成大在线免费视频,亚洲精品免费一级视频,日韩亚洲欧美大陆,又黄又爽免费国产视频

<style id="t465f"></style>
<legend id="t465f"><u id="t465f"><thead id="t465f"></thead></u></legend>

<acronym id="t465f"></acronym>

<sub id="t465f"><ol id="t465f"><nobr id="t465f"></nobr></ol></sub>
<sub id="t465f"></sub>

函數(shù)總結(jié)知識點初中

時間:2024-10-10 08:36:06 總結(jié) 投訴 投稿

函數(shù)總結(jié)知識點初中

  總結(jié)就是把一個時段的學習、工作或其完成情況進行一次全面系統(tǒng)的總結(jié),它能夠使頭腦更加清醒,目標更加明確,我想我們需要寫一份總結(jié)了吧。那么總結(jié)有什么格式呢?下面是小編幫大家整理的函數(shù)總結(jié)知識點初中,希望對大家有所幫助。

函數(shù)總結(jié)知識點初中

函數(shù)總結(jié)知識點初中1

  三角和的公式

  sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ

  cos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ

  tan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)

  倍角公式

  tan2A = 2tanA/(1-tan2 A)

  Sin2A=2SinA?CosA

  Cos2A = Cos^2 A--Sin2 A =2Cos2 A-1 =1-2sin^2 A

  三倍角公式

  sin3A = 3sinA-4(sinA)3;

  cos3A = 4(cosA)3 -3cosA

  tan3a = tan a ? tan(π/3+a)? tan(π/3-a)

  三角函數(shù)特殊值

  α=0° sinα=0 cosα=1 tαnα=0 cotα→∞ secα=1 cscα→∞

  α=15°(π/12) sinα=(√6-√2)/4 cosα=(√6+√2)/4 tαnα=2-√3 cotα=2+√3 secα=√6-√2 cscα=√6+√2

  α=22.5°(π/8) sinα=√(2-√2)/2 cosα=√(2+√2)/2 tαnα=√2-1 cotα=√2+1 secα=√(4-2√2) cscα=√(4+2√2)

  a=30°(π/6) sinα=1/2 cosα=√3/2 tαnα=√3/3 cotα=√3 secα=2√3/3 cscα=2

  α=45°(π/4) sinα=√2/2 cosα=√2/2 tαnα=1 cotα=1 secα=√2 cscα=√2

  α=60°(π/3) sinα=√3/2 cosα=1/2 tαnα=√3 cotα=√3/3 secα=2 cscα=2√3/3

  α=67.5°(3π/8) sinα=√(2+√2)/2 cosα=√(2-√2)/2 tαnα=√2+1 cotα=√2-1 secα=√(4+2√2) cscα=√(4-2√2)

  α=75°(5π/12) sinα=(√6+√2)/4 cosα=(√6-√2)/4 tαnα=2+√3 cotα=2-√3 secα=√6+√2 cscα=√6-√2

  α=90°(π/2) sinα=1 cosα=0 tαnα→∞ cotα=0 secα→∞ cscα=1

  α=180°(π) sinα=0 cosα=-1 tαnα=0 cotα→∞ secα=-1 cscα→∞

  α=270°(3π/2) sinα=-1 cosα=0 tαnα→∞ cotα=0 secα→∞ cscα=-1

  α=360°(2π) sinα=0 cosα=1 tαnα=0 cotα→∞ secα=1 cscα→∞

  三角函數(shù)記憶順口溜

  1三角函數(shù)記憶口訣

  “奇、偶”指的是π/2的倍數(shù)的奇偶,“變與不變”指的是三角函數(shù)的名稱的'變化:“變”是指正弦變余弦,正切變余切。(反之亦然成立)“符號看象限”的含義是:把角α看做銳角,不考慮α角所在象限,看n·(π/2)±α是第幾象限角,從而得到等式右邊是正號還是負號。

  以cos(π/2+α)=-sinα為例,等式左邊cos(π/2+α)中n=1,所以右邊符號為sinα,把α看成銳角,所以π/2<(π/2+α)<π,y=cosx在區(qū)間(π/2,π)上小于零,所以右邊符號為負,所以右邊為-sinα。

  2符號判斷口訣

  全,S,T,C,正。這五個字口訣的意思就是說:第一象限內(nèi)任何一個角的四種三角函數(shù)值都是“+”;第二象限內(nèi)只有正弦是“+”,其余全部是“-”;第三象限內(nèi)只有正切是“+”,其余全部是“-”;第四象限內(nèi)只有余弦是“+”,其余全部是“-”。

