有關平行四邊形教案模板集合八篇
作為一名教職工,就有可能用到教案,教案有助于學生理解并掌握系統(tǒng)的知識。那么你有了解過教案嗎?下面是小編整理的平行四邊形教案8篇,希望對大家有所幫助。
平行四邊形教案 篇1
教學內容:
人教版《義務教育課程標準實驗教科書數(shù)學》四年級上冊70頁至71頁。
教學目標:
1。通過操作和討論掌握平行四邊形和梯形的特征,探討平行四邊形和長方形、正方形的關系。
2。培養(yǎng)分分析觀察能力、動手操作能力和有序思考的能力,培養(yǎng)學生的空間觀念和想像力。
3。體會數(shù)學學習的樂趣,樹立學習信心,感受數(shù)學價值。
教學重點:
通過操作和討論掌握平行四邊形和梯形的特征。
教學難點:
了解平行四邊形與長方形和正方形的關系。
教學準備
教具:正方形、長方形、平行四邊形和梯形圖各一;多媒體課件。
學具:直尺,三角板,練習紙一張。
教學過程:
一、回顧舊知,引入新課。
師:孩子們,在我們三年級時已經學過并認識了許多的四邊形,那怎樣的圖形叫四邊形呢?
師:今天四邊形之家要邀請它的家族成員來開聯(lián)歡會,看,它們來了。(課件出示)你還認識它們嗎?請你說一說你認識的圖形的名稱。(生說名稱,教師相應的課件出示名稱)
師:你能把它們分分類嗎?
師:長方形和正方形是我們的老朋友了,你們能介紹它們的邊與角各有什么特征嗎?
師:這兩個圖形(出示和,并粘貼在黑板上)你能試著說一說它的特征嗎?
師:長方形和正方形我們已經很熟悉了,所以大家描述得既準確又充分,(拿下長方形和正方形),指著平行四邊形和梯形說:這兩個圖形我們不熟悉,所以描述的信息不夠準確,沒關系,通過本節(jié)課的學習,會讓你清楚的認識平行四邊形和梯形。
二、探索發(fā)現(xiàn),掌握特征。
1。聯(lián)系生活,建構概念
師:其實生活中就有許多物體的表面是平行四邊形或梯形。(課件出示一組圖片)找一找,有平行四邊形嗎?梯形呢?說說看!
師:你們真會觀察!除了這些,你能舉出生活中的哪些物體的表面是平行四邊形和梯形呢?(生舉例)
師:看來平行四邊形和梯形在生活中應用很廣泛,既然他們的應用如此廣泛,我們就來研究什么叫做平行四邊形,什么叫做梯形。(板書課題:平行四邊形和梯形)
2。觀察圖形,直觀感知
師:好了孩子們,先來看看平行四邊形有什么特征?梯形有什么特征呢?
生說:平行四邊形左右的邊是平行的,平行四邊形的上下的邊也是平行的。師指圖比劃,梯形的`上下邊是平行的。
師:剛才這位同學說平行四邊形的兩組對邊分別平行,梯形的一組邊平行(老師說時帶動作),這是我們通過觀察得到的信息,真的是這樣嗎?下面我們就來驗證。
3。驗證猜想。
師:現(xiàn)在在你們的練習紙上有一個平行四邊形和一個梯形,請你拿出工具檢查平行四邊形和梯形對邊是否平行。
學生活動:驗證。
活動結束師讓學生在實物投影上就圖說明。
師:通過剛才的驗證他們組有這樣的發(fā)現(xiàn),其他組和他的發(fā)現(xiàn)一樣的請舉手,哦,大家都有這樣的發(fā)現(xiàn)。是不是其他的平行四邊形和梯形也具有這樣的特點呢?
4。整體呈現(xiàn),確定概念。
。1)平行四邊形。
師:我們首先來看平行四邊形。請看屏幕:課件出示三個不同的平行四邊形并驗證。
師:驗證之后可以證實我們剛才的發(fā)現(xiàn)是正確的,是嗎?誰再來說一說我們剛才的發(fā)現(xiàn)?
引導學生得出:兩組對邊分別平行的四邊形叫做平行四邊形。
學生讀。
師:閉上眼睛想一想,你的腦子中的平行四邊形是什么樣的?
。2)梯形
師:我們知道了什么叫平行四邊形,F(xiàn)在我們來看梯形。請看屏幕:課件出示三個不同的梯形并驗證。
師:現(xiàn)在我們又證實了剛才梯形的發(fā)現(xiàn)是正確的,誰再來說一說剛才的發(fā)現(xiàn)?
引導學生得出:只有一組對邊平行的四邊形叫做梯形。
師:剛才這個同學發(fā)言中有一個特別重要的詞,誰發(fā)現(xiàn)了?你能解釋什么是“只有”嗎?
學生讀概念,閉上眼睛想一想梯形的樣子。
5。對比概念,上升理解。
師:(指板貼平行四邊形和梯形圖)同學們,既然我們知道了平行四邊形和梯形的概念了,誰說說它們的共同點是什么?
師:但也有不同,誰來說說哪里不同?
師:加著重號“分別”是什么意思?“只有”是什么意思?能不能不要這兩個字?
三、鞏固知識,加深理解
師:既然大家已經知道了什么叫做平行四邊形、什么叫做梯形,那么,請你迅速的判斷一下。
課件出示:下面的圖形中.是平行四邊形的畫“○”,是梯形的畫“√”。
(在完成此題的過程中,如果出現(xiàn)爭議,則讓學生議一議;無爭議則提問:為什么在長方形下面畫“○”?為什么說它是特殊的平行四邊形?)
四、探討四邊形間的關系
師:到現(xiàn)在為止,我們學過了長方形、正方形、平行四邊形和梯形,如果分別用一個集合圈來表示一種圖形,這幾種圖形在四邊形這個大家庭中應該站什么位置呢?(課件出示集合圈)
師:你會選擇哪一個?為什么?(放大正確集合圖)
師:誰能根據(jù)這個圖說說它們的關系?(生說)
五、靈活應用,解決問題
師:看來,同學們對于各種四邊形之間的關系已經很了解了,說到四邊形,看。老師這里有一個(課件出示:)可它被數(shù)學書擋住了,猜一猜,它可能是什么圖形呢?
