(xué)生剛預(yù)習(xí)后不能熟練解答,導(dǎo)致在小組交流時(shí),多數(shù)學(xué)生都在交流這幾題該怎樣分解,耽誤了寶貴的時(shí)間,也分散了學(xué)生的注意力,導(dǎo)致難點(diǎn)、重點(diǎn)不突出,若能把問(wèn)題2改為:

  下列多項(xiàng)式能用平方差公式因式分解嗎?為什么?可能效果會(huì)更好。

  (2) 教師備課時(shí),要考慮學(xué)生的知識(shí)層次,能力水平,真正把學(xué)生放在第一位,要考慮學(xué)生的接受能力,安排習(xí)題要循序漸進(jìn),切莫過(guò)于心急,過(guò)分追求課堂容量、習(xí)題類(lèi)型全等等,例如在問(wèn)題2的設(shè)計(jì)時(shí)可寫(xiě)一些簡(jiǎn)單的,像④、⑤ 可到練習(xí)時(shí)再出現(xiàn),發(fā)現(xiàn)問(wèn)題后再?gòu)?qiáng)調(diào)、歸納,效果也可能會(huì)更好。

  我及時(shí)調(diào)整了自學(xué)提示的內(nèi)容,在另一個(gè)班也上了這節(jié)課。果然,學(xué)生的討論有了重點(diǎn),很快(大約10分鐘)便合作得出了結(jié)論,課堂氣氛非常活躍,練習(xí)量大,準(zhǔn)確率高,但隨之我又發(fā)現(xiàn)我在處理課后練習(xí)時(shí)有點(diǎn)不能應(yīng)對(duì)自如。例如:師:下面我們把課后練習(xí)做一下,話(huà)音剛落,大家紛紛拿著本到我面前批改。師:都完了?生:全完了。我很興奮。來(lái):“我們?cè)僮鰩最}試試。”生又開(kāi)始緊張地練習(xí)……下課后,無(wú)意間發(fā)現(xiàn)竟還有好幾個(gè)同學(xué)課后題沒(méi)做。原因是預(yù)習(xí)時(shí)不會(huì),上課又沒(méi)時(shí)間,還有幾位同學(xué)練習(xí)題竟然有誤,也沒(méi)改正,原因是上課慌著展示自己,沒(méi)顧上改……?磥(lái),以后上課不能單聽(tīng)學(xué)生的齊答,要發(fā)揮組長(zhǎng)的職責(zé),注重過(guò)關(guān)落實(shí)。給學(xué)生一點(diǎn)機(jī)動(dòng)時(shí)間,讓學(xué)習(xí)有困難的學(xué)生有機(jī)會(huì)釋疑,練習(xí)不在于多,要注意融會(huì)貫通,會(huì)舉一反三。

  確實(shí),“學(xué)海無(wú)涯,教海無(wú)邊”。我們備課再認(rèn)真,預(yù)設(shè)再周全,面對(duì)不同的學(xué)生,不同的學(xué)情,仍然會(huì)產(chǎn)生新的問(wèn)題,“沒(méi)有最好,只有更好!”我會(huì)一直探索、努力,不斷完善教學(xué)設(shè)計(jì),更新教育觀念,直到永遠(yuǎn)……

  因式分解教案 18

  一、教學(xué)目標(biāo)

  1.掌握“多──少”、“大──小”兩組反義詞。

  2.理解量詞“群、顆、堆”的意思,能正確使用一些量詞。

  3.正確、流利地朗讀課文。

  二、教學(xué)重難點(diǎn)

  認(rèn)字、寫(xiě)字和正確使用量詞。

  三、教學(xué)過(guò)程

  (一)復(fù)習(xí)檢查

  1.復(fù)習(xí)生字。

  2.朗讀課文。

  (二)學(xué)習(xí)課文,整體把握

  1.說(shuō)一說(shuō)、比一比。

  師:同學(xué)們都讀了課文,請(qǐng)告訴老師,他們?cè)诒仁裁?

  生:比大──小。

  生:比多──少。

  師:誰(shuí)和誰(shuí)在比大小,誰(shuí)和誰(shuí)在比多少?