  也可以這樣理解:一、二、三、四指的角所在象限。全正、正弦、正切、余弦指的是對應象限三角函數(shù)為正值的名稱。口訣中未提及的都是負值。

  “ASTC”反Z。意即為“all(全部)”、“sin”、“tan”、“cos”按照將字母Z反過來寫所占的象限對應的三角函數(shù)為正值。

  3三角函數(shù)順口溜

  三角函數(shù)是函數(shù),象限符號坐標注。函數(shù)圖像單位圓,周期奇偶增減現(xiàn)。

  同角關系很重要,化簡證明都需要。正六邊形頂點處,從上到下弦切割;

  中心記上數(shù)字一,連結(jié)頂點三角形。向下三角平方和,倒數(shù)關系是對角,頂點任意一函數(shù),等于后面兩根除。誘導公式就是好,負化正后大化小,變成銳角好查表,化簡證明少不了。二的一半整數(shù)倍,奇數(shù)化余偶不變,將其后者視銳角,符號原來函數(shù)判。兩角和的余弦值,化為單角好求值,余弦積減正弦積,換角變形眾公式。和差化積須同名,互余角度變名稱。

  計算證明角先行,注意結(jié)構函數(shù)名,保持基本量不變,繁難向著簡易變。

  逆反原則作指導,升冪降次和差積。條件等式的證明,方程思想指路明。

  萬能公式不一般,化為有理式居先。公式順用和逆用,變形運用加巧用;

  一加余弦想余弦,一減余弦想正弦,冪升一次角減半,升冪降次它為范;

  三角函數(shù)反函數(shù),實質(zhì)就是求角度,先求三角函數(shù)值,再判角取值范圍;

  利用直角三角形,形象直觀好換名,簡單三角的方程,化為最簡求解集。

函數(shù)總結(jié)知識點初中2

  當h>0時,y=a(_-h)^2的圖象可由拋物線y=a_^2向右平行移動h個單位得到,

  當h<0時,則向左平行移動|h|個單位得到.

  當h>0,k>0時,將拋物線y=a_^2向右平行移動h個單位,再向上移動k個單位,就可以得到y(tǒng)=a(_-h)^2+k的圖象;

  當h>0,k<0時,將拋物線y=a_^2向右平行移動h個單位,再向下移動|k|個單位可得到y(tǒng)=a(_-h)^2+k的圖象;

  當h<0,k>0時,將拋物線向左平行移動|h|個單位,再向上移動k個單位可得到y(tǒng)=a(_-h)^2+k的圖象;

  當h<0,k<0時,將拋物線向左平行移動|h|個單位,再向下移動|k|個單位可得到y(tǒng)=a(_-h)^2+k的圖象;

  因此,研究拋物線y=a_^2+b_+c(a≠0)的圖象,通過配方,將一般式化為y=a(_-h)^2+k的形式,可確定其頂點坐標、對稱軸,拋物線的大體位置就很清楚了.這給畫圖象提供了方便.

  2.拋物線y=a_^2+b_+c(a≠0)的圖象:當a>0時,開口向上,當a<0時開口向下,對稱軸是直線_=-b/2a,頂點坐標是(-b/2a,[4ac-b^2]/4a).

  3.拋物線y=a_^2+b_+c(a≠0),若a>0,當_≤-b/2a時,y隨_的增大而減小;當_≥-b/2a時,y隨_的增大而增大.若a<0,當_≤-b/2a時,y隨_的增大而增大;當_≥-b/2a時,y隨_的增大而減小.

  4.拋物線y=a_^2+b_+c的圖象與坐標軸的交點:

  (1)圖象與y軸一定相交,交點坐標為(0,c);

  (2)當△=b^2-4ac>0,圖象與_軸交于兩點A(_?,0)和B(_?,0),其中的_1,_2是一元二次方程a_^2+b_+c=0

  (a≠0)的兩根.這兩點間的.距離AB=|_?-_?|

  當△=0.圖象與_軸只有一個交點;

  當△<0.圖象與_軸沒有交點.當a>0時,圖象落在_軸的上方,_為任何實數(shù)時,都有y>0;當a<0時,圖象落在_軸的下方,_為任何實數(shù)時,都有y<0.

  5.拋物線y=a_^2+b_+c的最值:如果a>0(a<0),則當_=-b/2a時,y最小(大)值=(4ac-b^2)/4a.

  頂點的橫坐標,是取得最值時的自變量值,頂點的縱坐標,是最值的取值.

