成大在线免费视频,亚洲精品免费一级视频,日韩亚洲欧美大陆,又黄又爽免费国产视频

<style id="t465f"></style>
<legend id="t465f"><u id="t465f"><thead id="t465f"></thead></u></legend>

<acronym id="t465f"></acronym>

<sub id="t465f"><ol id="t465f"><nobr id="t465f"></nobr></ol></sub>
<sub id="t465f"></sub>

五年級下冊因數(shù)和倍數(shù)教學(xué)反思

時(shí)間:2025-07-07 10:06:40 小英 教學(xué)資源 投訴 投稿
  • 相關(guān)推薦

五年級下冊因數(shù)和倍數(shù)教學(xué)反思(通用29篇)

  身為一位優(yōu)秀的老師,課堂教學(xué)是我們的任務(wù)之一,寫教學(xué)反思能總結(jié)教學(xué)過程中的很多講課技巧,如何把教學(xué)反思做到重點(diǎn)突出呢?下面是小編整理的五年級下冊因數(shù)和倍數(shù)教學(xué)反思,歡迎閱讀與收藏。

五年級下冊因數(shù)和倍數(shù)教學(xué)反思(通用29篇)

  五年級下冊因數(shù)和倍數(shù)教學(xué)反思 1

  《因數(shù)和倍數(shù)》是一節(jié)數(shù)學(xué)概念課,人教版新教材在引入因數(shù)和倍數(shù)的概念時(shí)與以往的教材有所不同。(1)新課標(biāo)教材不再提“整除”的概念,也不再是從除法算式的觀察中引入本單元的學(xué)習(xí),而是反其道而行之,通過乘法算式來導(dǎo)入新知。(2)“約數(shù)”一詞被“因數(shù)”所取代。這樣的變化原因何在?我認(rèn)真研讀教材,通過學(xué)習(xí)了解到以下信息:簽于學(xué)生在前面已經(jīng)具備了大量的區(qū)分整除與有余數(shù)除法的.知識基礎(chǔ),對整除的含義已經(jīng)有了比較清楚的認(rèn)識,不出現(xiàn)整除的定義并不會對學(xué)生理解其他概念產(chǎn)生任何影響。因此,本套教材中刪去了“整除”的數(shù)學(xué)化定義,而是借助整除的模式na=b直接引出因數(shù)和倍數(shù)的概念。

  雖然學(xué)生已接觸過整除與有余數(shù)的除法,但我班學(xué)生對“整除”與“除盡”的內(nèi)涵與外延并不清晰。因此在教學(xué)時(shí),補(bǔ)充了兩道判斷題請學(xué)生辨析:

  11÷2=5……1。問:11是2的倍數(shù)嗎?為什么?因?yàn)?×0.8=4,所以5和0.8是4的因數(shù),4是5和0.8的倍數(shù),對嗎?為什么?

  特別是第2小題極具價(jià)值。價(jià)值不僅體現(xiàn)在它幫助學(xué)生通過辨析明確了在研究因數(shù)和倍數(shù)時(shí),我們所說的數(shù)都是指整數(shù)(一般不包括0),及時(shí)彌補(bǔ)了未進(jìn)行整除概念教學(xué)的知識缺陷,還通過此題對“因數(shù)”與乘法算式名稱中的“因數(shù)”,倍數(shù)與倍進(jìn)行了對比。

  五年級下冊因數(shù)和倍數(shù)教學(xué)反思 2

  這節(jié)課帶給我的感想是頗多的,但綜觀整堂課,我覺得要改進(jìn)的地方還有很多,我只有不斷地進(jìn)行反思,才能不斷地完善思路,最終才能有所悟,有所長。下面就說說我對本課在教學(xué)設(shè)計(jì)上的反思和一些初淺的想法。

  本單元內(nèi)容在編排上與老教材有較大的差異,比如在認(rèn)識“因數(shù)、倍數(shù)”時(shí),不再運(yùn)用整除的概念為基礎(chǔ),引出因數(shù)和倍數(shù),而是直接從乘法算式引出因數(shù)和倍數(shù)的概念,目的是減去“整除”的數(shù)學(xué)化定義,降低學(xué)生的認(rèn)知難度,雖然課本沒出現(xiàn)“整除”一詞,但本質(zhì)上仍是以整除為基礎(chǔ)。本課的教學(xué)重點(diǎn)是求一個(gè)數(shù)的因數(shù),在學(xué)生已掌握了因數(shù)、倍數(shù)的概念及兩者之間的關(guān)系的基礎(chǔ)上,對學(xué)生而言,怎樣求一個(gè)數(shù)的因數(shù),難度并不算大,因此教學(xué)例題“找出18的因數(shù)”時(shí),我先放手讓學(xué)生自己找,學(xué)生在獨(dú)立思考的過程中,自然而然的會結(jié)合自己對因數(shù)概念的理解,找到解決問題的方法(培養(yǎng)學(xué)生對已有知識的運(yùn)用意識),然后在交流中不難發(fā)現(xiàn)可用乘法或除法來求一個(gè)數(shù)的因數(shù)(列出積是18的乘法算式或列出被除數(shù)是18的除法算式)。在這個(gè)學(xué)習(xí)活動環(huán)節(jié)中,我留給了學(xué)生較充分的思維活動的空間,有了自由活動的空間,才會有思維創(chuàng)造的火花,才能體現(xiàn)教育活動的終極目標(biāo)。特別是用除法找因數(shù)的學(xué)生,正是因?yàn)樗麄円庾R到了因數(shù)與倍數(shù)之間的整除關(guān)系的.本質(zhì),才會想到用除法來解決問題,我也不由得佩服這些孩子對知識的遷移能力。在這個(gè)環(huán)節(jié)的處理上,教材的本意是先由教師提出“想一想,幾和幾相乘得18?”引導(dǎo)學(xué)生從因數(shù)的概念,用乘法來找因數(shù),而我考慮到本班孩子的學(xué)情(絕大多數(shù)學(xué)生能夠運(yùn)用所學(xué)知識,找到求因數(shù)的方法),如教師一開始就引導(dǎo)學(xué)生:想幾和幾相乘,勢必會造成先入為主,妨礙學(xué)生創(chuàng)造性的思維活動?用已有的經(jīng)驗(yàn)自主建構(gòu)新知是提高學(xué)生學(xué)習(xí)能力的有效途徑,讓學(xué)生獨(dú)立思考、自主探索、促思(促進(jìn)學(xué)生思維發(fā)展)、提能(提高學(xué)習(xí)能力)是我的教學(xué)策略主要內(nèi)容。至于這兩種方法孰重孰輕,的確難以定論。實(shí)際上,對于數(shù)字較小的數(shù)(口訣表內(nèi)的),用乘法來求因數(shù)還是比較容易,但是超出口訣表范圍的數(shù)用除法則更能顯示出它的優(yōu)勢,如求54的因數(shù)有哪些?學(xué)生要直接找出2和幾相乘得54,3和幾相乘得54,4和幾相乘得54,顯然加大了思維難度,如用除法不是更簡單直接一些嗎?學(xué)生的學(xué)習(xí)潛力是巨大的,教師是學(xué)生學(xué)習(xí)的引領(lǐng)者,因此教師的觀念和行為決定了學(xué)生的學(xué)習(xí)方式和結(jié)果,所以我認(rèn)為教師要專研教材,充分利用教材,根據(jù)學(xué)生的實(shí)際情況,創(chuàng)造性地使用教材,為學(xué)生能力的發(fā)展提供素材和創(chuàng)造條件,真正實(shí)現(xiàn)學(xué)生學(xué)習(xí)的主體地位。

  學(xué)生在找一個(gè)數(shù)的因數(shù)時(shí)最常犯的錯(cuò)誤就是漏找,即找不全。學(xué)生怎樣按一定順序找全因數(shù)這也正是本課教學(xué)的難點(diǎn)。所以在學(xué)生交流匯報(bào)時(shí),我結(jié)合學(xué)生所敘思維過程,相機(jī)引導(dǎo)并形成有條理的板書,如:36÷1=36,36÷2=18,36÷3=12,36÷4=9。這樣的板書幫助學(xué)生有序的思考,形成明晰的解題思路的作用是毋庸質(zhì)疑的。教師能像教材中那樣一頭一尾地成對板書因數(shù),這樣既不容易寫漏,而且學(xué)生么隨著流程的進(jìn)行,勢必會感受到越往下找,區(qū)間越小,需要考慮的數(shù)也就越少。當(dāng)找到兩個(gè)相鄰的自然數(shù)時(shí),他們自然就不會再找下去了。書寫格式這一細(xì)節(jié)的教學(xué),既避免了教師羅嗦的講解,又有效突破了教學(xué)難點(diǎn),我相信像這樣潤物無聲的細(xì)節(jié),無論于學(xué)生、于課堂都是有利無弊的。

  五年級下冊因數(shù)和倍數(shù)教學(xué)反思 3

  本節(jié)課是第二單元的第一課時(shí),第二單元的教學(xué)內(nèi)容較為抽象,很難結(jié)合生活實(shí)例或具體情境來進(jìn)行教學(xué),學(xué)生理解起來有一定的難度。加強(qiáng)對概念間相互關(guān)系的梳理,引導(dǎo)學(xué)生從本質(zhì)上理解概念,避免死記硬背。還有要引導(dǎo)學(xué)生用聯(lián)系的觀點(diǎn)去掌握這些知識,而不是機(jī)械地記憶一堆支離破碎、毫無關(guān)聯(lián)的概念和結(jié)論。

  今天這節(jié)課的教學(xué)的倍數(shù)和因數(shù)是講述兩個(gè)數(shù)之間的一種相互依存關(guān)系,于是我利用課前談話讓學(xué)生在找找生活中的相互依存關(guān)系,課中遷移到數(shù)學(xué)中的倍數(shù)和因數(shù),這樣設(shè)計(jì)自然又貼切,既讓學(xué)生感受到了數(shù)學(xué)與生活的`聯(lián)系,初步學(xué)會從數(shù)學(xué)的角度去觀察事物、思考問題,激發(fā)對數(shù)學(xué)的興趣,又幫助學(xué)生理解了倍數(shù)因數(shù)之間的相互依存關(guān)系。然后我讓學(xué)生根據(jù)情境列出乘法算式,初步感知倍數(shù)關(guān)系的存在,從而引出倍數(shù)和因數(shù)的概念,并為下面學(xué)習(xí)如何找一個(gè)數(shù)的倍數(shù)奠定了良好的基礎(chǔ)。同時(shí),我還出示了一個(gè)除法的算式,讓學(xué)生來找找倍數(shù)和因數(shù)的關(guān)系,這樣不僅溝通了乘法和除法的關(guān)系,也讓學(xué)生很容易感悟到不管是根據(jù)乘法還是除法算式都可以找到因數(shù)和倍數(shù)。

  找出一個(gè)數(shù)的因數(shù)要做到不重復(fù)和不遺漏,有些學(xué)生還不能找全,沒有掌握方法,我在今后的教學(xué)中還要注意對學(xué)困生的輔導(dǎo)。

  五年級下冊因數(shù)和倍數(shù)教學(xué)反思 4

  一、教材與知識點(diǎn)的對比與區(qū)別

  1、對比新版教材知識設(shè)置與傳統(tǒng)教材的區(qū)別。

  有關(guān)數(shù)論的這部分知識是傳統(tǒng)教學(xué)內(nèi)容,但教材在傳承以往優(yōu)秀做法的同時(shí)也進(jìn)行了較大幅度的改動。無論是從宏觀方面--內(nèi)容的劃分,還是從微觀方面--具體內(nèi)容的設(shè)計(jì)上都獨(dú)具匠心。“因數(shù)與倍數(shù)”的認(rèn)識與原教材有以下兩方面的區(qū)別:

 。1)新課標(biāo)教材不再提“整除”的概念,也不再是從除法算式的觀察中引入本單元的學(xué)習(xí),而是反其道而行之,通過乘法算式來導(dǎo)入新知。

 。2)“約數(shù)”一詞被“因數(shù)”所取代。

  這樣的變化原因何在?教師必須要認(rèn)真研讀教材,深入了解編者意圖,才能夠正確、靈活駕馭教材。因此,我通過學(xué)習(xí)教參了解到以下信息:

  學(xué)生的原有知識基礎(chǔ)是在已經(jīng)能夠區(qū)分整除與余數(shù)除法,對整除的含義有比較清楚的認(rèn)識,不出現(xiàn)整除的定義并不會對學(xué)生理解其他概念產(chǎn)生任何影響。因此,本教材中刪去了“整除”的數(shù)學(xué)化定義。

  2、相似概念的對比。

  (1)彼“因數(shù)”非此“因數(shù)”。

  在同一個(gè)乘法算式中,兩者都是指乘號兩邊的整數(shù),但前者是相對于“積”而言的,與“乘數(shù)”同義,可以是小數(shù)。而后者是相對于“倍數(shù)”而言的,與以前所說的“約數(shù)”同義,說“X是X的因數(shù)”時(shí),兩者都只能是整數(shù)。

  (2)“倍數(shù)”與“倍”的區(qū)別。

  “倍”的概念比“倍數(shù)”要廣。我們可以說“1.5是0.3的5倍”,但不能說”1.5是0.3的倍數(shù)”。我們在求一個(gè)數(shù)的倍數(shù)時(shí),運(yùn)用的方法與“求一個(gè)數(shù)的幾倍是多少”是相同的,只是這里的“幾倍”都是指整數(shù)倍。

  二、教法的運(yùn)用實(shí)踐

  1、“因數(shù)與倍數(shù)”概念的數(shù)的應(yīng)用范圍的規(guī)定直接運(yùn)用講述法。對與本知識點(diǎn)的概念是人為規(guī)定的一個(gè)范圍,因此,對于學(xué)生和第一接觸的印象是沒有什么可以探究和探索的要求,而且給學(xué)生一個(gè)直觀的感受。“因數(shù)與倍數(shù)”的運(yùn)用范圍就是在非0自然數(shù)的范疇之內(nèi),與小數(shù)無關(guān),與分?jǐn)?shù)無關(guān),與負(fù)數(shù)無關(guān)(雖沒學(xué),但有小部分學(xué)生了解)。同時(shí)強(qiáng)調(diào)--非0--因?yàn)?乘任何數(shù)得0,0除以任何數(shù)得0。研究它的'因數(shù)與倍數(shù)是沒有意義。我得到的經(jīng)驗(yàn)就是對于數(shù)學(xué)當(dāng)中規(guī)定性的概念用直接講述法,讓學(xué)生清晰明確。因此,用直接導(dǎo)入法,先復(fù)習(xí)自然數(shù)的概念,再寫出乘法算式3*4=12,說明在這個(gè)算式中,3和4是12的因數(shù),12是3和4的倍數(shù)。

  2、在進(jìn)行延續(xù)性教學(xué)中,可以讓學(xué)生探究怎么樣找一個(gè)數(shù)的因數(shù)和倍數(shù),在板書要講究一個(gè)格式與對稱性,這樣在對學(xué)生發(fā)現(xiàn)倍數(shù)與因數(shù)個(gè)數(shù)的有限與無限的對比,再就是發(fā)現(xiàn)一個(gè)數(shù)的因數(shù)的最小因數(shù)是1,最大因數(shù)是它本身。一個(gè)數(shù)的倍數(shù)的最小的倍數(shù)是它本身,而沒有最大的倍數(shù)。這些都是上課時(shí)應(yīng)該要注意的細(xì)節(jié),這對于學(xué)生良好的學(xué)習(xí)慣的培養(yǎng)也是很重要的。

  五年級下冊因數(shù)和倍數(shù)教學(xué)反思 5

  一、“倍數(shù)和因數(shù)”與“倍數(shù)和約數(shù)”這兩種說法一定要分清

  “倍數(shù)和因數(shù)”與“倍數(shù)和約數(shù)”這兩種說法只是新舊教材的說法不同而已,其實(shí)都是表示同一類數(shù)。(即因數(shù)也是約數(shù))

  二、為什么第十教科書上講“倍數(shù)與因數(shù)”的時(shí)候不提整除

  也許我的頭腦還受舊版教材的影響,我認(rèn)為說到“倍數(shù)與因數(shù)”必須要談到整除,因?yàn)檎茄芯俊耙驍?shù)和倍數(shù)”的條件,學(xué)生在沒有這條件學(xué)習(xí)整除,只要教師的教學(xué)方法稍有不慎,學(xué)生會很快誤入小數(shù)也有因數(shù);但是我在實(shí)際的教學(xué)過程中,也體會到了教材中不提整除的好處。而我的心里卻又產(chǎn)生了一個(gè)新的疑問,S版教材到底在什么時(shí)候于什么數(shù)學(xué)環(huán)境下才提出“整除”這個(gè)概念呢?會不會在六年級課改才出現(xiàn)呢?我期待著。

  三、教學(xué)2、5和3的倍數(shù)教師應(yīng)注重“靈活”

  1、在教學(xué)2和5的倍數(shù)時(shí),是用同一種方法找出它們倍數(shù)的,學(xué)生很容易掌握,也很快就能把2和5的倍數(shù)說出,并能準(zhǔn)確找出各自的倍數(shù),此時(shí),教師應(yīng)把學(xué)生的思維轉(zhuǎn)到同時(shí)是2和5的倍數(shù)怎樣找?接著引導(dǎo)學(xué)生歸納出同時(shí)是2和5的倍數(shù)的'特征,因此,讓學(xué)生的知識面進(jìn)一步加大。

  2、教學(xué)3的倍數(shù)的特征時(shí),教師首先讓學(xué)生用2和5的倍數(shù)的方法去找3的倍數(shù)的特征,讓學(xué)生嘗試這種方法是找不到3的倍數(shù)的特征,這時(shí),教師應(yīng)該引導(dǎo)學(xué)生對寫出的3的倍數(shù),要用另一種方法去歸納、總結(jié)3的倍數(shù)的特征,運(yùn)用這一特點(diǎn),教師可以有意識地寫些數(shù)(有3的倍數(shù),也有不是3的倍數(shù),而且是較大的數(shù))讓學(xué)生進(jìn)行判斷,這樣可使學(xué)生對3的倍數(shù)的特征進(jìn)一步得到鞏固;

  當(dāng)學(xué)生熟練掌握3的倍數(shù)的特征時(shí),教師話峰一轉(zhuǎn),你們能歸納出9的倍數(shù)的特征嗎?學(xué)生在教師這一激發(fā)下,他們的求知欲興趣大增,然后教師啟學(xué)生運(yùn)用找3的倍數(shù)的方法,去找9的倍數(shù)的特征,學(xué)生會輕而易舉地歸納、總結(jié)出9的倍數(shù)的特征。通過找9的倍數(shù)的特征,既鞏固了學(xué)生學(xué)習(xí)3的倍數(shù)的特征,還使學(xué)生的知識面擴(kuò)大,達(dá)到知識的鞏固和遷移的目的。

  3、當(dāng)學(xué)生掌握了2、5和3的倍數(shù)的特征時(shí),教師這時(shí)應(yīng)引導(dǎo)學(xué)生進(jìn)一步歸納、總結(jié),把這三個(gè)特征綜合,從而得出同時(shí)是2、3和5的倍數(shù)的特征。

  通過這樣的教學(xué),讓學(xué)生真正感受到“靈活”兩字,并且能把知識面向縱橫方向發(fā)展。

  五年級下冊因數(shù)和倍數(shù)教學(xué)反思 6

  今天和孩子們一起學(xué)習(xí)了新的一節(jié)課《因數(shù)》,對于《因數(shù)》來說是孩子們第一冊接觸的知識,但是對于因數(shù)這個(gè)詞來說,孩子們也并不陌生,因?yàn)樵诔朔ㄋ闶街幸呀?jīng)有了因數(shù)的一個(gè)初步的了解。所以對于本節(jié)課來說自己有如下的感受:

  一、初步感知,數(shù)形結(jié)合讓學(xué)生形成表象

  在教學(xué)的時(shí)候,我首先通過課本上飛機(jī)圖的情景圖讓學(xué)生看圖列算式,并且用現(xiàn)在自己五年級的思維來用不同的乘法算式來表示,這一環(huán)節(jié)對于學(xué)生列式來說是比較簡單的,基本上所有的學(xué)生都能夠很好的列出算是,然后根據(jù)學(xué)生列出的算式,引出因數(shù)和倍數(shù)的意義。在此環(huán)節(jié)的設(shè)計(jì)上由于方法的多樣性,為不同思維的展現(xiàn)提供了空間,激發(fā)了學(xué)生的形象思維,而又借助 “形”與“數(shù)”的關(guān)系,為接下來研究“因數(shù)與倍數(shù)”概念打下了良好基礎(chǔ),有效地實(shí)現(xiàn)了已有知識與新知識之間的聯(lián)系。更好的'分化了難點(diǎn),讓學(xué)生很輕松的接受了知識的形成。

  二、自主探究以鄰為師

  在學(xué)生知道了因數(shù)和倍數(shù)的意義上,接下來出示了讓學(xué)生自己動手找18的所有的因數(shù)。為了能夠更好的、全面的找到18的所有因數(shù),讓同桌兩人互相合作來完成。通過教學(xué)發(fā)現(xiàn)學(xué)生的合作能力很強(qiáng),能夠用數(shù)學(xué)語言來準(zhǔn)確的表述,而且大多數(shù)學(xué)生在合作的過程中也能很好的找到、找全18的所有的因數(shù)。

  三、在練習(xí)中體驗(yàn)學(xué)習(xí)的快樂

  在最后的環(huán)節(jié)中我設(shè)計(jì)了不同層次的練習(xí),先讓學(xué)生說說有關(guān)因數(shù)和倍數(shù)的意義的一些練習(xí)題,加深對知識點(diǎn)的理解,主要是讓學(xué)生明白因數(shù)和倍數(shù)不是單獨(dú)存在的, 是相互已存的,必須要說清楚是誰是誰的因數(shù)、誰是誰的倍數(shù)。通過教學(xué)來看學(xué)生掌握的還算可以。接著出示了讓學(xué)生找不同數(shù)的因數(shù),在這個(gè)環(huán)節(jié)的設(shè)計(jì)用了不同 的形式,比如:找朋友,你來說我來做,比一比說最快等形式來幫助學(xué)生理解知識,在此過程中學(xué)生很感興趣,激情很好課堂氣氛熱烈,也讓學(xué)生在輕松的氛圍中體 驗(yàn)到學(xué)習(xí)的快樂。

  不足之處:

  在本節(jié)課的教學(xué)上還是存在很多不足之處,雖然自己也知道新課標(biāo)提出要以學(xué)生為主體,老師只是引導(dǎo)著和合作者,可是在教學(xué)過程中許多地方還是不由自主的說得過多,給學(xué)生的自主探索空間太少。

  如在教學(xué)找18的因數(shù)這一環(huán)節(jié)時(shí),由于擔(dān)心孩子們是第一次接觸因數(shù),對于因數(shù)的概念不夠了解,而犯這樣或那樣的錯(cuò)誤,所以引導(dǎo)的過多講解的過細(xì),因此給他們自主探究的空間太小了,沒能很好的體現(xiàn)學(xué)生的主體性。

  五年級下冊因數(shù)和倍數(shù)教學(xué)反思 7

  新教材在引入倍數(shù)和因數(shù)概念時(shí)與以往的老教材有所不同,比如在認(rèn)識“因數(shù)、倍數(shù)”時(shí),不再運(yùn)用整除的概念為基礎(chǔ),引出因數(shù)和倍數(shù),而是直接從乘法算式引出因數(shù)和倍數(shù)的概念,目的是減去“整除”的數(shù)學(xué)化定義,降低學(xué)生的認(rèn)知難度,雖然課本沒出現(xiàn)“整除”一詞,但本質(zhì)上仍是以整除為基礎(chǔ)。我在教學(xué)中充分體現(xiàn)以學(xué)生為主體,為學(xué)生的探究發(fā)現(xiàn)提供足夠的時(shí)空和適當(dāng)?shù)闹笇?dǎo),同時(shí),也為提高課堂教學(xué)的有效性,我從以下三個(gè)方面談一點(diǎn)教學(xué)體會。