繼續(xù)演示:不可能是……?可能是……?
不可能是……?可能是……?
一定是……?為什么?
師:其實謎底早在我們的意料之中!
師:通過一次次的猜想,我能感覺對于平行四邊形和梯形的了解越來越深入,想挑戰(zhàn)嗎?
2.分圖形。
呈現(xiàn)題目:如果在平行四邊形里畫一條線段,把它分成兩部分,這兩部分可能是什么圖形?畫畫看吧。
平行四邊形教案 篇2
教學內容:
義務教育六年制小學《數(shù)學》第九冊P64-P66
教學目的:
1、讓學生知道平行四邊形面積公式的推導過程,掌握平行四邊形面積的計算公式,并能應用公式正確地計算平行四邊形面積,數(shù)學教案-平行四邊形面積計算。
2、通過操作、觀察與比較,發(fā)展學生的空間觀念,培養(yǎng)學生運用轉化的思考方法解決問題的能力。
3、使學生初步感受到事物是相互聯(lián)系的,在一定條件下可以相互轉化。
4、培養(yǎng)學生自主學習的能力。
教學重點:
掌握平行四邊形面積公式。
教學難點:
平行四邊形面積公式的推導過程。
教具、學具準備:
1、多媒體計算機及課件;
2、投影儀;
3、硬紙板做成的可拉動的長方形框架;
4、每個學生5張平行四邊形硬紙片及剪刀一把。
教學過程:
一、復習導入:
1、我們認識的平面幾何圖形有哪些呢?(微機出示,圖形略)
2、在這幾個圖形中你們會求哪幾個的面積呢?(微機出示長方形和正方形的面積公式)
3、大家想不想知道其他幾個圖形的面積怎么求呢?我們這個單元就來學習“多邊形面積的計算”。
二、質疑引新:
1、老師知道同學們都很喜歡流氓兔,今天流氓兔遇到了一個難題,我們一起來幫它解決好不好?
2、微機顯示動畫故事:有一天,流氓兔在跑步的時候,遇到了一個長方形框架,它不小心踹了一腳,把長方形變成了平行四邊形,流氓兔很奇怪:形狀改變了,面積改變了嗎?
3、演示教具:將硬紙板做成的長方形框架,拉動其一角,變?yōu)槠叫兴倪呅巍?/p>
4、解決這個問題最好的辦法就是將兩個圖形的面積都求出來進行比較,長方形的面積我們會求了,平行四邊形的面積要怎么求呢?這節(jié)可我們就一起來學習平行四邊形面積的計算。(板書課題:平行四邊形面積的計算)
三、引導探求:
(一)、復習鋪墊:
1、什么圖形是平行四邊形呢?
2、拿出一個準備好的平行四邊形,找找它的底和高,并把高畫下來,比比看誰畫得多。
3、微機顯示并小結:平行四邊形可以作無數(shù)條高,以不同的邊為底對應的高是不同的。
。ǘ、推導公式:
1、小小魔術師:我們現(xiàn)在來做一個變一變的小游戲(微機顯示一個不規(guī)則圖形),我們可以直接用所學過的求面積公式來求它的面積嗎?
2、能不能把它轉化成我們學過的圖形呢?(用割補法轉化為長方形)
3、能不能用同樣的方法把一個平行四邊形轉化成長方形呢?請同學們拿出準備好的多個平行四邊形紙片及剪刀,自己動手,運用所學過的割補法將平行四邊形轉化為長方形。
4、學生實驗操作,教師巡視指導。
5、學生交流實驗情況:
、、誰愿意把你的轉化方法說給大家聽呢?請上臺來交流!(用投影儀演示剪拼過程)
、、有沒有不同的剪拼方法?(繼續(xù)請同學演示)。
⑶、微機演示各種轉化方法。
6、歸納總結規(guī)律:
沿著平行四邊形的任意一條高剪開,都可以通過平移把平行四邊形拼合成一個長方形。并引導學生形成以下概念:
⑴、平行四邊形剪拼成長方形后,什么變了?什么沒變?
、、剪拼成的長方形的長與寬分別與平行四邊形的底和高有什么關系?
⑶、剪樣成的圖形面積怎樣計算?得出:
因為:平行四邊形的面積=長方形的面積=長×寬=底×高
所以:平行四邊形的面積=底×高
。ò鍟叫兴倪呅蚊娣e推導過程)
7、文字公式不方便,我們一起來學習用字母公式表示,如果用S表示平行四邊形的面積,用a表示平行四邊形的底,用h表示平行四邊形的高,那么S=a×h(板書)。同時強調:在含有字母的式子中,字母和字母之間的乘號可以記作".",也可以省略不寫,所以平行四邊形的面積公式還可以記作S=a.h或S=ah(板書)。
8、讓學生閉上眼睛,在輕柔的音樂中回憶平行四邊形面積計算的推導過程。
四、鞏固練習:
1、剛才我們已經推導出了平行四邊形的面積公式,那么,要求平行四邊形的'面積,必須要知道哪幾個條件?(底和高,強調高是底邊上的高)
2、練習:
、、(微機顯示例一)求平行四邊形的面積
、、判斷題(微機顯示,強調高是底邊上的高)
、、比較等底等高的平行四邊形面積的大。ㄓ们竺娣e的公式計算、比較,得出結論:等底等高的平行四邊形面積相等)
、、思考題:用求面積的公式解決流氓兔的難題(微機演示,得出結論:原長方形與改變后的平行四邊形比較,長方形的長等于平行四邊形的底,長方形的寬不等于平行四邊形的高,所以二者的面積不相等)。
五、問答總結:
1、通過這節(jié)課的學習,你學到了哪些知識?
2、平行四邊形面積的計算公式是什么?
3、平行四邊形面積公式是如何推導得出的?