  生:黃牛和花貓、蘋(píng)果和棗在比大小。

  生:鴨子和鳥(niǎo)、杏子和桃在比多少。

  師:黃牛和花貓、鴨子和鳥(niǎo)都是動(dòng)物這是一類(lèi)的,它們可以放在一起來(lái)比較。蘋(píng)果和棗、杏子和桃都是水果,可以放在一起比較。

  2.認(rèn)識(shí)量詞。

  課件出示課文:

  一(頭)黃牛一(只)貓

  一(個(gè))蘋(píng)果一(顆)棗

  一(群)鴨子一(只)鳥(niǎo)

  一(堆)杏子一(個(gè))桃

  師:括號(hào)內(nèi)的字表示量詞。在說(shuō)一些物體時(shí)要用上這類(lèi)的表示數(shù)量的詞。

  師:在上面的這些圖片中(課件出示一些動(dòng)物圖片)你能說(shuō)一說(shuō)嗎?

  生:一頭豬。

  生:一只兔。

  生:一只雞,一群鳥(niǎo)。

  師:對(duì)了,多的時(shí)候用一(群),還能說(shuō)一群羊、一群螞蟻、一群大雁……

  師:我們?cè)賮?lái)看這些可以用什么量詞,你能說(shuō)嗎?

  生:一個(gè)西瓜,一堆西瓜。

  生:一棵樹(shù),一顆星。

  師:這兩個(gè)字不一樣,表示的'物體也不一樣,“棵”一般用在植物類(lèi),“顆”一般用在圓圓的、小小的、粒狀的東西。

  生:一棵白菜,一顆石頭。

  生:一顆心,一顆種子。

  3.我會(huì)說(shuō)。

  (1)用自己喜歡的方式讀課文。

  (2)練習(xí)課后“我會(huì)說(shuō)”。

  一(朵)花一(把)扇子一(本)書(shū)一(件)衣服一(雙)鞋一(塊)西瓜一(輛)車(chē)

  (3)續(xù)編兒歌。

  學(xué)生先說(shuō)一說(shuō)生活中的量詞,思考后續(xù)編兒歌。

  例:

  一個(gè)大,一個(gè)小,一頭大象一只兔。

  一個(gè)皮球一顆扣。

  一邊多,一邊少,一群山羊一只雞。

  一堆蘿卜一根蔥。

  (三)指導(dǎo)生字,書(shū)寫(xiě)生字

  1.課件出示生字,學(xué)生觀察生字。

  課件展示書(shū)寫(xiě)過(guò)程,書(shū)寫(xiě)順序上有什么相同的地方?重點(diǎn)看筆順:先中間后兩邊。

  引導(dǎo)學(xué)習(xí)新筆畫(huà)“豎鉤”,注意“少”上邊的“小”沒(méi)鉤。

  2.教師指導(dǎo)、示范,學(xué)生書(shū)空。

  3.學(xué)生描紅。

  4.展示學(xué)生作業(yè)。

  因式分解教案 19

  【教學(xué)目標(biāo)】

  1、了解因式分解的概念和意義;

  2、認(rèn)識(shí)因式分解與整式乘法的相互關(guān)系——相反變形,并會(huì)運(yùn)用它們之間的相互關(guān)系尋求因式分解的方法。

  【教學(xué)重點(diǎn)、難點(diǎn)】

  重點(diǎn)是因式分解的概念,難點(diǎn)是理解因式分解與整式乘法的相互關(guān)系,并運(yùn)用它們之間的相互關(guān)系尋求因式分解的方法。

  【教學(xué)過(guò)程】

  ㈠、情境導(dǎo)入

  看誰(shuí)算得快:(搶答)

  (1)若a=101,b=99,則a2-b2=___________;

  (2)若a=99,b=-1,則a2-2ab+b2=____________;

  (3)若x=-3,則20x2+60x=____________。

 、妗⑻骄啃轮

  1、請(qǐng)每題答得最快的同學(xué)談思路,得出最佳解題方法。(多媒體出示答案)(1)a2-b2=(a+b)(a-b)=(101+99)(101-99)=400;

  (2)a2-2ab+b2=(a-b) 2=(99+1)2 =10000;

  (3)20x2+60x=20x(x+3)=20x(-3)(-3+3)=0。

  2、觀察:a2-b2=(a+b)(a-b),a2-2ab+b2 = (a-b)2, 20x2+60x=20x(x+3),找出它們的特點(diǎn)。(等式的'左邊是一個(gè)什么式子,右邊又是什么形式?)