  一、設(shè)疑遷移,點(diǎn)燃學(xué)習(xí)的火花

  良好的開頭是成功的一半。我采用“拼拼擺擺”作為談話進(jìn)入正題,不僅可以調(diào)動學(xué)生的.學(xué)習(xí)興趣,一一對應(yīng)、相互依存。對感知倍數(shù)和因數(shù)進(jìn)行有效的滲透和拓展。

  教學(xué)找一個(gè)數(shù)的倍數(shù)時(shí),我依據(jù)學(xué)情,設(shè)計(jì)讓學(xué)生獨(dú)立探究尋找3的倍數(shù)。我設(shè)計(jì)了嘗試練習(xí)-引出沖突-討論探究這么一個(gè)學(xué)習(xí)環(huán)節(jié)。學(xué)生帶著“又對又好”的要求開始自主練習(xí),學(xué)生找倍數(shù)的方法有:依次加3、依次乘1、2、3……、用乘法口訣等等。在學(xué)生充分討論的基礎(chǔ)上,我組織學(xué)生圍繞“好”展開評價(jià),有的學(xué)生認(rèn)為:從小到大依次寫,因?yàn)橛行,所以覺得好;有的學(xué)生認(rèn)為:用乘法算式寫倍數(shù),既快而且不受前面倍數(shù)的影響,可以很快地找到第幾個(gè)倍數(shù)是多少,學(xué)生發(fā)現(xiàn)3的倍數(shù)寫不完時(shí)都面面相覷,左顧右盼。學(xué)生通過討論,認(rèn)為用省略號表示比較恰當(dāng)。用語文中的一個(gè)標(biāo)點(diǎn)符號解決了數(shù)學(xué)問題,自己發(fā)現(xiàn)問題自己解決,學(xué)生從中體驗(yàn)到解決問題的愉快感和掌握新知的成就感。

  二、操作實(shí)踐,舉例內(nèi)化,認(rèn)識倍數(shù)和因數(shù)

  我創(chuàng)設(shè)有效的數(shù)學(xué)學(xué)習(xí)情境,數(shù)形結(jié)合,變抽象為直觀。首先讓學(xué)生動手操作把12個(gè)小正方形擺成不同的長方形,再讓學(xué)生寫出不同的乘法算式,借助多媒體出示乘法算式引出因數(shù)和倍數(shù)的意義。這樣在學(xué)生已有的知識基礎(chǔ)上,從動手操作,直觀感知,讓學(xué)生自主體驗(yàn)數(shù)與形的結(jié)合,進(jìn)而形成因數(shù)與倍數(shù)的意義.使學(xué)生初步建立了“因數(shù)與倍數(shù)”的概念。 這樣,充分學(xué)習(xí)、利用、挖掘教材,用學(xué)生已有的數(shù)學(xué)知識引出了新知識,減緩難度,效果較好。

  三、注重細(xì)節(jié),注重學(xué)生的習(xí)慣培養(yǎng)

  學(xué)生在找一個(gè)數(shù)的因數(shù)時(shí)最常犯的錯(cuò)誤就是漏找,即找不全。學(xué)生怎樣按一定順序找全因數(shù)這也正是本課教學(xué)的難點(diǎn)。所以在學(xué)生交流匯報(bào)時(shí),我結(jié)合學(xué)生所敘思維過程,相機(jī)引導(dǎo)并形成有條理的板書,如:36÷1=36,36÷2=18,36÷3=12,36÷4=9。

  這樣的板書幫助學(xué)生有序的思考,形成明晰的解題思路的作用是毋庸質(zhì)疑的。教師能像教材中那樣一頭一尾地成對板書因數(shù),這樣既不容易寫漏,而且學(xué)生么隨著流程的進(jìn)行,勢必會感受到越往下找,區(qū)間越小,需要考慮的數(shù)也就越少。當(dāng)找到兩個(gè)相鄰的自然數(shù)時(shí),他們自然就不會再找下去了。書寫格式這一細(xì)節(jié)的教學(xué),既避免了教師羅嗦的講解,又有效突破了教學(xué)難點(diǎn),我相信像這樣潤物無聲的細(xì)節(jié),無論于學(xué)生、于課堂都是有利無弊的

  由于這節(jié)是概念課,因此有不少東西是由老師告知的,但并不意味著學(xué)生完全被動地接受。教學(xué)之前我知道這節(jié)課時(shí)間會很緊,所以在備課的時(shí)候,我認(rèn)真鉆研了教材,仔細(xì)分析了教案,看哪些地方時(shí)間安排的可以少一些,所以我在總結(jié)倍數(shù)的特征,這一環(huán)節(jié)里縮短出示時(shí)間,直接以3個(gè)小問題出示,實(shí)際效果我認(rèn)為是比較理想的。課上還應(yīng)該及時(shí)運(yùn)用多媒體將學(xué)生找的因數(shù)呈現(xiàn)出來,引導(dǎo)學(xué)生歸納總結(jié)自己的發(fā)現(xiàn):最小的因數(shù)是1,最大的因數(shù)是它本身。應(yīng)該及時(shí)跟上個(gè)性化的語言評價(jià),激活學(xué)生的情感,將學(xué)生的思維不斷活躍起來。

  五年級下冊因數(shù)和倍數(shù)教學(xué)反思 8

  不知不覺,我們又進(jìn)行了第二單元的學(xué)習(xí)。第二單元的內(nèi)容是《因數(shù)與倍數(shù)》,這部分內(nèi)容與老教材相比變化很大,我覺得第二、四單元是本冊教材中變化最大的單元,要引起足夠的重視。

  1、以往認(rèn)識因數(shù)和倍數(shù)是借助于整除現(xiàn)象,“X能被X整除,或X能整除X”,所以X是X的因數(shù),X是X的倍數(shù)。現(xiàn)在的教材完全不同了,2X3=6,所以2和3是6的因數(shù),6是2和3的倍數(shù),借助整除的模式na=b直接引出因數(shù)和倍數(shù)的概念。

  2、以往數(shù)學(xué)教材中,概念教學(xué)的量很大。數(shù)的整除,因數(shù)(老教材稱為約數(shù)),倍數(shù),2、5、3的倍數(shù)的特征(老教材稱為能被2、5、3整除的數(shù)的特征),質(zhì)數(shù),倒數(shù),分解質(zhì)因數(shù),最大公因數(shù)(以往的教材中稱為最大公約數(shù)),最小公倍數(shù)等內(nèi)容共同編排在后面,合為一個(gè)單元。而現(xiàn)在新教材本單元只安排了因數(shù)和倍數(shù),2、5、3的倍數(shù)的特征,質(zhì)數(shù)合數(shù)。其它內(nèi)容安排在了第四單元《分?jǐn)?shù)的意義和性質(zhì)》,借助約分引出公約數(shù)、公倍數(shù)的.學(xué)習(xí),改變了概念多而集中,抽象程度過高的現(xiàn)象。

  3、以往求最大公約數(shù),最小公倍數(shù)時(shí),采用的方法是唯一的、固定的,也就是有短除法分解質(zhì)因數(shù),而新教材中鼓勵(lì)方法多樣化,不把它作為正式的內(nèi)容教學(xué),而是出現(xiàn)在教材的你知道嗎中?不那么呆板了,尊重學(xué)生的思維差異。

  可見,編者為體現(xiàn)新課標(biāo)精神對本部分內(nèi)容作了精心的調(diào)整,煞費(fèi)苦心,可是學(xué)完了本單元的第一部分和第二部分內(nèi)容,我對本單元的學(xué)習(xí)內(nèi)容有了小小的疑問。這一單元內(nèi)容分為因數(shù)和倍數(shù),2、5、3的倍數(shù)的特征,質(zhì)數(shù)和合數(shù),我覺得第一部分內(nèi)容和第三部分內(nèi)容的關(guān)系很大,連續(xù)性強(qiáng)。知道了什么是因數(shù)和倍數(shù),也會找一個(gè)數(shù)的因數(shù)和倍數(shù)了,那么就應(yīng)該從找因數(shù)和個(gè)數(shù)問題上學(xué)習(xí)質(zhì)數(shù)和合數(shù)。教材對質(zhì)數(shù)和合數(shù)的學(xué)習(xí)內(nèi)容設(shè)計(jì)較好,開門見山讓學(xué)生找出1-20各數(shù)的因數(shù),觀察因數(shù)的個(gè)數(shù)有什么規(guī)律,再引出質(zhì)數(shù)和合數(shù)的學(xué)習(xí)?蔀槭裁丛谥虚g突然加上了2、5、3的倍數(shù)的特征?這樣感覺前后內(nèi)容失去了聯(lián)系,不夠自然流暢。所以我覺得可以把二三部分內(nèi)容作為適當(dāng)?shù)恼{(diào)整,即因數(shù)和倍數(shù),質(zhì)數(shù)和合數(shù),2、5、3的倍數(shù)的特征會比較好一些。

  五年級下冊因數(shù)和倍數(shù)教學(xué)反思 9

  簡單的內(nèi)容中蘊(yùn)藏著復(fù)雜的關(guān)系,由于新教材把“整除”的概念去掉,再也不提誰被誰整除,而改成借助整除模式na=b,直接引出因數(shù)和倍數(shù)的概念,這部分內(nèi)容顯得比較容易了,學(xué)生在學(xué)因數(shù)時(shí),對于求一個(gè)數(shù)的因數(shù),及理解一個(gè)數(shù)的因數(shù)最小是1,最大因數(shù)是它本身,及一個(gè)數(shù)的因數(shù)的個(gè)數(shù)是有限的,感覺很清楚,明白。在學(xué)倍數(shù)時(shí),對求一個(gè)數(shù)的倍數(shù)及理解一個(gè)數(shù)的倍數(shù)中最小的是它本身,沒有最大的倍數(shù)也認(rèn)為容易簡單,但有關(guān)因數(shù)、倍數(shù)的綜合練習(xí)不少學(xué)生開始猶豫、混淆。如判斷一個(gè)數(shù)的因數(shù)的個(gè)數(shù)是無限的,不少學(xué)生判斷為對。練習(xí)中:18是的倍數(shù),個(gè)別學(xué)生選擇了18、36、54……。針對這種情況,我調(diào)整了練習(xí),組織學(xué)生研究了以下幾個(gè)問題:

  1、寫出12的因數(shù)和倍數(shù),寫出16的因數(shù)和倍數(shù)。

  2、觀察比較,會打消列問題:一個(gè)數(shù)的因數(shù)和它本身的關(guān)系,

  3、為什么一個(gè)數(shù)的因數(shù)的個(gè)數(shù)是有限的?最小是1,最大是它本身,也就是1和它本身之間的`整數(shù)。為什么一個(gè)數(shù)的倍數(shù)的個(gè)數(shù)是無限的?最小是它本身,沒有最大的。

  通過對這幾個(gè)問題的討論,多數(shù)學(xué)生較好的區(qū)分了一個(gè)數(shù)的因數(shù)和倍數(shù)

  五年級下冊因數(shù)和倍數(shù)教學(xué)反思 10

  一、單元主題圖體驗(yàn)數(shù)學(xué)化過程。單元主題圖是教材中的一個(gè)重要內(nèi)容,它是選擇某一個(gè)主題構(gòu)建的一幅情境圖,本單元就出現(xiàn)了“數(shù)的世界”單元主題圖。在教學(xué)中,我是從培養(yǎng)學(xué)生的問題意識出發(fā)來組織教學(xué)的,首先讓學(xué)生獨(dú)立觀察主題圖,通過獨(dú)立思考提出問題;然后讓孩子們通過小組合作,共享學(xué)習(xí)的成果;最后通過解決問題,體驗(yàn)獲取知識的'過程。教學(xué)中學(xué)生不僅很快找到了整數(shù)、小數(shù)、負(fù)數(shù),而且也找到了橙子賣完了用“0”表示,圖中有一個(gè)凳子、一張桌子用“1”表示,更多的是學(xué)生提出了很多的數(shù)學(xué)問題,如我有50元可以買多少千克蘋果?學(xué)生真正是在自主學(xué)習(xí)的過程中提出問題、解決問題,體驗(yàn)“數(shù)學(xué)化”的過程。