六、課后作業(yè):P67 1、2、3、5 《指導叢書》練習十六 1
平行四邊形教案 篇3
教學目標
1、知識目標
(1)使學生掌握平行四邊形的概念,理解兩條平行線間的距離的概念。
(2)掌握平行四邊形的性質定理1、2,并能運用這些知識進行有關的證明或計算.
2、能力目標
。1)通過啟發(fā)、引導,讓學生猜想結論,培養(yǎng)學生的觀察能力和猜想能力。
。2)驗證猜想結論,培養(yǎng)學生的論證和邏輯思維能力。
。3)通過開放式教學,培養(yǎng)學生的創(chuàng)新意識和實踐能力。
3、非智力目標
滲透從具體到抽象、化未知為已知的數(shù)學思想及事物之間相互轉化的辯證唯物主義觀點.
教學重點、難點
重點:平行四邊形的概念及其性質.
難點:正確理解兩條平行線間的距離的概念和性質定理2的推論。
平行四邊形的概念及性質的靈活運用
教學方法:講解、分析、轉化
教學過程設計
一、利用分類、特殊化的方法引出平行四邊形的概念
1.復習四邊形的知識.
。1)引導學生畫任意凸四邊形,指出它的主要元素——頂點、邊、角、對角線的性質,強調對角線的作用:將四邊形分割化歸為三角形來研究.
。2)將四邊形的邊角按位置關系分為兩類:
教學時應結合圖形,讓學生識別清楚,并注意與三角形中角的對邊、邊的對角及第一章中的鄰角相區(qū)別.
2.教師提問:四邊形中的兩組對邊按位置關系分為幾種情況?
引導學生畫圖回答,并出示投影片顯示四邊形與特殊四邊形的關系,如圖4-11.
3.對比引出平行四邊形的概念.
。1)引導學生根據(jù)圖4-11,敘述平行四邊形的概念,引出課題.
。2)注意它與梯形的對比,及它與四邊形的特殊與一般的關系:平行四邊形是特殊的四邊形,因此它具有四邊形的一切性質(共性).同時它還具有一般四邊形不具備的特殊性質(個性).
。3)強調定義既是平行四邊形的一個判定方法,同時又是平行四邊形的一個性質.
。4)介紹平行四邊形的符號表示及定義的使用方法:如圖4-12.
、佟逜BCD,∴AD∥BC,AB∥CD.(平行四邊形的定義)
②∵AD∥BC,AB∥CD,∴四邊形ABCD是平行四邊形.(平行四邊形的定義)
練習1(投影)
如圖4-13,DC∥EF∥AB,DA∥GH∥CB,圖中的平行四邊形共有__個,它們是__.
二、探索平行四邊形的性質并證明
1.探索性質.
啟發(fā)學生從平行四邊形的主要元素——邊、角、對角線的位置關系及數(shù)量關系入手,來觀察、探索、猜想平行四邊形的特有的性質如下:
。3)對角線
、輰蔷互相平分(性質定理3)
教師注意解釋并強調對角線互相平分的含義及表示方法.
2.利用化歸的方法對性質逐一進行證明.
。1)由平行四邊形的定義及平行線的性質很快證出性質①,④,③.
。2)啟發(fā)學生添加一條或兩條對角線,將四邊形分割、化歸為三角形;利用全等三角形的知識證出性質②,⑤.
。3)寫出證明過程.
3.關于“兩條平行線間的平行線段和距離”的教學.
(1)利用性質定理2
導出推論:夾在兩條平行線間的平行線段相等.
①提問:在圖4-14中,l1∥l2,AB∥CD,那么AB,CD的數(shù)量有何關系?引導學生根據(jù)平行四邊形的定義和性質進行證明.
、谝龑W生用語言簡練地敘述圖4-14所反映的幾何命題,并強調它的作用.證題時可節(jié)省步驟,省掉判定平行四邊形這一步,直接得到夾在兩條平行線間的平行線段相等.
、蹚娬{推論中的條件:“夾”、“平行線間”、“平行線段”的含義和重要性,并做一組辨析練習.
練習2
。ㄍ队埃┤鐖D4-15,判斷下列幾組圖形能否體現(xiàn)推論所代表的含義.
。2)根據(jù)圖4-15(d)引出兩條平行線的距離的概念,并通過練習區(qū)別三個距離.
練習3
在圖4-15(d)中,
①點A與點C的距離是線段__的長;
、邳cA到直線l2的距離是線段__的長;
、蹆蓷l平行線l1與l2的距離是線段__或__的長;
、苡赏普摽傻茫簝蓷l平行線間的距離__.
三、平行四邊形的定義及性質的應用
1.計算.
例1填空.
。1)在ABCD中,AB=a,BC=b,∠A=50°,則ABCD的周長為__,∠B=__,∠C=__,∠D=__;
。2)在ABCD中:①∠A∶∠B=5∶4,則∠A=__;②∠A+∠C=200°,則∠A=___,∠B=__;
。3)已知平行四邊形周長為54,兩鄰邊之比為4∶5,則這兩邊長度分別為__;
。4)已知ABCD對角線交點為O,AC=24mm,BD=26mm,①若AD=22mm,則△OBC周長為__;②若AB⊥AC,則△OBC比△OAB的.周長大___;
。5)在ABCD中,AB=8cm,BC=10cm,∠B=30°,SABCD=__;
說明:通過此題讓學生熟悉平行四邊形的性質,會用它及方程的思想進行計算,并復習平行四邊形的面積公式.
2.證明.
例2 已知:如圖4-16,ABCD中,E,F(xiàn)分別為BC,AD上的點,AE∥CF.求證(1)BE=DF;(2)EF過BD的中點.
分析:
。1)盡量利用平行四邊形的定義和性質,避免證三角形全等.
。2)考慮特殊化情形.在ABCD中,若E,F(xiàn)在BC,AD上運動到如下位置:AE⊥BC于E,CF⊥AD于F,求證BE=DF.在題目的變化與聯(lián)系中靈活選用性質來解題.