  3、類(lèi)比小學(xué)學(xué)過(guò)的因數(shù)分解概念,得出因式分解概念。(學(xué)生概括,老師補(bǔ)充。)

  板書(shū)課題:§6.1 因式分解

  因式分解概念:把一個(gè)多項(xiàng)式化成幾個(gè)整式的積的形式叫做因式分解,也叫分解因式。

 、、前進(jìn)一步

  1、讓學(xué)生繼續(xù)觀察:(a+b)(a-b)= a2-b2, (a-b)2= a2-2ab+b2, 20x(x+3)= 20x2+60x,它們是什么運(yùn)算?與因式分解有何關(guān)系?它們有何聯(lián)系與區(qū)別?

  2、因式分解與整式乘法的關(guān)系:

  因式分解

  結(jié)合:a2-b2 (a+b)(a-b)

  整式乘法

  說(shuō)明:從左到右是因式分解其特點(diǎn)是:由和差形式(多項(xiàng)式)轉(zhuǎn)化成整式的積的形式;從右到左是整式乘法其特點(diǎn)是:由整式積的形式轉(zhuǎn)化成和差形式(多項(xiàng)式)。

  結(jié)論:因式分解與整式乘法的相互關(guān)系——相反變形。

  ㈣、鞏固新知

  1、 下列代數(shù)式變形中,哪些是因式分解?哪些不是?為什么?

  (1)x2-3x+1=x(x-3)+1 ;(2)(m+n)(a+b)+(m+n)(x+y)=(m+n)(a+b+x+y);

  (3)2m(m-n)=2m2-2mn; (4)4x2-4x+1=(2x-1)2;(5)3a2+6a=3a(a+2);

  (6)x2-4+3x=(x-2)(x+2)+3x; (7)k2++2=(k+)2;(8)18a3bc=3a2b·6ac。

  2、你能寫(xiě)出整式相乘(其中至少一個(gè)是多項(xiàng)式)的兩個(gè)例子,并由此得到相應(yīng)的兩個(gè)多項(xiàng)式的因式分解嗎?把結(jié)果與你的同伴交流。

 、椤(yīng)用解釋

  例 檢驗(yàn)下列因式分解是否正確:

  (1)x2y-xy2=xy(x-y);(2)2x2-1=(2x+1)(2x-1);(3)x2+3x+2=(x+1)(x+2).

  分析:檢驗(yàn)因式分解是否正確,只要看等式右邊幾個(gè)整式相乘的積與右邊的多項(xiàng)式是否相等。

  練習(xí) 計(jì)算下列各題,并說(shuō)明你的算法:(請(qǐng)學(xué)生板演)

  (1)872+87×13

  (2)1012-992

 、、思維拓展

  1.若 x2+mx-n能分解成(x-2)(x-5),則m= ,n=

  2.機(jī)動(dòng)題:(填空)x2-8x+m=(x-4)( ),且m=

  ㈦、課堂回顧

  今天這節(jié)課,你學(xué)到了哪些知識(shí)?有哪些收獲與感受?說(shuō)出來(lái)大家分享。

 、、布置作業(yè)

  作業(yè)本(1) ,一課一練

  因式分解教案 20

  教學(xué)目標(biāo)

  1、 會(huì)運(yùn)用因式分解進(jìn)行簡(jiǎn)單的多項(xiàng)式除法。

  2、 會(huì)運(yùn)用因式分解解簡(jiǎn)單的方程。

  二、教學(xué)重點(diǎn)與難點(diǎn)教學(xué)重點(diǎn):

  教學(xué)重點(diǎn)

  因式分解在多項(xiàng)式除法和解方程兩方面的應(yīng)用。

  教學(xué)難點(diǎn):

  應(yīng)用因式分解解方程涉及較多的推理過(guò)程。

  三、教學(xué)過(guò)程

 。ㄒ唬┮胄抡n

  1、 知識(shí)回顧(1) 因式分解的幾種方法: ①提取公因式法: ma+mb=m(a+b) ②應(yīng)用平方差公式: = (a+b) (a—b)③應(yīng)用完全平方公式:a 2ab+b =(ab) (2) 課前熱身: ①分解因式:(x +4) y — 16x y

 。ǘ⿴熒(dòng),講授新課

  1、運(yùn)用因式分解進(jìn)行多項(xiàng)式除法例1 計(jì)算: (1) (2ab —8a b) (4a—b)(2)(4x —9) (3—2x)解:(1) (2ab —8a b)(4a—b) =—2ab(4a—b) (4a—b) =—2ab (2) (4x —9) (3—2x) =(2x+3)(2x—3) [—(2x—3)] =—(2x+3) =—2x—3

  一個(gè)小問(wèn)題 :這里的x能等于3/2嗎 ?為什么?