  二、數(shù)形結(jié)合實(shí)現(xiàn)有意義建構(gòu)。教材中對因數(shù)概念的認(rèn)識,設(shè)計(jì)了“用小正方形拼長方形”的操作活動,引導(dǎo)學(xué)生在方格紙上畫一畫,寫出乘法算式,再與同學(xué)進(jìn)行交流。在思考“哪幾種拼法”時(shí),借助“拼小正方形”的活動,使數(shù)與形有機(jī)地結(jié)合,防止學(xué)生進(jìn)行“機(jī)械地學(xué)習(xí)”;學(xué)生對因數(shù)和理解不僅是數(shù)字上的認(rèn)識,而且能與操作活動與圖形描述聯(lián)系起來,促進(jìn)了學(xué)生的有意義建構(gòu),這是一個(gè)“先形后數(shù)”的過程,是一個(gè)知識抽象的過程。

  三、探索活動關(guān)注解決問題的策略。學(xué)生在探索活動中,運(yùn)用做記號、列表格、畫示意圖等解決問題的策略來發(fā)現(xiàn)規(guī)律和特征,在探究的過程中,體會觀察、分析、歸納、猜想、驗(yàn)證等過程,孩子們學(xué)會了思考,初步形成了解決問題的一些基本策略。

  四、困惑:

  1、第一次真正開始教北師大教材,最大的感覺是教學(xué)的空間真的擴(kuò)大了,課堂活躍了,但是同時(shí)給學(xué)生進(jìn)行課后輔導(dǎo)的時(shí)間也增加了,每節(jié)課從學(xué)生的反饋看來,卻有相當(dāng)一部分的學(xué)生存在各種問題,教材中太缺乏那些能讓他們成功的“基礎(chǔ)性”題目,整個(gè)一個(gè)單元只有一個(gè)練習(xí)一,那六道題目真的能解決問題嗎?能否多給孩子們一些選擇。

  2、不太明白為什么一定要使用“因數(shù)”這個(gè)概念,比較“因數(shù)——公因數(shù)——最大公因數(shù)——約分”和“約數(shù)——公約數(shù)——最大公約數(shù)——約分”,總覺得后者容易接受吧。這一改好像我們還得教學(xué)生家長,就真的有學(xué)生家長投訴說“老師啊,你教錯(cuò)了,那不是因數(shù),是約數(shù)……”,讓人哭笑

  五年級下冊因數(shù)和倍數(shù)教學(xué)反思 11

  教材在引入倍數(shù)和因數(shù)的概念方面與之前的舊教材有所不同。比如,在分析“因數(shù)和倍數(shù)”時(shí),不再以整除的概念作為支撐,而是直接基于乘法算式來引入這兩個(gè)概念。這樣做的目的是除掉“整除”的數(shù)學(xué)定義,從而減少學(xué)生的認(rèn)知難度。雖然教材中沒有“整除”這一術(shù)語,但其實(shí)質(zhì)上依然與整除相關(guān)聯(lián)。在教學(xué)中,我充分體現(xiàn)以學(xué)生為核心,為學(xué)生的探索和發(fā)現(xiàn)帶來了充足的時(shí)間和空間,及其適度的指導(dǎo)。同時(shí),為了提高課堂教學(xué)實(shí)效性,我將分享以下三個(gè)教學(xué)體會。

  一、設(shè)疑引導(dǎo),激發(fā)學(xué)習(xí)熱情

  良好的開端是成功的一半。我應(yīng)用“拼拼擺擺”的策略引入主題,不但可以激發(fā)學(xué)生的學(xué)習(xí)興趣,還能促進(jìn)他們之間的溝通與依存關(guān)系,從而有效滲透和拓展對倍數(shù)和因數(shù)的認(rèn)知。

  在教學(xué)找某個(gè)數(shù)的倍數(shù)時(shí),我對于學(xué)生的具體情況,設(shè)計(jì)了讓學(xué)生單獨(dú)探索3的.倍數(shù)活動。我設(shè)定了一個(gè)學(xué)習(xí)階段,包含試著訓(xùn)練——引出矛盾——討論探究。學(xué)生在“也對又好”的要求下,逐漸自主練習(xí),尋找3的倍數(shù)的方法有:依次加3、先后乘1、2、3……以及運(yùn)用乘法口訣等。在充分討論的基礎(chǔ)上,我組織學(xué)生圍繞“好”作出評價(jià)。一些學(xué)生覺得按從小到大的順序?qū)懕稊?shù)是好的,因?yàn)檫@樣有序;另一些學(xué)生覺得用乘法算式寫倍數(shù)既快又不受前邊倍數(shù)的影響,能夠快速獲得第幾個(gè)倍數(shù)。當(dāng)學(xué)生發(fā)覺沒法寫下全部3的倍數(shù)時(shí),他們開始互相看著,探討是否可以選用省略號來描述。這樣的方法使他們體會到了用語文中的標(biāo)點(diǎn)符號解決數(shù)學(xué)問題的快樂,學(xué)生在發(fā)現(xiàn)問題并解決問題的過程中,體會到了解決問題的快樂與掌握新知識的滿足感。

  二、實(shí)際操作,舉例內(nèi)在,了解倍數(shù)與因數(shù)

  我造就了高效的數(shù)學(xué)教學(xué)情境,融合數(shù)量及形狀,將具象化與抽象化結(jié)合起來。最先讓學(xué)生動手將12個(gè)小正方形排成不同的長方形,并寫出相應(yīng)的乘法算式。依靠多媒體演示乘法算式,進(jìn)而引出因數(shù)和倍數(shù)的價(jià)值。這一活動讓學(xué)生在已有知識的基礎(chǔ)上,根據(jù)動手操作和直觀認(rèn)知,獨(dú)立感受數(shù)與外形的關(guān)系,逐步形成因數(shù)與倍數(shù)的概念。根據(jù)充分利用和挖掘教材中的內(nèi)容,基于學(xué)生現(xiàn)有的數(shù)學(xué)知識引入新知識,減少了難度,學(xué)習(xí)效果優(yōu)良。

  三、注重細(xì)節(jié),培養(yǎng)學(xué)生的習(xí)慣

  在找一個(gè)數(shù)的因數(shù)時(shí),學(xué)生最常見的錯(cuò)誤便是漏找,沒法全面找到因數(shù)。因此,在學(xué)生開展交流匯報(bào)時(shí),我融合他們的思維過程,及時(shí)引導(dǎo)并形成有條理的板書,例如:36÷1=36,36÷2=18,36÷3=12,36÷4=9。

  這樣的板書方法協(xié)助學(xué)生有序思索,提升了解題思路的清晰度。老師能通過成對的方法板書因數(shù),這樣不僅可以防止寫漏的狀況,且隨著尋找的深入,學(xué)生會意識到區(qū)間愈來愈小,所需考慮的數(shù)據(jù)也日益減少。當(dāng)找到2個(gè)鄰近的自然數(shù)時(shí),他們自然不會再繼續(xù)尋找。那樣的書寫格式細(xì)節(jié)不但防止了老師的繁雜解釋,還有效突破了教學(xué)難點(diǎn)。我相信這類潛移默化的細(xì)節(jié)對學(xué)生和課堂都有積極的影響。

  因?yàn)檫@堂課是關(guān)于理論的教學(xué),教師必須傳授許多東西,但這并不代表學(xué)生是絕對被動的。鑒于課程時(shí)間緊張,我在備課時(shí)仔細(xì)分析了教材,分析教案,合理安排。在總結(jié)倍數(shù)特點(diǎn)的步驟中,我縮短展現(xiàn)時(shí)間,直接提出三個(gè)小毛病,實(shí)際效果非常不錯(cuò)。在課堂上,我也即時(shí)應(yīng)用多媒體演示學(xué)生查到的因數(shù),促使他們梳理總結(jié)自己的發(fā)覺:最小因數(shù)是1,最大的因數(shù)是自身。同時(shí),及時(shí)提供個(gè)性化的語言點(diǎn)評,激起學(xué)生的情緒,活躍他們的思維。

  五年級下冊因數(shù)和倍數(shù)教學(xué)反思 12

  這個(gè)單元課時(shí)數(shù)比較多,對于學(xué)生數(shù)感的要求比較高,對于學(xué)生觀察能力,比較能力,推理能力的培養(yǎng)是個(gè)很好的訓(xùn)練。通過一個(gè)單元的教學(xué),發(fā)現(xiàn)學(xué)生在以下知識點(diǎn)的學(xué)習(xí)和掌握上還存在一些問題:

  1、最大公因數(shù)和最小公倍數(shù)

  教學(xué)中,我讓學(xué)生經(jīng)歷了三種方法:法一是先找各數(shù)的因數(shù)(或倍數(shù)),再找兩個(gè)數(shù)的`公因數(shù)(或公倍數(shù)),最后再找最大公因數(shù)和最小公倍數(shù);二是介紹短除法;三是對于特殊關(guān)系的數(shù)(倍數(shù)關(guān)系或互質(zhì)數(shù))直接根據(jù)規(guī)律寫結(jié)果。根據(jù)復(fù)習(xí)和練習(xí)反饋,發(fā)現(xiàn)學(xué)生對數(shù)的感覺比較欠缺,特殊關(guān)系的數(shù)不容易看出來,且兩個(gè)概念有時(shí)還會出現(xiàn)混淆情況,也就是對因數(shù)和倍數(shù)的理解不夠透徹與深刻。如果學(xué)生對找最大公因數(shù)和最小公倍數(shù)學(xué)不扎實(shí),將直接影響到后面的約分和通分。所以我準(zhǔn)備在平時(shí)每節(jié)課都有三到五個(gè)訓(xùn)練,并進(jìn)行專項(xiàng)過關(guān)。在應(yīng)用這個(gè)知識解決實(shí)際問題時(shí),有少數(shù)后進(jìn)生比較難以理解,需要輔助圖形來分析,也需要一個(gè)時(shí)間的積淀過程。

  2、質(zhì)數(shù)合數(shù)與奇數(shù)偶數(shù)

  這四個(gè)概念按照兩個(gè)不同的標(biāo)準(zhǔn)分類所得。學(xué)生在分類思考時(shí)對概念的理解比較清晰,但混同在一起容易出現(xiàn)概念的交叉,如2既是質(zhì)數(shù)又是偶數(shù),9既是合數(shù)又是奇數(shù)。

  3、235倍數(shù)的特征

  如果單獨(dú)讓學(xué)生去說去判斷一個(gè)數(shù)是不是235的倍數(shù),學(xué)生比較清楚,但在靈活應(yīng)用時(shí)就比較遲鈍,特別是用短除法尋找公因數(shù)時(shí),不能很快的進(jìn)行反應(yīng),數(shù)的感覺不佳。

  以上是本單元學(xué)生在學(xué)習(xí)過程中的主要障礙,數(shù)感的培養(yǎng)需要一個(gè)過程,而概念的理解加深還需要平時(shí)不斷的訓(xùn)練。多給學(xué)生一點(diǎn)耐心,再堅(jiān)持一份恒心,相信學(xué)生們會有提高,會有改變。

  五年級下冊因數(shù)和倍數(shù)教學(xué)反思 13

  在本課教學(xué)時(shí),先讓學(xué)生用12個(gè)同樣大小的正方形,擺成一個(gè)長方形,并用乘法算式把自己的擺法表示出來,讓學(xué)生動手操作、合作交流,怎樣擺,有哪些不同的擺法?先讓學(xué)生小組交流、操作后,以其中的一道乘法算式為例,引出倍數(shù)和因數(shù)的概念。

  這樣的安排,體現(xiàn)了以學(xué)生為本,用學(xué)生已有的經(jīng)驗(yàn)和動手操作能力,很好的調(diào)動了學(xué)生學(xué)習(xí)的積極性和主動性。一方面讓學(xué)生樂于接受,是學(xué)生在展示自己的想法,老師僅僅是組織者;另一方面培養(yǎng)了學(xué)生善于觀察和傾聽他人的想法的良好學(xué)習(xí)態(tài)度。對于找一個(gè)數(shù)的倍數(shù)比找一個(gè)數(shù)的因數(shù)的方法要容易些,所以我先教學(xué)如何找一個(gè)數(shù)的倍數(shù),在學(xué)生學(xué)會了找一個(gè)數(shù)的倍數(shù)的方法基礎(chǔ)上,再教學(xué)如何找一個(gè)數(shù)的因數(shù),這樣教學(xué)便于學(xué)生自己探索并總結(jié)歸納出找一個(gè)數(shù)的因數(shù)的方法,體現(xiàn)了讓學(xué)生自主學(xué)習(xí)。