例3已知:如圖4-17,A′B′∥BA,B′C′∥CB,C′A′∥AC.求證:(1)∠ABC=∠B′,∠CAB=∠A′,∠BCA=∠C′;(2)△ABC的頂點分別是△B′C′A′各邊的中點.
著重引導學生先分解基本圖形,圖中有3個平行四邊形:C′BCA,ABCB′,ABA′C,分別利用對角相等和對邊相等的性質使問題得到證明.對于第(2)問也可用“夾在兩條平行線間的平行線段相等”來證明.
例4 已知:如圖4-18(a),ABCD的對角線AC,BD相交于點O,EF過點O與AB,CD分別相交于點E,F(xiàn).求證:OE=OF,AE=CF,BE=DF.
分析:
。1)引導學生證明以OE,OF為邊的兩個三角形全等,如證△AOE≌△COF或證△BOE≌△DOF.
(2)根據(jù)學生實際,對圖4-18(a)可作適當引申,如圖4-18(b),(c),(d),并歸納結論如下:過平行四邊形對角線的交點作直線交對邊或對邊的延長線,所得對應線段相等.
。3)圖4-18是一組重要的基本圖形,熟悉它的性質對解答復雜問題是很有幫助的.
3.供選用例題.
。1)從平行四邊形的一個銳角頂點作平行四邊形的兩條高線.如果這兩條高線的夾角為135°,則這個平行四邊形相鄰兩內角的度數(shù)為__;若高線分別為1cm和2cm,則平行四邊形的周長為__,面積為___;若兩條高線夾角為120°呢?
。2)如圖4-19,在△ABC中,AD平分∠BAC,過D作DE∥AC交AB于E,過E作EF∥DC交AC于F.求證:AE=FC.
。3)如圖4-20,在ABCD中,AD=2AB,將AB向兩方延長,使AE=BF=AB.求證:EC⊥FD.
四、師生共同小結
1.平行四邊形與四邊形的關系.
2.學習了平行四邊形哪些方面的性質?
3.兩條平行線的距離是怎樣定義的?有什么性質?
五、作業(yè)
課本第143頁第2,3,4,5,6題.
課堂教學設計說明
本教學設計需2課時完成.
這節(jié)內容分2課時.第1課時在復習四邊形的有關知識的基礎上,用對比的方式引入平行四邊形的概念,充分體現(xiàn)了平行四邊形在四邊形體系中的地位,然后,教師應啟發(fā)學生從邊、角、對角線三個方面探索平行四邊形的性質,使知識更加系統(tǒng),更符合學生的認知規(guī)律,而且突出了第1課時的重點,同時更能培養(yǎng)學生主動探求知識的精神和思維的條理性.第2課時重點應用平行四邊形的定義、性質進行計算和證明,教師注意讓學生鞏固基礎知識和基本技能,加強對解題思路的分析,解題思想方法的概括、指導和結論的升華.
平行四邊形及其性質
教學目標
1、知識目標
。1)使學生掌握平行四邊形的概念,理解兩條平行線間的距離的概念。
(2)掌握平行四邊形的性質定理1、2,并能運用這些知識進行有關的證明或計算.
2、能力目標
。1)通過啟發(fā)、引導,讓學生猜想結論,培養(yǎng)學生的觀察能力和猜想能力。
。2)驗證猜想結論,培養(yǎng)學生的論證和邏輯思維能力。
。3)通過開放式教學,培養(yǎng)學生的創(chuàng)新意識和實踐能力。
3、非智力目標
滲透從具體到抽象、化未知為已知的數(shù)學思想及事物之間相互轉化的辯證唯物主義觀點.
教學重點、難點
重點:平行四邊形的概念及其性質.
難點:正確理解兩條平行線間的距離的概念和性質定理2的推論。
平行四邊形的概念及性質的靈活運用
教學方法:講解、分析、轉化
教學過程設計
一、利用分類、特殊化的方法引出平行四邊形的概念
1.復習四邊形的知識.
(1)引導學生畫任意凸四邊形,指出它的主要元素——頂點、邊、角、對角線的性質,強調對角線的作用:將四邊形分割化歸為三角形來研究.
(2)將四邊形的邊角按位置關系分為兩類:
教學時應結合圖形,讓學生識別清楚,并注意與三角形中角的對邊、邊的對角及第一章中的鄰角相區(qū)別.
2.教師提問:四邊形中的兩組對邊按位置關系分為幾種情況?
引導學生畫圖回答,并出示投影片顯示四邊形與特殊四邊形的關系,如圖4-11.
3.對比引出平行四邊形的概念.
。1)引導學生根據(jù)圖4-11,敘述平行四邊形的概念,引出課題.
。2)注意它與梯形的對比,及它與四邊形的特殊與一般的關系:平行四邊形是特殊的四邊形,因此它具有四邊形的一切性質(共性).同時它還具有一般四邊形不具備的特殊性質(個性).
(3)強調定義既是平行四邊形的一個判定方法,同時又是平行四邊形的一個性質.
。4)介紹平行四邊形的符號表示及定義的使用方法:如圖4-12.
、佟逜BCD,∴AD∥BC,AB∥CD.(平行四邊形的定義)
、凇逜D∥BC,AB∥CD,∴四邊形ABCD是平行四邊形.(平行四邊形的定義)
練習1(投影)
如圖4-13,DC∥EF∥AB,DA∥GH∥CB,圖中的平行四邊形共有__個,它們是__.
二、探索平行四邊形的性質并證明
1.探索性質.
啟發(fā)學生從平行四邊形的主要元素——邊、角、對角線的位置關系及數(shù)量關系入手,來觀察、探索、猜想平行四邊形的特有的性質如下:
。3)對角線
⑤對角線互相平分(性質定理3)
教師注意解釋并強調對角線互相平分的含義及表示方法.
2.利用化歸的方法對性質逐一進行證明.
。1)由平行四邊形的定義及平行線的性質很快證出性質①,④,③.
(2)啟發(fā)學生添加一條或兩條對角線,將四邊形分割、化歸為三角形;利用全等三角形的知識證出性質②,⑤.