  想一想:那么(4x —9) (3—2x) 呢?練習(xí):課本P162課內(nèi)練習(xí)

  合作學(xué)習(xí)

  想一想:如果已知 ( )( )=0 ,那么這兩個(gè)括號(hào)內(nèi)應(yīng)填入怎樣的數(shù)或代數(shù)式子才能夠滿(mǎn)足條件呢? (讓學(xué)生自己思考、相互之間討論。┦聦(shí)上,若AB=0 ,則有下面的結(jié)論:(1)A和B同時(shí)都為零,即A=0,且B=0(2)A和B中有一個(gè)為零,即A=0,或B=0

  試一試:你能運(yùn)用上面的結(jié)論解方程(2x+1)(3x—2)=0 嗎?3、 運(yùn)用因式分解解簡(jiǎn)單的方程例2 解下列方程: (1) 2x +x=0 (2) (2x—1) =(x+2) 解:x(x+1)=0 解:(2x—1) —(x+2) =0則x=0,或2x+1=0 (3x+1)(x—3)=0原方程的根是x1=0,x2= 則3x+1=0,或x—3=0 原方程的根是x1= ,x2=3注:只含有一個(gè)未知數(shù)的.方程的解也叫做根,當(dāng)方程的根多于一個(gè)時(shí),常用帶足標(biāo)的字母表示,比如:x1 ,x2

  等練習(xí):課本P162課內(nèi)練習(xí)2

  做一做!對(duì)于方程:x+2=(x+2) ,你是如何解該方程的,方程左右兩邊能同時(shí)除以(x+2)嗎?為什么?

  教師總結(jié):運(yùn)用因式分解解方程的基本步驟(1)如果方程的右邊是零,那么把左邊分解因式,轉(zhuǎn)化為解若干個(gè)一元一次方程;(2)如果方程的兩邊都不是零,那么應(yīng)該先移項(xiàng),把方程的右邊化為零以后再進(jìn)行解方程;遇到方程兩邊有公因式,同樣需要先進(jìn)行移項(xiàng)使右邊化為零,切忌兩邊同時(shí)除以公因式!4、知識(shí)延伸解方程:(x +4) —16x =0解:將原方程左邊分解因式,得 (x +4) —(4x) =0(x +4+4x)(x +4—4x)=0(x +4x+4)(x —4x+4)=0 (x+2) (x—2) =0接著繼續(xù)解方程,5、 練一練 ①已知 a、b、c為三角形的三邊,試判斷 a —2ab+b —c 大于零?小于零?等于零?解: a —2ab+b —c =(a—b) —c =(a—b+c)(a—b—c)∵ a、b、c為三角形的三邊 a+c ﹥b a﹤b+c a—b+c﹥0 a—b—c ﹤0即:(a—b+c)(a—b—c) ﹤0 ,因此 a —2ab+b —c 小于零。6、 挑戰(zhàn)極限①已知:x=2004,求∣4x —4x+3 ∣ —4 ∣ x +2x+2 ∣ +13x+6的值。解: ∵4x — 4x+3= (4x —4x+1)+2 = (2x—1) +2 0x +2x+2 = (x +2x+1)+1 = (x+1) +10 ∣4x —4x+3 ∣ —4 ∣ x +2x+2 ∣ +13x+6= 4x — 4x+3 —4(x +2x+2 ) +13x+6= 4x — 4x+3 —4x —8x —8+13x+6= x+1即:原式= x+1=2004+1=2005

 。ㄈ┦崂碇R(shí),總結(jié)收獲因式分解的兩種應(yīng)用:

 。1)運(yùn)用因式分解進(jìn)行多項(xiàng)式除法

  (2)運(yùn)用因式分解解簡(jiǎn)單的方程

 。ㄋ模┎贾谜n后作業(yè)

  作業(yè)本6、42、課本P163作業(yè)題(選做)

【因式分解教案】相關(guān)文章:

小學(xué)數(shù)學(xué)因式分解教案03-19

【必備】因式分解教案10篇10-08

因式分解教案范文集錦十篇09-01

因式分解教案范文匯總七篇06-04

因式分解教學(xué)設(shè)計(jì)12-06

《因式分解》教學(xué)設(shè)計(jì)范文04-23

《因式分解》教學(xué)反思范文(精選17篇)01-20

音樂(lè)教案-鐘聲-教案03-25

教案06-18