  在處理本節(jié)課的難點(diǎn)找36的因數(shù)時(shí),我原來是放手讓學(xué)生自己去找的。結(jié)果試上時(shí)很多學(xué)生沒有頭緒,無從下手。時(shí)間倒是花去不少,可方法卻沒有多少可行的。我靜下心來尋找原因,找一個(gè)的因數(shù)是學(xué)生以前從未遇到過的`問題,自然不知道如何解決。再加上找一個(gè)數(shù)的因數(shù)比找一個(gè)數(shù)的倍數(shù)要難得多,我這樣貿(mào)然地放手,學(xué)生當(dāng)然不知所措了。后來,在處理找36的因數(shù)時(shí),如何做到既不重復(fù)又不遺漏地找36的因數(shù)?我認(rèn)為要對學(xué)生扶放得當(dāng),要有適當(dāng)?shù)胤,學(xué)生才能探索出方法。于是,我讓學(xué)生回憶剛才的幾道乘法算式,然后把找一個(gè)數(shù)的倍數(shù)的方法有效的遷移到找一個(gè)數(shù)的因數(shù)中。果然學(xué)生知道了該如何思考后,效果好了很多。

  五年級下冊因數(shù)和倍數(shù)教學(xué)反思 14

  開學(xué)后上第一節(jié)課年級組教研課,挺有壓力的。畢竟放了這么久的假,感覺有點(diǎn)不習(xí)慣,好象字都寫不穩(wěn)一樣。還好,上完課后感覺還能夠。

  因數(shù)和倍數(shù)是一堂概念課。老教材是先建立整除的概念,在整除的基礎(chǔ)上教學(xué)因數(shù)與倍數(shù)的,而新教材沒有提到整除。教學(xué)前,我是先讓學(xué)生進(jìn)行了預(yù)習(xí),開課伊始,就揭示課題,讓學(xué)生談自我對因數(shù)與倍數(shù)的理解。學(xué)生結(jié)合一個(gè)乘法算“3×4=12”入手,介紹因數(shù)與倍數(shù)概念,這樣有助于更好理解,也能節(jié)儉很多時(shí)間。學(xué)生的學(xué)習(xí)興趣被激發(fā)了、思維被調(diào)動起來了,主動參與到了知識的`學(xué)習(xí)中去了。

  能不重復(fù)、不遺漏找出一個(gè)數(shù)的因數(shù)是本課的難點(diǎn),絕大部分學(xué)生都能仿照找12的因數(shù)去找,孩子都能一對一對的找,可遺漏的多,在那里我強(qiáng)調(diào)按順序找,也就是從“1”開始,依次找,這樣效果很好。

  為了得出因數(shù)的特點(diǎn),我出了“24的因數(shù),36的因數(shù),18的因數(shù)”,并認(rèn)真觀察這些因數(shù)看有什么發(fā)現(xiàn),由于時(shí)間不夠,我只要求孩子從因數(shù)的個(gè)數(shù),最小,最大的因數(shù)研究,沒有對質(zhì)數(shù),合數(shù),公因數(shù)進(jìn)行滲透。找一個(gè)數(shù)的倍數(shù)因?yàn)榉椒ū容^易于掌握,沒有過多的練習(xí),二是激發(fā)他們想象一個(gè)數(shù)的倍數(shù)有什么特點(diǎn)。

  針對這節(jié)課,課后教師們就這堂課認(rèn)真評析,真誠的說出自我的觀點(diǎn),特別就知識的生長點(diǎn)、教學(xué)的重難點(diǎn)展開了討論,特別是找一個(gè)數(shù)的因數(shù),應(yīng)注重方法的指導(dǎo)。由此,我們數(shù)學(xué)課堂教學(xué)應(yīng)注意一下幾點(diǎn):知識的滲透點(diǎn)、練習(xí)發(fā)展點(diǎn)、層次切入點(diǎn)、設(shè)計(jì)巧妙點(diǎn)、教法多樣點(diǎn)、語言動聽點(diǎn)、管理到位點(diǎn)、應(yīng)變靈活點(diǎn)。

  這幾點(diǎn)既是目標(biāo)也是方向,相信我們在新的一學(xué)期,團(tuán)結(jié)協(xié)作,勤奮務(wù)實(shí),努力朝著目標(biāo)前進(jìn)。

  五年級下冊因數(shù)和倍數(shù)教學(xué)反思 15

  教學(xué)中我發(fā)現(xiàn)倍數(shù)和因數(shù)這一內(nèi)容與原來教材比有了很大的不同,老教材中是先建立整除的概念,在此基礎(chǔ)上認(rèn)識因數(shù)倍數(shù)。而這里的處理的方法有所不同,我在教學(xué)時(shí)做了一些改動,讓學(xué)生用12個(gè)小正方形擺長方形,然后自己用算式把擺法表示出來。這樣學(xué)生的算是就不局限于乘法,有一部分學(xué)生寫了除法算式。這樣學(xué)生很容易感悟到不管是根據(jù)乘法還是除法算式都可以找到因數(shù)和倍數(shù)。因?yàn)楝F(xiàn)在也有很多學(xué)生學(xué)習(xí)奧賽,所以我從整除的角度也介紹了因數(shù)與倍數(shù)的`概念.由于這節(jié)是概念課,因此有不少東西是由老師告知的,但并不意味著學(xué)生完全被動的接受。如讓學(xué)生思考:你覺得3和12、4和12之間有什么關(guān)系呢?(對乘除法學(xué)生有著相當(dāng)豐富的經(jīng)驗(yàn),因此不少學(xué)生能說出倍數(shù)關(guān)系,可能說得不很到位,但那是學(xué)生自己的東西)。當(dāng)學(xué)生認(rèn)識了倍數(shù)之后,我進(jìn)行了設(shè)問:12是3的倍數(shù),那反過來3和12是什么關(guān)系呢?盡管學(xué)生無法回答,但卻給了他思考和接受“因數(shù)”的空間,使學(xué)生體會到12是3的倍數(shù),反過來3就是12的因數(shù),接下來4和12的關(guān)系,學(xué)生都爭者要回答。

  如何做到既不重復(fù)又不遺漏地找36的因數(shù),對于剛剛對倍數(shù)因數(shù)有個(gè)感性認(rèn)識的學(xué)生來說有一定困難,這里可以充分發(fā)揮小組學(xué)習(xí)的優(yōu)勢。先讓學(xué)生自己獨(dú)立找36的因數(shù),我巡視了一下五分之一的學(xué)生能有序的思考,多數(shù)學(xué)生寫的算式不按一定的次序進(jìn)行。接著讓學(xué)生在小組里討論兩個(gè)問題:用什么方法找36的因數(shù),如何找不重復(fù)也不遺漏。在小組交流的過程中,學(xué)生對自己剛才的方法進(jìn)行反思,吸收同伴中好的方法,這不老師給予有有效得多。

  五年級下冊因數(shù)和倍數(shù)教學(xué)反思 16

  我在教學(xué)時(shí)做到了以下幾點(diǎn):

 。1)密切聯(lián)系生活中的數(shù)學(xué),幫助學(xué)生理解概念間的關(guān)系。

  今天在教學(xué)前,我讓學(xué)生學(xué)說話,就是培養(yǎng)學(xué)生對語言的概括能力和對事物間關(guān)系的理解能力。于是我利用課前談話讓學(xué)生在找找生活中的相互依存關(guān)系,課中遷移到數(shù)學(xué)中的倍數(shù)和因數(shù),這樣設(shè)計(jì)自然又貼切,既讓學(xué)生感受到了數(shù)學(xué)與生活的聯(lián)系,又幫助學(xué)生理解了倍數(shù)因數(shù)之間的相互依存關(guān)系,從而使學(xué)生更深一步的認(rèn)識倍數(shù)與因數(shù)的關(guān)系,

 。2)改動呈現(xiàn)倍數(shù)和因數(shù)概念的方式。

  我改變了例題,用杯子翻動的`次數(shù)與杯口朝上的次數(shù)之間的關(guān)系,列出乘法算式,初步感知倍數(shù)關(guān)系的存在,從而引出倍數(shù)和因數(shù)的概念,并為下面學(xué)習(xí)如何找一個(gè)數(shù)的倍數(shù)奠定了良好的基礎(chǔ)。這樣不僅溝通了乘法和除法的關(guān)系,也讓學(xué)生很容易感悟到不管是根據(jù)乘法還是除法算式都可以找到因數(shù)和倍數(shù)。

 。3)根據(jù)學(xué)生的實(shí)際情況,教學(xué)找一個(gè)數(shù)的因數(shù)的方法

  雖然學(xué)生不能有序地找出來,但是基本能全部找到,再此基礎(chǔ)上讓體會有序找一個(gè)數(shù)因數(shù)的辦法學(xué)生容易接受,這樣的設(shè)計(jì)由易到難,由淺入深,我覺得能起到鞏固新知,發(fā)展思維的效果。

 。4)設(shè)計(jì)有趣游戲活動,擴(kuò)大學(xué)生思維的空間,培養(yǎng)學(xué)生發(fā)散思維的能力。

  譬如“找朋友”游戲,答案不唯一,學(xué)生思考問題的空間很大,培養(yǎng)了學(xué)生的發(fā)散思維能力。我手里拿了5、17、38幾張數(shù)字卡片,讓學(xué)生判斷自己的學(xué)號數(shù)是哪些數(shù)的倍數(shù),是哪些數(shù)的因數(shù),如果學(xué)生的學(xué)號數(shù)是老師出示卡片的倍數(shù)或因數(shù)就可以站起來。最后問能不能想個(gè)辦法讓所有的學(xué)生都站起來。出示地卡片應(yīng)該是幾,找的朋友應(yīng)該是倍數(shù)還是因數(shù)?學(xué)生面對問題積極思考,享受了數(shù)學(xué)思維的快樂

  五年級下冊因數(shù)和倍數(shù)教學(xué)反思 17

  《倍數(shù)和因數(shù)》這一章是人教版五年級下冊的內(nèi)容。由于這一單元概念較多,學(xué)生要掌握的知識較多,所以掌握起來較難。我上的這節(jié)復(fù)習(xí)課分以下四部分。

  1、先從自然數(shù)入手,由自然數(shù)的概念讓學(xué)生總結(jié)自然數(shù)的個(gè)數(shù)是無限的,最小的自然數(shù)是0,沒有最大的自然數(shù)。又根據(jù)生活實(shí)際試著讓學(xué)生把自然數(shù)分成奇數(shù)和偶數(shù)。點(diǎn)名說出什么數(shù)是奇數(shù),什么數(shù)是偶數(shù),是根據(jù)什么分的,這樣有一種水到渠成的感覺。

  2、由偶數(shù)都是2的倍數(shù),復(fù)習(xí)2的倍數(shù)的'特征,5的倍數(shù)的特征,3的倍數(shù)的特征。學(xué)生邊復(fù)習(xí)老師邊板書,由于大家共同協(xié)作,很快找出一個(gè)數(shù)的最小倍數(shù)是它本身,沒有最大的倍數(shù)。然后總結(jié)同時(shí)能被2、3整除的數(shù)就是6的倍數(shù),引出倍數(shù)和因數(shù)的意義。讓學(xué)生隨便說一個(gè)算式,說明誰是誰的倍數(shù),誰是誰的因數(shù)”,學(xué)生列舉乘法或除法算式,準(zhǔn)確表達(dá)倍數(shù)與因數(shù)的關(guān)系,加深了學(xué)生對倍數(shù)與因數(shù)相互依存關(guān)系的理解和認(rèn)識。

  3、隨便給出一個(gè)數(shù)找出它的所有因數(shù),得出一個(gè)數(shù)最小的因數(shù)是1,最大的因數(shù)是它身。根據(jù)因數(shù)的個(gè)數(shù)把自然數(shù)分成質(zhì)數(shù)、合數(shù)和1。復(fù)習(xí)什么是質(zhì)數(shù),什么是合數(shù)。最小的質(zhì)數(shù)是幾,最小的合數(shù)是幾。20以內(nèi)的質(zhì)數(shù)。為什么1既不是質(zhì)數(shù)也不是合數(shù)。這是根據(jù)什么分類的呢?任意給出一個(gè)數(shù)判斷是質(zhì)數(shù)還是合數(shù),若是合數(shù)讓學(xué)生分解質(zhì)因數(shù)。先說分解質(zhì)因數(shù)的方法,然后點(diǎn)名學(xué)生板演,教師巡視。指出錯(cuò)誤。