。3)寫出證明過程.
3.關于“兩條平行線間的平行線段和距離”的教學.
。1)利用性質定理2
導出推論:夾在兩條平行線間的平行線段相等.
①提問:在圖4-14中,l1∥l2,AB∥CD,那么AB,CD的數(shù)量有何關系?引導學生根據(jù)平行四邊形的定義和性質進行證明.
②引導學生用語言簡練地敘述圖4-14所反映的幾何命題,并強調它的作用.證題時可節(jié)省步驟,省掉判定平行四邊形這一步,直接得到夾在兩條平行線間的平行線段相等.
、蹚娬{推論中的條件:“夾”、“平行線間”、“平行線段”的含義和重要性,并做一組辨析練習.
練習2
。ㄍ队埃┤鐖D4-15,判斷下列幾組圖形能否體現(xiàn)推論所代表的含義.
(2)根據(jù)圖4-15(d)引出兩條平行線的距離的概念,并通過練習區(qū)別三個距離.
練習3
在圖4-15(d)中,
①點A與點C的距離是線段__的長;
②點A到直線l2的距離是線段__的長;
、蹆蓷l平行線l1與l2的距離是線段__或__的長;
、苡赏普摽傻茫簝蓷l平行線間的距離__.
三、平行四邊形的定義及性質的應用
1.計算.
例1填空.
。1)在ABCD中,AB=a,BC=b,∠A=50°,則ABCD的周長為__,∠B=__,∠C=__,∠D=__;
。2)在ABCD中:①∠A∶∠B=5∶4,則∠A=__;②∠A+∠C=200°,則∠A=___,∠B=__;
。3)已知平行四邊形周長為54,兩鄰邊之比為4∶5,則這兩邊長度分別為__;
(4)已知ABCD對角線交點為O,AC=24mm,BD=26mm,①若AD=22mm,則△OBC周長為__;②若AB⊥AC,則△OBC比△OAB的周長大___;
。5)在ABCD中,AB=8cm,BC=10cm,∠B=30°,SABCD=__;
說明:通過此題讓學生熟悉平行四邊形的性質,會用它及方程的思想進行計算,并復習平行四邊形的面積公式.
2.證明.
例2 已知:如圖4-16,ABCD中,E,F(xiàn)分別為BC,AD上的點,AE∥CF.求證(1)BE=DF;(2)EF過BD的中點.
分析:
。1)盡量利用平行四邊形的定義和性質,避免證三角形全等.
。2)考慮特殊化情形.在ABCD中,若E,F(xiàn)在BC,AD上運動到如下位置:AE⊥BC于E,CF⊥AD于F,求證BE=DF.在題目的變化與聯(lián)系中靈活選用性質來解題.
例3已知:如圖4-17,A′B′∥BA,B′C′∥CB,C′A′∥AC.求證:(1)∠ABC=∠B′,∠CAB=∠A′,∠BCA=∠C′;(2)△ABC的頂點分別是△B′C′A′各邊的中點.
著重引導學生先分解基本圖形,圖中有3個平行四邊形:C′BCA,ABCB′,ABA′C,分別利用對角相等和對邊相等的性質使問題得到證明.對于第(2)問也可用“夾在兩條平行線間的平行線段相等”來證明.
例4 已知:如圖4-18(a),ABCD的對角線AC,BD相交于點O,EF過點O與AB,CD分別相交于點E,F(xiàn).求證:OE=OF,AE=CF,BE=DF.
分析:
。1)引導學生證明以OE,OF為邊的兩個三角形全等,如證△AOE≌△COF或證△BOE≌△DOF.
。2)根據(jù)學生實際,對圖4-18(a)可作適當引申,如圖4-18(b),(c),(d),并歸納結論如下:過平行四邊形對角線的交點作直線交對邊或對邊的延長線,所得對應線段相等.
。3)圖4-18是一組重要的基本圖形,熟悉它的性質對解答復雜問題是很有幫助的.
3.供選用例題.
。1)從平行四邊形的一個銳角頂點作平行四邊形的兩條高線.如果這兩條高線的夾角為135°,則這個平行四邊形相鄰兩內角的度數(shù)為__;若高線分別為1cm和2cm,則平行四邊形的周長為__,面積為___;若兩條高線夾角為120°呢?
(2)如圖4-19,在△ABC中,AD平分∠BAC,過D作DE∥AC交AB于E,過E作EF∥DC交AC于F.求證:AE=FC.
。3)如圖4-20,在ABCD中,AD=2AB,將AB向兩方延長,使AE=BF=AB.求證:EC⊥FD.
四、師生共同小結
1.平行四邊形與四邊形的關系.
2.學習了平行四邊形哪些方面的性質?
3.兩條平行線的距離是怎樣定義的?有什么性質?
五、作業(yè)
課本第143頁第2,3,4,5,6題.
課堂教學設計說明
本教學設計需2課時完成.
這節(jié)內容分2課時.第1課時在復習四邊形的有關知識的基礎上,用對比的方式引入平行四邊形的概念,充分體現(xiàn)了平行四邊形在四邊形體系中的地位,然后,教師應啟發(fā)學生從邊、角、對角線三個方面探索平行四邊形的性質,使知識更加系統(tǒng),更符合學生的認知規(guī)律,而且突出了第1課時的重點,同時更能培養(yǎng)學生主動探求知識的精神和思維的條理性.第2課時重點應用平行四邊形的定義、性質進行計算和證明,教師注意讓學生鞏固基礎知識和基本技能,加強對解題思路的分析,解題思想方法的概括、指導和結論的升華.