  6.用待定系數(shù)法求二次函數(shù)的解析式

  (1)當題給條件為已知圖象經(jīng)過三個已知點或已知_、y的三對對應值時,可設解析式為一般形式:

  y=a_^2+b_+c(a≠0).

  (2)當題給條件為已知圖象的頂點坐標或?qū)ΨQ軸時,可設解析式為頂點式:y=a(_-h)^2+k(a≠0).

  (3)當題給條件為已知圖象與_軸的兩個交點坐標時,可設解析式為兩根式:y=a(_-_?)(_-_?)(a≠0).

  7.二次函數(shù)知識很容易與其它知識綜合應用,而形成較為復雜的綜合題目。因此,以二次函數(shù)知識為主的綜合性題目是中考的熱點考題,往往以大題形式出現(xiàn).

函數(shù)總結(jié)知識點初中3

  1、二次函數(shù)的概念

  1.二次函數(shù)的概念:一般地,形如(是常數(shù),)的函數(shù),叫做二次函數(shù)。這里需要強調(diào):和一元二次方程類似,二次項系數(shù),而可以為零。二次函數(shù)的定義域是全體實數(shù)。

  2.二次函數(shù)的結(jié)構特征:

 、诺忍栕筮吺呛瘮(shù),右邊是關于自變量的二次式,的最高次數(shù)是2。

 、剖浅(shù),是二次項系數(shù),是一次項系數(shù),是常數(shù)項。

  2、初三數(shù)學二次函數(shù)的'三種表達式

  一般式:y=ax^2+bx+c(a,b,c為常數(shù),a≠0)。

  頂點式:y=a(x-h)^2+k[拋物線的頂點P(h,k)]。

  交點式:y=a(x-x?)(x-x?)[僅限于與x軸有交點A(x?,0)和B(x?,0)的拋物線]。

  注:在3種形式的互相轉(zhuǎn)化中,有如下關系:h=-b/2ak=(4ac-b^2)/4ax?,x?=(-b±√b^2-4ac)/2a。

  3、二次函數(shù)的性質(zhì)

  1.性質(zhì):(1)在一次函數(shù)上的任意一點P(x,y),都滿足等式:y=kx+b。(2)一次函數(shù)與y軸交點的坐標總是(0,b),與x軸總是交于(-b/k,0)正比例函數(shù)的圖像總是過原點。

  2.k,b與函數(shù)圖像所在象限:

  當k>0時,直線必通過一、三象限,y隨x的增大而增大;

  當k<0時,直線必通過二、四象限,y隨x的增大而減小。

  當b>0時,直線必通過一、二象限;

  當b=0時,直線通過原點;

  當b<0時,直線必通過三、四象限。

  特別地,當b=O時,直線通過原點O(0,0)表示的是正比例函數(shù)的圖像。

  這時,當k>0時,直線只通過一、三象限;當k<0時,直線只通過二、四象限。

  4、初三數(shù)學二次函數(shù)圖像

  對于一般式:

 、賧=ax2+bx+c與y=ax2-bx+c兩圖像關于y軸對稱。

  ②y=ax2+bx+c與y=-ax2-bx-c兩圖像關于x軸對稱。

 、踶=ax2+bx+c與y=-ax2-bx+c-b2/2a關于頂點對稱。

 、躽=ax2+bx+c與y=-ax2+bx-c關于原點中心對稱。(即繞原點旋轉(zhuǎn)180度后得到的圖形)

  對于頂點式:

 、賧=a(x-h)2+k與y=a(x+h)2+k兩圖像關于y軸對稱,即頂點(h,k)和(-h,k)關于y軸對稱,橫坐標相反、縱坐標相同。

 、趛=a(x-h)2+k與y=-a(x-h)2-k兩圖像關于x軸對稱,即頂點(h,k)和(h,-k)關于x軸對稱,橫坐標相同、縱坐標相反。

 、踶=a(x-h)2+k與y=-a(x-h)2+k關于頂點對稱,即頂點(h,k)和(h,k)相同,開口方向相反。

  ④y=a(x-h)2+k與y=-a(x+h)2-k關于原點對稱,即頂點(h,k)和(-h,-k)關于原點對稱,橫坐標、縱坐標都相反。(其實①③④就是對f(x)來說f(-x),-f(x),-f(-x)的情況)

函數(shù)總結(jié)知識點初中4

  計算方法

  1.樣本平均數(shù):

  2.樣本方差:

  3.樣本標準差:

  相交線與平行線、三角形、四邊形的有關概念、判定、性質(zhì)。

  內(nèi)容提要

  一、直線、相交線、平行線

  1.線段、射線、直線三者的區(qū)別與聯(lián)系

  從“圖形”、“表示法”、“界限”、“端點個數(shù)”、“基本性質(zhì)”等方面加以分析。

  2.線段的中點及表示

  3.直線、線段的基本性質(zhì)(用“線段的基本性質(zhì)”論證“三角形兩邊之和大于第三邊”)

  4.兩點間的距離(三個距離:點-點;點-線;線-線)

  5.角(平角、周角、直角、銳角、鈍角)

  6.互為余角、互為補角及表示方法

  7.角的平分線及其表示

  8.垂線及基本性質(zhì)(利用它證明“直角三角形中斜邊大于直角邊”)

  9.對頂角及性質(zhì)

  10.平行線及判定與性質(zhì)(互逆)(二者的區(qū)別與聯(lián)系)

  11.常用定理:①同平行于一條直線的兩條直線平行(傳遞性);②同垂直于一條直線的兩條直線平行。

  12.定義、命題、命題的組成

  13.公理、定理

  14.逆命題

  二、三角形

  分類:

 、虐催叿;

  ⑵按角分

  1.定義(包括內(nèi)、外角)

  2.三角形的邊角關系:⑴角與角:①內(nèi)角和及推論;②外角和;③n邊形內(nèi)角和;④n邊形外角和。⑵邊與邊:三角形兩邊之和大于第三邊,兩邊之差小于第三邊。⑶角與邊:在同一三角形中,3.三角形的主要線段

  討論:①定義②__線的交點—三角形的_心③性質(zhì)

 、俑呔②中線③角平分線④中垂線⑤中位線

 、乓话闳切微铺厥馊切危褐苯侨切、等腰三角形、等邊三角形

  4.特殊三角形(直角三角形、等腰三角形、等邊三角形、等腰直角三角形)的判定與性質(zhì)

  5.全等三角形

 、乓话闳切稳鹊呐卸(SAS、ASA、AAS、SSS)

 、铺厥馊切稳鹊呐卸ǎ孩僖话惴椒á趯S梅椒

  6.三角形的面積

 、乓话阌嬎愎舰菩再|(zhì):等底等高的三角形面積相等。

  7.重要輔助線

  ⑴中點配中點構成中位線;⑵加倍中線;⑶添加輔助平行線

  8.證明方法

 、胖苯幼C法:綜合法、分析法

 、崎g接證法—反證法:①反設②歸謬③結(jié)論

 、亲C線段相等、角相等常通過證三角形全等

  ⑷證線段倍分關系:加倍法、折半法

 、勺C線段和差關系:延結(jié)法、截余法

  ⑹證面積關系:將面積表示出來

  三、四邊形

  分類表:

  1.一般性質(zhì)(角)

 、艃(nèi)角和:360°

 、祈槾芜B結(jié)各邊中點得平行四邊形。

  推論1:順次連結(jié)對角線相等的.四邊形各邊中點得菱形。

  推論2:順次連結(jié)對角線互相垂直的四邊形各邊中點得矩形。

 、峭饨呛停360°

  2.特殊四邊形

  ⑴研究它們的一般方法:

  ⑵平行四邊形、矩形、菱形、正方形;梯形、等腰梯形的定義、性質(zhì)和判定

 、桥卸ú襟E:四邊形→平行四邊形→矩形→正方形

  菱形

 、葘蔷的紐帶作用:

  3.對稱圖形

 、泡S對稱(定義及性質(zhì));⑵中心對稱(定義及性質(zhì))

  4.有關定理:①平行線等分線段定理及其推論1、2

  ②三角形、梯形的中位線定理

 、燮叫芯間的距離處處相等。(如,找下圖中面積相等的三角形)

  5.重要輔助線:①常連結(jié)四邊形的對角線;②梯形中常“平移一腰”、“平移對角線”、“作高”、“連結(jié)頂點和對腰中點并延長與底邊相交”轉(zhuǎn)化為三角形。

  6.作圖:任意等分線段。

函數(shù)總結(jié)知識點初中5

  1、定義與定義表達式

  一般地,自變量x和因變量y之間存在如下關系:y=ax^2+bx+c

  (a,b,c為常數(shù),a≠0,且a決定函數(shù)的開口方向,a>0時,開口方向向上,a<0時,開口方向向下,iai還可以決定開口大小,iai越大開口就越小,iai越小開口就越大.)則稱y為x的二次函數(shù)。