  4、帶領(lǐng)學(xué)生一起做練習(xí),讓學(xué)生邊做邊說思路。這節(jié)課比較好的地方是條理清晰、內(nèi)容全面;練習(xí)的設(shè)計(jì)不僅緊緊圍繞教學(xué)重點(diǎn),而且注意到了練習(xí)的層次性、趣味性。

  不足之處是我缺乏個(gè)性化的語言評價(jià)激活學(xué)生的情感,以后需多努力。

  五年級下冊因數(shù)和倍數(shù)教學(xué)反思 18

  本節(jié)課的內(nèi)容是在學(xué)生已經(jīng)學(xué)習(xí)了一定的整數(shù)知識(包括整數(shù)的知識、整數(shù)的四則運(yùn)算及其應(yīng)用)的基礎(chǔ)上,進(jìn)一步認(rèn)識整數(shù)的性質(zhì)。本單元所涉及的因數(shù)和倍數(shù)都是初等數(shù)論的基礎(chǔ)知識。

  成功之處:

  1.理解分類標(biāo)準(zhǔn),明確因數(shù)和倍數(shù)的含義。在例1教學(xué)中,首先根據(jù)不同的除法算式讓學(xué)生進(jìn)行分類,同時(shí)思考其標(biāo)準(zhǔn)依據(jù)是什么。通過學(xué)生的獨(dú)立思考和小組交流學(xué)生得出:第一種是分為兩類:一類是商是整數(shù),另一類是商是小數(shù);第二種是分為三類:一類商是整數(shù),一類是小數(shù),另一類是循環(huán)小數(shù)。究竟怎樣分類讓學(xué)生在爭論與交流中達(dá)成一致答案分為兩類。然后根據(jù)第一類情況得出倍數(shù)和因數(shù)的含義,特別強(qiáng)調(diào)的是對于因數(shù)和倍數(shù)的含義要符合兩個(gè)條件:一是必須在整數(shù)除法中,二是必須商是整數(shù)而沒有余數(shù)。具備了這兩個(gè)條件才能說被除數(shù)是除數(shù)的'倍數(shù),除數(shù)是被除數(shù)的因數(shù)。

  2.厘清概念倍數(shù)和幾倍,注重強(qiáng)調(diào)倍數(shù)和因數(shù)的相互依存性。在教學(xué)中可以直接告訴學(xué)生因數(shù)和倍數(shù)都不能單獨(dú)存在,不能說2是因數(shù),12是倍數(shù),而必須說誰是誰的因數(shù),誰是誰的倍數(shù)。對于倍數(shù)與幾倍的區(qū)別:倍數(shù)必須是在整數(shù)除法中進(jìn)行研究,而幾倍既可以在整數(shù)范圍內(nèi),也可以在小數(shù)范圍內(nèi)進(jìn)行研究,它的研究范圍較之倍數(shù)范圍大一些。

  不足之處:

  1.練習(xí)設(shè)計(jì)容量少了一些,導(dǎo)致課堂有剩余時(shí)間。

  2. 對因數(shù)和倍數(shù)的含義還應(yīng)該進(jìn)行歸納總結(jié)上升到用字母來表示。

  再教設(shè)計(jì):

  1.根據(jù)課本的練習(xí)相應(yīng)的進(jìn)行補(bǔ)充。

  2.因數(shù)和倍數(shù)的含義用總結(jié)為a÷b=c(a、b、c均為非0自然數(shù)),a是b和c的倍數(shù),b和c是a的因數(shù)。

  五年級下冊因數(shù)和倍數(shù)教學(xué)反思 19

  教學(xué)中我發(fā)現(xiàn)倍數(shù)和因數(shù)這一內(nèi)容與原來教材比有了很大的不同,老教材中是先建立整除的概念,在此基礎(chǔ)上認(rèn)識因數(shù)倍數(shù)。而這里的處理的方法有所不同,我在教學(xué)時(shí)做了一些改動,讓學(xué)生用12個(gè)小正方形擺長方形,然后自己用算式把擺法表示出來。這樣學(xué)生的算是就不局限于乘法,有一部分學(xué)生寫了除法算式。這樣學(xué)生很容易感悟到不管是根據(jù)乘法還是除法算式都可以找到因數(shù)和倍數(shù)。因?yàn)楝F(xiàn)在也有很多學(xué)生學(xué)習(xí)奧賽,所以我從整除的角度也介紹了因數(shù)與倍數(shù)的概念.

  由于這節(jié)是概念課,因此有不少東西是由老師告知的,但并不意味著學(xué)生完全被動的接受。如讓學(xué)生思考:你覺得3和12、4和12之間有什么關(guān)系呢?(對乘除法學(xué)生有著相當(dāng)豐富的經(jīng)驗(yàn),因此不少學(xué)生能說出倍數(shù)關(guān)系,可能說得不很到位,但那是學(xué)生自己的東西)。當(dāng)學(xué)生認(rèn)識了倍數(shù)之后,我進(jìn)行了設(shè)問:12是3的.倍數(shù),那反過來3和12是什么關(guān)系呢?盡管學(xué)生無法回答,但卻給了他思考和接受“因數(shù)”的空間,使學(xué)生體會到12是3的倍數(shù),反過來3就是12的因數(shù),接下來4和12的關(guān)系,學(xué)生都爭者要回答。

  如何做到既不重復(fù)又不遺漏地找36的因數(shù),對于剛剛對倍數(shù)因數(shù)有個(gè)感性認(rèn)識的學(xué)生來說有一定困難,這里可以充分發(fā)揮小組學(xué)習(xí)的優(yōu)勢。先讓學(xué)生自己獨(dú)立找36的因數(shù),我巡視了一下五分之一的學(xué)生能有序的思考,多數(shù)學(xué)生寫的算式不按一定的次序進(jìn)行。接著讓學(xué)生在小組里討論兩個(gè)問題:用什么方法找36的因數(shù),如何找不重復(fù)也不遺漏。在小組交流的過程中,學(xué)生對自己剛才的方法進(jìn)行反思,吸收同伴中好的方法,這不比老師給予的有效得多。

  五年級下冊因數(shù)和倍數(shù)教學(xué)反思 20

  這個(gè)單元課時(shí)數(shù)比較多,對于學(xué)生數(shù)感的要求比較高,對于學(xué)生觀察本事,比較本事,推理本事的培養(yǎng)是個(gè)很好的訓(xùn)練。經(jīng)過一個(gè)單元的教學(xué),發(fā)現(xiàn)學(xué)生在以下知識點(diǎn)的學(xué)習(xí)和掌握上還存在一些問題:

  1、最大公因數(shù)和最小公倍數(shù)

  教學(xué)中,我讓學(xué)生經(jīng)歷了三種方法:法一是先找各數(shù)的'因數(shù)(或倍數(shù)),再找兩個(gè)數(shù)的公因數(shù)(或公倍數(shù)),最終再找最大公因數(shù)和最小公倍數(shù);二是介紹短除法;三是對于特殊關(guān)系的數(shù)(倍數(shù)關(guān)系或互質(zhì)數(shù))直接根據(jù)規(guī)律寫結(jié)果。根據(jù)復(fù)習(xí)和練習(xí)反饋,發(fā)現(xiàn)學(xué)生對數(shù)的感覺比較欠缺,特殊關(guān)系的數(shù)不容易看出來,且兩個(gè)概念有時(shí)還會出現(xiàn)混淆情景,也就是對因數(shù)和倍數(shù)的理解不夠透徹與深刻。如果學(xué)生對找最大公因數(shù)和最小公倍數(shù)學(xué)不扎實(shí),將直接影響到后面的約分和通分。所以我準(zhǔn)備在平時(shí)每節(jié)課都有三到五個(gè)訓(xùn)練,并進(jìn)行專項(xiàng)過關(guān)。在應(yīng)用這個(gè)知識解決實(shí)際問題時(shí),有少數(shù)后進(jìn)生比較難以理解,需要輔助圖形來分析,也需要一個(gè)時(shí)間的積淀過程。

  2、質(zhì)數(shù)合數(shù)與奇數(shù)偶數(shù)

  這四個(gè)概念按照兩個(gè)不一樣的標(biāo)準(zhǔn)分類所得。學(xué)生在分類思考時(shí)對概念的理解比較清晰,但混同在一起容易出現(xiàn)概念的交叉,如2既是質(zhì)數(shù)又是偶數(shù),9既是合數(shù)又是奇數(shù)。

  3、235倍數(shù)的特征

  如果單獨(dú)讓學(xué)生去說去確定一個(gè)數(shù)是不是235的倍數(shù),學(xué)生比較清楚,但在靈活應(yīng)用時(shí)就比較遲鈍,特別是用短除法尋找公因數(shù)時(shí),不能很快的進(jìn)行反應(yīng),數(shù)的感覺不佳。

  以上是本單元學(xué)生在學(xué)習(xí)過程中的主要障礙,數(shù)感的培養(yǎng)需要一個(gè)過程,而概念的理解加深還需要平時(shí)不斷的訓(xùn)練。多給學(xué)生一點(diǎn)耐心,再堅(jiān)持一份恒心,相信學(xué)生們會有提高,會有改變。

  五年級下冊因數(shù)和倍數(shù)教學(xué)反思 21

  我在教學(xué)時(shí)做到了以下幾點(diǎn):

 。1)密切聯(lián)系生活中的數(shù)學(xué),幫忙學(xué)生理解概念間的關(guān)系。

  今日在教學(xué)前,我讓學(xué)生學(xué)說話,就是培養(yǎng)學(xué)生對語言的概括本事和對事物間關(guān)系的理解本事。于是我利用課前談話讓學(xué)生在找找生活中的相互依存關(guān)系,課中遷移到數(shù)學(xué)中的倍數(shù)和因數(shù),這樣設(shè)計(jì)自然又貼切,既讓學(xué)生感受到了數(shù)學(xué)與生活的聯(lián)系,又幫忙學(xué)生理解了倍數(shù)因數(shù)之間的相互依存關(guān)系,從而使學(xué)生更深一步的認(rèn)識倍數(shù)與因數(shù)的關(guān)系。

 。2)改動呈現(xiàn)倍數(shù)和因數(shù)概念的方式。我改變了例題,用杯子翻動的次數(shù)與杯口朝上的次數(shù)之間的關(guān)系,列出乘法算式,初步感知倍數(shù)關(guān)系的存在,從而引出倍數(shù)和因數(shù)的概念,并為下頭學(xué)習(xí)如何找一個(gè)數(shù)的倍數(shù)奠定了良好的基礎(chǔ)。這樣不僅僅溝通了乘法和除法的`關(guān)系,也讓學(xué)生很容易感悟到不管是根據(jù)乘法還是除法算式都能夠找到因數(shù)和倍數(shù)。

 。3)根據(jù)學(xué)生的實(shí)際情景,教學(xué)找一個(gè)數(shù)的因數(shù)的方法,雖然學(xué)生不能有序地找出來,可是基本能全部找到,再此基礎(chǔ)上讓體會有序找一個(gè)數(shù)因數(shù)的辦法學(xué)生容易理解,這樣的設(shè)計(jì)由易到難,由淺入深,我覺得能起到鞏固新知,發(fā)展思維的效果。

  (4)設(shè)計(jì)趣味游戲活動,擴(kuò)大學(xué)生思維的空間,培養(yǎng)學(xué)生發(fā)散思維的本事。譬如“找朋友”游戲,答案不唯一,學(xué)生思考問題的空間很大,培養(yǎng)了學(xué)生的發(fā)散思維本事。我手里拿了5、17、38幾張數(shù)字卡片,讓學(xué)生確定自我的學(xué)號數(shù)是哪些數(shù)的倍數(shù),是哪些數(shù)的因數(shù),如果學(xué)生的學(xué)號數(shù)是教師出示卡片的倍數(shù)或因數(shù)就能夠站起來。最終問能不能想個(gè)辦法讓所有的學(xué)生都站起來。出示地卡片應(yīng)當(dāng)是幾,找的朋友應(yīng)當(dāng)是倍數(shù)還是因數(shù)?學(xué)生應(yīng)對問題積極思考,享受了數(shù)學(xué)思維的歡樂。