平行四邊形教案 篇4
教材分析
1、課標分析:《數(shù)學課程標準》提出:“要讓學生在參與特定的數(shù)學活動,在具體情境中初步認識對象的特征,獲得一些體驗!彼^體驗,從教育的角度看,是一種親歷親為的活動,是一種積極參與活動的學習方式。本節(jié)課的設計充分利用學生已有的生活經驗,把這一學習內容設計成實踐活動,讓學生在自主探究合作學習中理解平行四邊形面積的計算公式,并了解平行四邊形與其他幾種圖形間的關系,讓學生經歷學習過程,充分體驗數(shù)學學習,感受成功的喜悅,增強信心,同時培養(yǎng)學生思維的靈活性,與他人合作的態(tài)度以及學習數(shù)學的興趣。
2、教材分析: 《平行四邊形的面積》是義務教育課程標準實驗教材五年級上冊第五單元第一課時的內容。該內容是在學生已學會長方形、正方形的面積計算,已掌握平行四邊形的特征,會畫平行四邊形的底和對應的高的基礎上教學的。通過本節(jié)課的學習,能為學生推導三角形、梯形面積的計算公式提供方法遷移,同時也為進一步學習立體圖形的表面積做了準備。 由于學生已掌握了長方形的面積計算公式,所以當學生掌握了割補法,把平行四邊形轉化成長方形之后,平行四邊形面積的計算公式就自然而然的產生了。本節(jié)課的教學不僅培養(yǎng)了學生的觀察比較、分析綜合的能力,還培養(yǎng)了學生動手操作、探索創(chuàng)新的能力,是學習多邊形面積計算,掌握轉化思想的起始內容。
學情分析
五年級學生正處在形象思維和邏輯思維過渡時期。他們有了一定空間觀念和邏輯思維能力。但對于理解圖形面積計算的公式推導和描述推導的過程還是有難度的。這就需要教師利用生動形象的教學媒介讓學生去參與、去操作、去實踐,才能讓學生通過體驗,掌握規(guī)律,形成技能。這節(jié)課中生動形象的多媒體有助于學生將這些抽象的事物轉化為易于理解、易于接受的事物,多媒體的使用在教學中起到了不可替代的作用。
教學目標
(1)使學生通過探索理解和掌握平行四邊形的面積公式,會計算平行四邊形的面積。
(2)通過操作,觀察、比較活動,初步認識轉化的方法,培養(yǎng)學生的觀察、分析、概括、推導能力,發(fā)展學生的空間觀念。
(3)培養(yǎng)學生學習數(shù)學的興趣及積極參與、團結協(xié)作的精神。
教學重點和難點
教學重點:使學生通過探索、理解和掌握平行四邊形的面積、計算公式、會計算平行四邊形的面積。
教學難點:通過學生動手操作,用割補的方法把一個平行四邊形轉化為一個長方形,找出兩個圖形間的聯(lián)系,推導出平行四邊形的面積公式。
教學過程
一、情感交流
二、探究新知
1、舊知鋪墊
(1)、說出平面圖形名稱并對它們進行分類。
。2)、計算正方形、長方形的面積。(強調長方形面積計算公式)
設計目的:從學生熟悉的`知識點入手,能夠降低門檻順理成章的引入新知識。
2、 導入新課
3、 探究平行四邊形面積計算方法。
。1)、在方子格中數(shù)出長方形的面積。
(2)、在方子格中數(shù)出平行四邊形的面積(不滿一格的按半格計算)。要求學生說出平行四邊形對應的底和高。
。3)、通過觀察表格,試著猜測平行四邊形的面積計算方法。
。4)、共同探討如何計算平行四邊形的面積。
、俪鍪酒叫兴倪呅,引導學生明確其底和高。
、趯W生在學具上標明其底并畫出對應的高。
③討論:能否把平行四邊形轉化為已學過的平面圖形再計算(保證面積不會發(fā)生變化)
、苄〗M交流如何操作的。(割補法)
、輰W生代表匯報各組的操作方法以及得到的結論。
、藁脽羝菔靖钛a的過程。
、咭龑W生歸納平行四邊形面積計算公式。(讓學生明確算平行四邊形面積的必須條件)
4、 課堂小練筆。
設計目的:達到讓學生動手操作,從實踐中掌握知識,并能夠從實踐中總結知識。讓學生明白知識來源于生活,又用于生活。
三、課堂練習
四、小結本課
五、課堂作業(yè)
板書設計
平行四邊形 面積 = 底 × 高
長方形 面積 = 長 × 寬
S表示平行四邊形的面積 a表示底 h表示高
S=a×h s=a.h S=ah
平行四邊形教案 篇5
教學目標:
1.經歷探索平行四邊形有關概念和性質的過程,在活動中發(fā)展學生的探究意識和合作交流的習慣;
2.索并掌握平行四邊形的性質,并能簡單應用;
3.在探索活動過程中發(fā)展學生的探究意識。
教學重點:平行四邊形性質的探索。
教學難點:平行四邊形性質的理解。
教學準備:多媒體課件
教學過程
第一環(huán)節(jié):實踐探索,直觀感知(5分鐘,動手實踐、探索、感知,學生進一步探索了平行四邊形的概念,明確了平行四邊形的本質特征。)
1.小組活動一
內容:
問題1:同學們拿出準備好的剪刀、彩紙或白紙一張。將一張紙對折,剪下兩張疊放的三角形紙片,將它們相等的一邊重合,得到一個四邊形。
(1)你拼出了怎樣的四邊形?與同桌交流一下;
(2)給出小明拼出的四邊形,它們的對邊有怎樣的位置關系?說說你的理由,請用簡捷的語言刻畫這個圖形的特征。
2.小組活動二
內容:生活中常見到平行四邊形的實例有什么呢?你能舉例說明嗎?
第二環(huán)節(jié)探索歸納、合作交流(5分鐘,學生動手、動嘴,全班交流)
小組活動3:
用一張半透明的'紙復制你剛才畫的平行四邊形,并將復制后的四邊形繞一個頂點旋轉180°,你能平移該紙片,使它與你畫的平行四邊形重合嗎?由此你能得到哪些結論?四邊形的對邊、對角分別有什么關系?能用別的方法驗證你的結論嗎?