  五年級下冊因數(shù)和倍數(shù)教學(xué)反思 22

  開學(xué)后上第一節(jié)課年級組教研課,挺有壓力的。畢竟放了這么久的假,感覺有點(diǎn)不習(xí)慣,好象字都寫不穩(wěn)一樣。還好,上完課后感覺還可以。

  因數(shù)和倍數(shù)是一堂概念課。老教材是先建立整除的概念,在整除的基礎(chǔ)上教學(xué)因數(shù)與倍數(shù)的,而新教材沒有提到整除。教學(xué)前,我是先讓學(xué)生進(jìn)行了預(yù)習(xí),開課伊始,就揭示課題,讓學(xué)生談自己對因數(shù)與倍數(shù)的理解。學(xué)生結(jié)合一個(gè)乘法算“3×4=12”入手,介紹因數(shù)與倍數(shù)概念,這樣有助于更好理解,也能節(jié)約很多時(shí)間。學(xué)生的學(xué)習(xí)興趣被激發(fā)了、思維被調(diào)動起來了,主動參與到了知識的學(xué)習(xí)中去了。

  能不重復(fù)、不遺漏找出一個(gè)數(shù)的因數(shù)是本課的難點(diǎn),絕大部分學(xué)生都能仿照找12的因數(shù)去找,孩子都能一對一對的找,可遺漏的多,在這里我強(qiáng)調(diào)按順序找,也就是從“1”開始,依次找,這樣效果很好。

  為了得出因數(shù)的特點(diǎn),我出了“24的因數(shù),36的'因數(shù),18的因數(shù)”,并認(rèn)真觀察這些因數(shù)看有什么發(fā)現(xiàn),由于時(shí)間不夠,我只要求孩子從因數(shù)的個(gè)數(shù),最小,最大的因數(shù)考慮,沒有對質(zhì)數(shù),合數(shù),公因數(shù)進(jìn)行滲透。找一個(gè)數(shù)的倍數(shù)因?yàn)榉椒ū容^易于掌握,沒有過多的練習(xí),二是激發(fā)他們想象一個(gè)數(shù)的倍數(shù)有什么特點(diǎn)。

  針對這節(jié)課,課后老師們就這堂課認(rèn)真評析,真誠的說出自己的觀點(diǎn),特別就知識的生長點(diǎn)、教學(xué)的重難點(diǎn)展開了討論,特別是找一個(gè)數(shù)的因數(shù),應(yīng)注重方法的指導(dǎo)。由此,我們數(shù)學(xué)課堂教學(xué)應(yīng)注意一下幾點(diǎn):知識的滲透點(diǎn)、練習(xí)發(fā)展點(diǎn)、層次切入點(diǎn)、設(shè)計(jì)巧妙點(diǎn)、教法多樣點(diǎn)、語言動聽點(diǎn)、管理到位點(diǎn)、應(yīng)變靈活點(diǎn)。

  這幾點(diǎn)既是目標(biāo)也是方向,相信我們在新的一學(xué)期,團(tuán)結(jié)協(xié)作,勤奮務(wù)實(shí),努力朝著目標(biāo)前進(jìn)。

  五年級下冊因數(shù)和倍數(shù)教學(xué)反思 23

  《因數(shù)和倍數(shù)》是一節(jié)數(shù)學(xué)概念課,在以往的教材中,都是通過除法算式來引出整除的概念,而現(xiàn)在的人教版教材中沒有用數(shù)學(xué)語言給“整除”下定義,而是利用一個(gè)簡單的實(shí)物圖(2行飛機(jī),每行6架)引出一個(gè)乘法算式2×6=12,通過這個(gè)乘法算式直接給出因數(shù)和倍數(shù)的概念。對于學(xué)生來說是比較難掌握的內(nèi)容。尤其對因數(shù)和倍數(shù)是一對相互依存的`概念,不能單獨(dú)存在,不是很好理解。我通過生活與數(shù)學(xué)之間的聯(lián)系,幫助學(xué)生理解因數(shù)倍數(shù)相互依存的關(guān)系。所以在上課之前我特意舉一些生活中的實(shí)例來幫助學(xué)生對相互依存的理解,在描述因數(shù)和倍數(shù)的概念時(shí)就不會說錯(cuò)了。對于這節(jié)課的教學(xué),我特別注意下面幾個(gè)細(xì)節(jié)來幫助學(xué)生理解因數(shù)和倍數(shù)的概念。

  1、是我上課時(shí)特別注意讓學(xué)生明白什么情況下才能討論因數(shù)和倍數(shù)的概念。

  2、是要學(xué)生注意區(qū)分乘法算式中的"因數(shù)"和本單元中的"因數(shù)"的聯(lián)系和區(qū)別。在同一個(gè)乘法算式中,兩者都是指乘號兩邊的整數(shù),但前者是相對"積"而言的,與"乘數(shù)"同義,可以是小數(shù),而后者是相對于"倍數(shù)"而言的,兩者都只能是整數(shù)。

  3、是要注意區(qū)分"倍數(shù)"與前面學(xué)過的"倍"的聯(lián)系和區(qū)別。"倍"的概念比"倍數(shù)"要廣?梢哉f"15是3的倍數(shù)",也可以說"1.5是0.3的5倍",但我們只能說"15是3的倍數(shù)",卻不能說"1.5是0.的倍數(shù)"。在課堂中反復(fù)強(qiáng)調(diào),幫助學(xué)生認(rèn)真理解辨析,所以學(xué)生一節(jié)課下來對這組概念就理解透徹了,就不會模糊了。

  五年級下冊因數(shù)和倍數(shù)教學(xué)反思 24

  蘇教版課本《倍數(shù)和因數(shù)》這一內(nèi)容與原教材相比有很大的不同,原教材中是先建立整除的概念,在此基礎(chǔ)上認(rèn)識因數(shù)倍數(shù)。而這里的處理方法有所不同,在這之前學(xué)生還沒有學(xué)習(xí)小數(shù)乘除法,只接觸過整數(shù)乘除法,因此教材通過用12個(gè)小正方形拼長方形并寫乘法算式來引入因數(shù)和倍數(shù)。

  我在整個(gè)教學(xué)過程中,由易到難,由淺入深。由形象到具體。在教學(xué)策略上,我為了讓學(xué)生深刻的理解倍數(shù)和因數(shù)概念,我采用12根小棒分小組擺拼。利用學(xué)具卡片做找倍數(shù)和因數(shù)的好朋友等。我具體反思如下:

 。1)良好的開頭是成功的一半。我采用生活中碰到的實(shí)際倍數(shù)題來吸引學(xué)生的注意力,激起學(xué)生的好奇心,求知心切。這時(shí)我讓學(xué)生動手“拼拼擺擺”作為談話進(jìn)入正題,不僅可以調(diào)動學(xué)生的學(xué)習(xí)興趣,對感知倍數(shù)和因數(shù)一一對應(yīng)、相互依存進(jìn)行有效的滲透和拓展。捕捉生活與數(shù)學(xué)之間的聯(lián)系,幫助學(xué)生理解概念間的關(guān)系。就是培養(yǎng)學(xué)生對語言的概括能力和對事物間關(guān)系的理解能力。因?yàn)榻裉旖虒W(xué)的倍數(shù)和因數(shù)是講述兩個(gè)數(shù)之間的一種相互依存關(guān)系,于是教師利用課前談話讓學(xué)生在找找生活中的相互依存關(guān)系,課中遷移到數(shù)學(xué)中的倍數(shù)和因數(shù),這樣設(shè)計(jì)自然又貼切,既讓學(xué)生感受到了數(shù)學(xué)與生活的聯(lián)系,初步學(xué)會從數(shù)學(xué)的角度去觀察事物、思考問題,激發(fā)對數(shù)學(xué)的興趣,又幫助學(xué)生理解了倍數(shù)因數(shù)之間的相互依存關(guān)系。

  (2)改動呈現(xiàn)倍數(shù)和因數(shù)概念的方式。書上用12個(gè)小正方形擺長方形,然后自己用算式把擺法表示出來。由這些乘法算式引出倍數(shù)和因數(shù)的.概念。列出乘法算式,初步感知倍數(shù)關(guān)系的存在,從而引出倍數(shù)和因數(shù)的概念,并為下面學(xué)習(xí)如何找一個(gè)數(shù)的倍數(shù)奠定了良好的基礎(chǔ)。同時(shí),教師還出示了一個(gè)除法的算式,讓學(xué)生來找找倍數(shù)和因數(shù)的關(guān)系,這樣不僅溝通了乘法和除法的關(guān)系,也讓學(xué)生很容易感悟到不管是根據(jù)乘法還是除法算式都可以找到因數(shù)和倍數(shù)。

  五年級下冊因數(shù)和倍數(shù)教學(xué)反思 25

  我在教學(xué)因數(shù)和倍數(shù)時(shí),我發(fā)現(xiàn)倍數(shù)和因數(shù)這一內(nèi)容與原來人教版教材比有了很大的變化,人教版教材中是先建立整除的概念,在此基礎(chǔ)上認(rèn)識因數(shù)倍數(shù)。而這里的處理的方法有所不同,我在教學(xué)時(shí)做了一些下的改動,讓學(xué)生用24張小正方形擺長方形,然后自己用算式把擺法表示出來。這樣學(xué)生的算式就不僅限于乘法,有個(gè)別學(xué)生寫了除法算式。這樣學(xué)生很容易感悟到不管是根據(jù)乘法還是除法算式都可以找到因數(shù)和倍數(shù)。因?yàn)楝F(xiàn)在我班也有個(gè)別學(xué)生在學(xué)習(xí)奧賽,所以我從整除的角度也介紹了因數(shù)與倍數(shù)的概念.

  由于這節(jié)的概念較多,因此有不少是由老師直接告知的,但這并不意味著學(xué)生完全被動的接受。如讓學(xué)生思考:你覺得4和24、6和24之間有什么關(guān)系呢?(對乘除法學(xué)生有著相當(dāng)豐富的經(jīng)驗(yàn),因此不少學(xué)生能說出倍數(shù)關(guān)系,可能說得不很到位,但那是學(xué)生自己的東西)。當(dāng)學(xué)生認(rèn)識了倍數(shù)之后,我進(jìn)行了設(shè)問:24是4的倍數(shù),那反過來4和24是什么關(guān)系呢?盡管學(xué)生無法回答,但卻給了他思考和接受“因數(shù)”的空間,使學(xué)生體會到24是4的倍數(shù),反過來4就是24的`因數(shù),接下來就是6和24的關(guān)系,同學(xué)們都爭者要回答。

  如何做到既不重復(fù)又不遺漏地找36的因數(shù),對于剛剛對倍數(shù)因數(shù)有個(gè)感性認(rèn)識的學(xué)生來說有一定困難,這里可以充分發(fā)揮小組學(xué)習(xí)的優(yōu)勢。先讓學(xué)生自己獨(dú)立找36的因數(shù),我巡視了一下三分之一的學(xué)生能有序的思考,多數(shù)學(xué)生寫的算式不按一定的次序進(jìn)行。接著讓學(xué)生在小組里討論兩個(gè)問題:

 、儆檬裁捶椒ㄕ36的因數(shù)。

 、谌绾握也恢貜(fù)也不遺漏。

  通過在小組交流的過程中,學(xué)生與學(xué)生之間對自己剛才的方法進(jìn)行反思,吸收同伴中好的方法,這比老師給予有效得多。學(xué)生就這樣輕松、愉快的學(xué)習(xí)了因數(shù)、倍數(shù)的有關(guān)知識。