(1)讓學生動手操作、復制、旋轉、觀察、分析;
(2)學生交流、議論;
(3)教師利用多媒體展示實踐的過程。
第三環(huán)節(jié)推理論證、感悟升華(10分鐘,學生通過說理,由直觀感受上升到理性分析,在操作層面感知的基礎上提升,并了解圖形具有的數(shù)學本質。)
實踐探索內容
(1)通過剪紙,拼紙片,及旋轉,可以觀察到平行四邊行的對角線把它分成的兩個三角形全等。
(2)可以通過推理來證明這個結論,如圖連結AC。
∵四邊形ABCD是平行四邊形
∴AD//BC,AB//CD
∴∠1=∠2,∠3=∠4
∴△ABC和△CDA中
∠2=∠1
AC=CA
∠3=∠4
∴△ABC≌△CDA(ASA)
∴AB=DC,AD=CB,∠D=∠B
又∵∠1=∠2
∠3=∠4
∴∠1+∠3=∠2+∠4
即∠BAD=∠DCB
第四環(huán)節(jié)應用鞏固深化提高(10分鐘,通過議一議,練一練,學生進一步理解平行四邊形的性質,并進行簡單合情推理,體現(xiàn)性質的應用,同時從不同角度平移、旋轉等再一次認識平行四邊形的本質特征。)
1.活動內容:
(1)議一議:如果已知平行四邊形的一個內角度數(shù),能確定其它三個內角的度數(shù)嗎?
A(學生思考、議論)
B總結歸納:可以確定其它三個內角的度數(shù)。
由平行四邊形對邊分邊平行得到鄰角互補;又由于平行四邊形對角相等,由此已知平行四邊形的一個內角的度數(shù),可以確定其它三個角度數(shù)。
(2)練一練(P99隨堂練習)
練1如圖:四邊形ABCD是平行四邊形。
(1)求∠ADC、∠BCD度數(shù)
(2)邊AB、BC的度數(shù)、長度。
練2四邊形ABCD是平行四邊形
(1)它的四條邊中哪些線段可以通過平移相到得到?
(2)設對角線AC、BD交于O;AO與OC、BO與OD有何關系?說說理由。
歸納:平行四邊形的性質:平行四邊形的對角線互相平分。
第五環(huán)節(jié)評價反思概括總結(8分鐘,學生踴躍談感受和收獲)
活動內容
師生相互交流、反思、總結。
(1)經歷了對平行四邊形的特征探索,你有什么感受和收獲?給自己一個評價。
(2)在與同伴合作交流中練表現(xiàn),優(yōu)秀方面有哪些?你看到同伴哪些優(yōu)點?
(3)本節(jié)學習到了什么?(知識上、方法上)
考一考:
1.ABCD中,∠B=60°,則∠A=,∠C=,∠D=。
2.ABCD中,∠A比∠B大20°,則∠C=。
3.ABCD中,AB=3,BC=5,則AD=CD=。
4.ABCD中,周長為40cm,△ABC周長為25,則對角線AC=()cm。
布置作業(yè)
課本習題4.1
A組(學優(yōu)生)1、2
B組(中等生)1、2
C組(后三分之一生)1、2
平行四邊形教案 篇6
教學內容:
義務教育課程標準實驗教科書數(shù)學人教版五年級上冊第五單元《平行四邊形的面積》第一課時79~81頁。
教學目標:
1、使學生通過探索理解和掌握平行四邊形的面積公式,會計算平行四邊形的面積。
2、通過操作,觀察、比較活動,初步認識轉化的方法,培養(yǎng)學生的觀察、分析、概括、推導能力,發(fā)展學生的空間思維。
3、培養(yǎng)學生學習數(shù)學的興趣及積極參與、團結合作的',滲透品德教育。
教學重點:探究平行四邊形的面積計算公式,會計算平行四邊形的面積。
教學難點:平行四邊形面積公式的推導過程。
教具準備:多媒體課件、剪刀、平行四邊形
教學過程:
一、情景引入,激趣導課
建國60年來,我們的生活水平越來越好,李明家和張海家不單在普羅旺斯小區(qū)買了新房子,還買了私家車,他們不僅是物質生活水平提高了,文明也提高了。這不他們又在為兩個停車位而互相禮讓著,都想把面積大的讓給對方。你有什么辦法知道這兩個停車位的面積哪個大嗎?
導入新課,揭示圖形板書課題。
二、動手操作,探究新知
1、復習:復習平行四邊形的底和高。
2、歸納意見,提出驗證
學生利用課前準備好的平行四邊形,通過剪、畫、拼、折等,先自己思考,再和小組同學交流合作,動手操作尋找平行四邊形面積的計算方法。
3、學生匯報結果,展示操作過程
小組的代表來展示各組的操作方法。
4、演示過程,強化結果
多媒體演示,再來回顧一遍剪拼的過程。并適時提問:在轉化的過程中,什么發(fā)生了變化?而什么沒有變?
5、填空、歸納公式
根據(jù)剛才的操作過程,完成填空題,并歸納板書公式。
把一個平行四邊形轉化成長方形,這個長方形的長相當于平行四邊形的(),長方形的寬相當于平行四邊形的(),長方形的面積和平行四邊形的面積(),因為長方形的面積=(),所以平行四邊形的面積=()。
6、提問質疑
學生閱讀課本81頁的內容,質疑。
三、分層練習,內化新知
1、用公式分別算一算兩個停車位的面積。
2、計算相對應的底和高的平行四邊形花圃面積。
3、計算平行四邊形牌兩面涂漆的面積。
4、小小設計師:在小區(qū)南面有一塊空地,想在空地里設計一個面積為36平方米的草坪,你有幾種設計?請你畫出圖形,并標出有關數(shù)據(jù)。
四:課堂。
今天我們學習了什么?通過學習,你有那些新的收獲呢?
板書設計:
平行四邊形的面積
長方形的面積=長×寬
。ㄞD化)
平行四邊形的面積=底×高
S=a×h
平行四邊形教案 篇7
學習目標
1、 理解平行四邊形的概念及其特征,知道平行四邊形兩組對邊分別平行且相等。
2、認識平行四邊形的底和高,會畫出平行四邊形的高;
3、培養(yǎng)學生的實踐能力,觀察能力和分析能力。
學習重點:
掌握平行四邊形的特征。
學習難點:
會畫平行四邊形的.高。
學習準備:
課件、長方形框架、平行四邊形紙、釘板
導學過程:
一、魔術表演:
教師拿出一個用四根木條釘成的長方形,兩手捏住長方形的兩個對角,向相反方向拉,觀察兩組對邊有什么變化?拉成了什么圖形?為什么會發(fā)生這樣的變化?