  五年級下冊因數(shù)和倍數(shù)教學(xué)反思 26

  在上學(xué)期的白紙備課活動中,我們高年段數(shù)學(xué)抽到的教學(xué)內(nèi)容就是因數(shù)與倍數(shù),這個(gè)內(nèi)容是我沒有教過的,在看到教學(xué)內(nèi)容時(shí),我心里不禁在打鼓,我能找準(zhǔn)教學(xué)重難點(diǎn)嗎?能突破重難點(diǎn)嗎?一連串問題涌了上來,最后我還是讓自己冷靜下來,靜下心來認(rèn)真分析教材,盡自己最大的努力梳理出教學(xué)重難點(diǎn),創(chuàng)設(shè)情境、設(shè)計(jì)游戲來突出重點(diǎn)、突破難點(diǎn)。在設(shè)計(jì)完教學(xué)過程后,我也與同組的老師交流了活動體會。原來在老教材中沒有因數(shù)這個(gè)概念,只有約數(shù)和倍數(shù),而且是由整除的概念引入的,但因?yàn)槲沂堑谝淮谓虒W(xué)這個(gè)內(nèi)容,很自然的就沒有被以往教材的教學(xué)定式所束縛,嘗到了新教材的甜頭,F(xiàn)在剛好又教了這個(gè)內(nèi)容,仔細(xì)參考了教學(xué)用書我才真正領(lǐng)悟到了新教材的新穎所在。

  新教材在引入因數(shù)和倍數(shù)的概念時(shí)與以往的教材有所不同。在以往的教材中,都是通過除法算式來引出整除的概念,每個(gè)除法算式對應(yīng)著一對有整除關(guān)系的數(shù),如b÷a=n表示b能被a整除,b÷n=a表示b能被n整除。在此基礎(chǔ)上再引出因數(shù)和倍數(shù)的概念。實(shí)際上,由于乘除法本身就存在著互逆關(guān)系,用乘法算式(如b=na)同樣可以表示整除的含義。因此,新教材中沒有用數(shù)學(xué)化的語言給“整除”下定義,而是利用一個(gè)簡單的.實(shí)物圖(2行飛機(jī),每行6架)引出一個(gè)乘法算式2×6=12,通過這個(gè)乘法算式直接給出因數(shù)和倍數(shù)的概念。這樣,學(xué)生不必通過12÷2=6得出12能被2整除,進(jìn)而2是12的因數(shù),12是2的倍數(shù)。再通過12÷6=2得出12能被6整除,進(jìn)而6是12的因數(shù),12是6的倍數(shù),大大簡化了敘述和記憶的過程。在這兒,用一個(gè)乘法算式2×6=12可以同時(shí)說明“2和6都是12的因數(shù),12是2的倍數(shù),也是6的倍數(shù)!

  這樣的設(shè)計(jì)既減輕了學(xué)生的學(xué)習(xí)負(fù)擔(dān)又讓學(xué)生在學(xué)習(xí)時(shí)盡量避免出現(xiàn)概念混淆、理解困難的問題。學(xué)生對新知掌握較牢,在實(shí)際教學(xué)中我就是這樣處理的,學(xué)生樂學(xué),思路清晰。

  五年級下冊因數(shù)和倍數(shù)教學(xué)反思 27

  在上學(xué)期的白紙備課活動中,我們高年段數(shù)學(xué)抽到的教學(xué)內(nèi)容就是因數(shù)與倍數(shù),這個(gè)內(nèi)容是我沒有教過的,在看到教學(xué)內(nèi)容時(shí),我心里不禁在打鼓,我能找準(zhǔn)教學(xué)重難點(diǎn)嗎?能突破重難點(diǎn)嗎?一連串問題涌了上來,最后我還是讓自己冷靜下來,靜下心來認(rèn)真分析教材,盡自己最大的努力梳理出教學(xué)重難點(diǎn),創(chuàng)設(shè)情境、設(shè)計(jì)游戲來突出重點(diǎn)、突破難點(diǎn)。在設(shè)計(jì)完教學(xué)過程后,我也與同組的老師交流了活動體會。原來在老教材中沒有因數(shù)這個(gè)概念,只有約數(shù)和倍數(shù),而且是由整除的概念引入的,但因?yàn)槲沂堑谝淮谓虒W(xué)這個(gè)內(nèi)容,很自然的就沒有被以往教材的教學(xué)定式所束縛,嘗到了新教材的甜頭。現(xiàn)在剛好又教了這個(gè)內(nèi)容,仔細(xì)參考了教學(xué)用書我才真正領(lǐng)悟到了新教材的新穎所在。 新教材在引入因數(shù)和倍數(shù)的概念時(shí)與以往的教材有所不同。在以往的教材中,都是通過除法算式來引出整除的概念,每個(gè)除法算式對應(yīng)著一對有整除關(guān)系的數(shù),如b÷a=n表示b能被a整除,b÷n=a表示b能被n整除。在此基礎(chǔ)上再引出因數(shù)和倍數(shù)的概念。實(shí)際上,由于乘除法本身就存在著互逆關(guān)系,用乘法算式(如b=na)同樣可以表示整除的含義。因此,新教材中沒有用數(shù)學(xué)化的語言給“整除”下定義,而是利用一個(gè)簡單的實(shí)物圖(2行飛機(jī),每行6架)引出一個(gè)乘法算式2×6=12,通過這個(gè)乘法算式直接給出因數(shù)和倍數(shù)的概念。這樣,學(xué)生不必通過12÷2=6得出12能被2整除,進(jìn)而2是12的.因數(shù),12是2的倍數(shù)。再通過12÷6=2得出12能被6整除,進(jìn)而6是12的因數(shù),12是6的倍數(shù),大大簡化了敘述和記憶的過程。在這兒,用一個(gè)乘法算式2×6=12可以同時(shí)說明“2和6都是12的因數(shù),12是2的倍數(shù),也是6的倍數(shù)! 這樣的設(shè)計(jì)既減輕了學(xué)生的學(xué)習(xí)負(fù)擔(dān)又讓學(xué)生在學(xué)習(xí)時(shí)盡量避免出現(xiàn)概念混淆、理解困難的問題。學(xué)生對新知掌握較牢,在實(shí)際教學(xué)中我就是這樣處理的,學(xué)生樂學(xué),思路清晰。

  五年級下冊因數(shù)和倍數(shù)教學(xué)反思 28

  《因數(shù)和倍數(shù)》是一節(jié)數(shù)學(xué)概念課,在以往的教材中,都是經(jīng)過除法算式來引出整除的概念,而此刻的人教版教材中沒有用數(shù)學(xué)語言給“整除”下定義,而是利用一個(gè)簡單的實(shí)物圖(2行飛機(jī),每行6架)引出一個(gè)乘法算式2×6=12,經(jīng)過這個(gè)乘法算式直接給出因數(shù)和倍數(shù)的概念。對于學(xué)生來說是比較難掌握的資料。尤其對因數(shù)和倍數(shù)是一對相互依存的概念,不能單獨(dú)存在,不是很好理解。我經(jīng)過生活與數(shù)學(xué)之間的聯(lián)系,幫忙學(xué)生理解因數(shù)倍數(shù)相互依存的關(guān)系。所以在上課之前我特意舉一些生活中的實(shí)例來幫忙學(xué)生對相互依存的理解,在描述因數(shù)和倍數(shù)的概念時(shí)就不會說錯(cuò)了。對于這節(jié)課的教學(xué),我特別注意下頭幾個(gè)細(xì)節(jié)來幫忙學(xué)生理解因數(shù)和倍數(shù)的概念。

  1、是我上課時(shí)特別注意讓學(xué)生明白什么情景下才能討論因數(shù)和倍數(shù)的概念。

  2、是要學(xué)生注意區(qū)分乘法算式中的"因數(shù)"和本單元中的`"因數(shù)"的聯(lián)系和區(qū)別。在同一個(gè)乘法算式中,兩者都是指乘號兩邊的整數(shù),但前者是相對"積"而言的,與"乘數(shù)"同義,能夠是小數(shù),而后者是相對于"倍數(shù)"而言的,兩者都只能是整數(shù)。

  3、是要注意區(qū)分"倍數(shù)"與前面學(xué)過的"倍"的聯(lián)系和區(qū)別。"倍"的概念比"倍數(shù)"要廣。能夠說"15是3的倍數(shù)",也能夠說"1.5是0.3的5倍",但我們只能說"15是3的倍數(shù)",卻不能說"1.5是0的倍數(shù)"。在課堂中反復(fù)強(qiáng)調(diào),幫忙學(xué)生認(rèn)真理解辨析,所以學(xué)生一節(jié)課下來對這組概念就理解透徹了,就不會模糊了。

  五年級下冊因數(shù)和倍數(shù)教學(xué)反思 29

  因數(shù)和倍數(shù)是蘇教版五年級下冊第三單元的內(nèi)容。這一內(nèi)容與原來教材比有了很大的不同,老教材中是先建立整除的概念,在此基礎(chǔ)上認(rèn)識因數(shù)倍數(shù)。而教材是通過用12個(gè)小正方形拼長方形并寫乘法算式來引入因數(shù)和倍數(shù)。我在教學(xué)時(shí)做了一些下的改動,例題從12個(gè)相同的正方形拼長方形開始教學(xué),學(xué)生對這個(gè)活動已經(jīng)很熟悉,幾乎人人都知道有不同的拼法,都能順利地拼出三種不同的長方形。因此,我要求不用12個(gè)正方形拼,而是在腦子里“想像拼”,不能想象的就在本子上“畫拼”,“拼”好后,我也要求只用一個(gè)乘法算式表示你的拼法,這樣不僅節(jié)省了不少時(shí)間,更主要的是我覺得這樣的`操作活動,雖然看起來不熱鬧,但學(xué)生的學(xué)習(xí)興趣被激發(fā)了、思維被調(diào)動起來了,主動參與到了知識的學(xué)習(xí)中去了。

  能不重復(fù)、不遺漏,有序地找出一個(gè)數(shù)的因數(shù),是本課的教學(xué)難點(diǎn)。在教學(xué)中,我是這樣設(shè)計(jì)的:在根據(jù)1×12=12,2×6=12,3×4=12三個(gè)乘法算式說出了誰是誰的因數(shù)、誰是誰的倍數(shù)后,教師緊接著提問:12的因數(shù)有哪些?學(xué)生看著黑板上的算式很快可找出12的因數(shù),接著再提問:你是怎么看出來的?根據(jù)一個(gè)乘法算式可以得到12的幾個(gè)因數(shù)?在學(xué)生回答之后,我接著請同學(xué)們用剛才的方法自己找一找36的因數(shù)有哪些。在匯報(bào)時(shí),重點(diǎn)解決如何有序、不重復(fù)、不遺漏地找出一個(gè)數(shù)的因數(shù)。雖然這樣的教學(xué)設(shè)計(jì),看起來學(xué)生的主動探索過程好像削弱了好多,但根據(jù)試上這課時(shí)的情況看,這樣的設(shè)計(jì)比直接讓學(xué)生自主探索36的因數(shù)有哪些學(xué)習(xí)效果要好一些。直接探索36的因數(shù)有哪些,放得太開,學(xué)生無從下手,暴露出了許多問題,有的不知道該如何找因數(shù),有的沒有找全,而學(xué)生在教師的引導(dǎo)下,發(fā)現(xiàn)了找一個(gè)數(shù)因數(shù)的方法后接著去找36的因數(shù),那么他所關(guān)注的是如何有序地找出一個(gè)數(shù)的因數(shù),這樣的思考更有針對性,目標(biāo)也更明確,對知識的掌握也能做得更好。

【五年級下冊因數(shù)和倍數(shù)教學(xué)反思】相關(guān)文章:

《因數(shù)和倍數(shù)》教學(xué)設(shè)計(jì)11-20

因數(shù)和倍數(shù)教學(xué)反思(通用11篇)10-11

《倍數(shù)和因數(shù)》教學(xué)設(shè)計(jì)及反思(精選6篇)08-12

五年級下冊《因數(shù)和倍數(shù)》教學(xué)設(shè)計(jì)優(yōu)秀01-22

《倍數(shù)和因數(shù)》教學(xué)設(shè)計(jì)優(yōu)秀12-21

《因數(shù)和倍數(shù)》教學(xué)設(shè)計(jì)范文07-24

因數(shù)和倍數(shù)教案09-13

《因數(shù)和倍數(shù)》教學(xué)設(shè)計(jì)范文[熱門]09-19

因數(shù)與倍數(shù)的教學(xué)設(shè)計(jì)02-03

倍數(shù)與因數(shù)教學(xué)設(shè)計(jì)07-26