二、揭示課題和目標。
三、體驗平行四邊形的特性
1、揭示平行四邊形的不穩(wěn)定性;
2、你能舉出日常生活中應用平行四邊形容易變形這一性質的例子嗎?
3、圖片展示。
四、探究平行四邊形的特征
。ㄒ唬┯^察圖形,合理猜想
請學生拿出手里的平行四邊形紙,讓學生大膽猜平行四邊形的特征。學生發(fā)言。
。ǘ﹦邮植僮,驗證猜想
1、操作實踐。教師提示用三角板或者直尺驗證。學生小組驗證。
2、匯報交流驗證的過程。
預設:1、測量后發(fā)現(xiàn)對邊相等
2、延長對邊不相交,所以對邊平行
3、用畫垂線的方法,從一邊向另一邊畫垂線,垂線段都相等,所以對邊平行。
3、歸納特征。
師:現(xiàn)在請你用一句話概括平行四邊形的特征。生用自己的語言描述。
教師幫助歸納并板書:兩組對邊分別平行且相等
4、應用做教材67頁1題。
五、動手操作,認識“底和高”:
1、觀察畫出的垂直線段,告訴學生:
像這樣從平行四邊形一條邊上的一點向對邊引一條垂線,這點和垂足之間的線段叫做平行四邊形的高,垂足所在的邊叫平行四邊形的底。
2、請學生猜猜,平行四邊形有多少條高?
3、揭示平行四邊形高的畫法
4、練習:畫出四個平行四邊形的高。
五、智慧屋(練習題)
六、全課總結:通過本節(jié)課的學習,你知道了平行四邊形的哪些東西呢?
平行四邊形教案 篇8
一、教材分析
1.教材的地位與作用
平行四邊形是最基本的幾何圖形,也是 “空間與圖形”領域中研究的主要對象之一.它在生活中有著十分廣泛的應用,這不僅表現(xiàn)在日常生活中有許多平行四邊形的圖案,還包括其性質在生產、生活各領域的實際應用.
本節(jié)課既是平行線的性質、全等三角形等知識的延續(xù)和深化,也是后續(xù)學習矩形、菱形、正方形等知識的堅實基礎,在教材中起著承上啟下的作用.平行四邊形的性質還為證明兩條線段相等、兩角相等、兩直線平行提供了新的方法和依據(jù),拓寬了學生的`解題思路.
另外本節(jié)課是在學生掌握了平移、旋轉知識的基礎上探究平行四邊形的性質,能使學生經歷觀察、實驗、猜想、驗證、推理、交流等數(shù)學活動,對于培養(yǎng)學生的合情推理能力、發(fā)散思維能力以及探索、體驗數(shù)學思維規(guī)律等方面起著重要的作用.
2.教學目標:
知識技能:理解并掌握平行四邊形的相關概念和性質,培養(yǎng)學生初步應用這些知識解決問題的能力.
數(shù)學思考:通過觀察、實驗、猜想、驗證、推理、交流等數(shù)學活動進一步發(fā)展學生的演繹推理能力和發(fā)散思維能力.
解決問題:學生親自經歷探索平行四邊形有關概念和性質的過程,體會解決問題策略的多樣性.
情感態(tài)度:培養(yǎng)學生獨立思考的習慣與合作交流的意識,激發(fā)學生探索數(shù)學的興趣,體驗探索成功后的快樂.
3.教學重點、難點:
重點:理解并掌握平行四邊形的概念及其性質.
難點:運用平移、旋轉的圖形變換思想探究平行四邊形的性質.
4.教材處理:
基于“創(chuàng)造性地使用教材”和“真正地以學生為本”的教學理念,我將教材內容進行合理內化、整合.
首先,打破了原教材的知識結構,構建成一個新的教學體系,分為探索平行四邊形的性質和平行四邊形性質的應用這樣兩部分,本節(jié)課是探索平行四邊形的性質.這樣安排能很好地體現(xiàn)知識結構的完整性和系統(tǒng)性.
然后,將教材中平行四邊形性質的探究活動完全開放,給學生充分探索的時間與空間,動手實驗,動腦思考.力圖構建學生主動探索、獲取知識的平臺,使學生真正成為實踐的探索者、知識的構建者、愉快的收獲者.
最后,把一道命題證明的練習題改編成實驗操作型問題.學生利用課前準備好的教具制作成模型,讓圖形動起來.這樣設計有利于學生在圖形運動變化的過程中去發(fā)現(xiàn)其中不變的關系,從而發(fā)現(xiàn)圖形的性質.
總之,教材處理力求在深挖概念內涵;拓展性質外延;深化練習效用的過程中達到培養(yǎng)學生創(chuàng)新意識和實踐能力的教學目的.
二.教學方法與手段
本節(jié)課在教法上體現(xiàn)教師的“啟發(fā)引導”,幫助學生實現(xiàn)認識上與態(tài)度上的跨越;在學法上突出學生的“探索發(fā)現(xiàn)”,在教學過程中立足于讓學生自己去觀察、去發(fā)現(xiàn)、去創(chuàng)造.利用多媒體、自制教具輔助教學,增強教學的直觀性、實效性.
【平行四邊形教案】相關文章:
《平行四邊形的面積》教案01-02
認識平行四邊形教案03-05
平行四邊形面積教案02-09
平行四邊形的面積教案07-24
平行四邊形的面積教案03-17
平行四邊形教案優(yōu)秀03-27
平行四邊形的認識教案07-30
平行四邊形面積的計算教案03-03
數(shù)學《平行四邊形的面積》教案02-14
數(shù)學平行四邊形的面積教案02-28