  二次函數(shù)表達式的右邊通常為二次三項式。

  2、二次函數(shù)的三種表達式

  一般式:y=ax^2+bx+c(a,b,c為常數(shù),a≠0)

  頂點式:y=a(x-h)^2+k [拋物線的頂點p(h,k)]

  交點式:y=a(x-x)(x-x ) [僅限于與x軸有交點a(x,0)和b(x,0)的拋物線]

  注:在3種形式的互相轉(zhuǎn)化中,有如下關系:

  h=-b/2a k=(4ac-b^2)/4a x,x=(-b±√b^2-4ac)/2a

  3、二次函數(shù)的圖像

  在平面直角坐標系中作出二次函數(shù)y=x^2的圖像,可以看出,二次函數(shù)的圖像是一條拋物線。

  4、拋物線的性質(zhì)

  1.拋物線是軸對稱圖形。對稱軸為直線x = -b/2a。

  對稱軸與拋物線唯一的交點為拋物線的頂點p。特別地,當b=0時,拋物線的對稱軸是y軸(即直線x=0)

  2.拋物線有一個頂點p,坐標為:p ( -b/2a,(4ac-b^2)/4a )當-b/2a=0時,p在y軸上;當δ= b^2-4ac=0時,p在x軸上。

  3.二次項系數(shù)a決定拋物線的開口方向和大小。

  當a>0時,拋物線向上開口;當a<0時,拋物線向下開口。|a|越大,則拋物線的開口越小。

  4.一次項系數(shù)b和二次項系數(shù)a共同決定對稱軸的位置。

  當a與b同號時(即ab>0),對稱軸在y軸左;

  當a與b異號時(即ab<0),對稱軸在y軸右。

  5.常數(shù)項c決定拋物線與y軸交點。

  拋物線與y軸交于(0,c)

  6.拋物線與x軸交點個數(shù)

  δ= b^2-4ac>0時,拋物線與x軸有2個交點。

  δ= b^2-4ac=0時,拋物線與x軸有1個交點。

  δ= b^2-4ac<0時,拋物線與x軸沒有交點。x的取值是虛數(shù)(x= -b±√b^2-4ac的值的相反數(shù),乘上虛數(shù)i,整個式子除以2a)

  5、二次函數(shù)與一元二次方程

  特別地,二次函數(shù)(以下稱函數(shù))y=ax^2+bx+c,當y=0時,二次函數(shù)為關于x的一元二次方程(以下稱方程),即ax^2+bx+c=0

  此時,函數(shù)圖像與x軸有無交點即方程有無實數(shù)根。函數(shù)與x軸交點的橫坐標即為方程的根。

  1.二次函數(shù)y=ax^2,y=a(x-h)^2,y=a(x-h)^2 +k,y=ax^2+bx+c(各式中,a≠0)的圖象形狀相同,只是位置不同,它們的頂點坐標及對稱軸:

  當h>0時,y=a(x-h)^2的圖象可由拋物線y=ax^2向右平行移動h個單位得到,當h<0時,則向左平行移動|h|個單位得到.

  當h>0,k>0時,將拋物線y=ax^2向右平行移動h個單位,再向上移動k個單位,就可以得到y(tǒng)=a(x-h)^2 +k的圖象;

  當h>0,k<0時,將拋物線y=ax^2向右平行移動h個單位,再向下移動|k|個單位可得到y(tǒng)=a(x-h)^2+k的圖象;

  當h<0,k>0時,將拋物線向左平行移動|h|個單位,再向上移動k個單位可得到y(tǒng)=a(x-h)^2+k的圖象;

  當h<0,k<0時,將拋物線向左平行移動|h|個單位,再向下移動|k|個單位可得到y(tǒng)=a(x-h)^2+k的圖象;

  因此,研究拋物線y=ax^2+bx+c(a≠0)的圖象,通過配方,將一般式化為y=a(x-h)^2+k的形式,可確定其頂點坐標、對稱軸,拋物線的.大體位置就很清楚了.這給畫圖象提供了方便.

  2.拋物線y=ax^2+bx+c(a≠0)的圖象:當a>0時,開口向上,當a<0時開口向下,對稱軸是直線x=-b/2a,頂點坐標是(-b/2a,[4ac-b^2]/4a).

  3.拋物線y=ax^2+bx+c(a≠0),若a>0,當x ≤ -b/2a時,y隨x的增大而減小;當x ≥ -b/2a時,y隨x的增大而增大.若a<0,當x ≤ -b/2a時,y隨x的增大而增大;當x ≥ -b/2a時,y隨x的增大而減小.

  4.拋物線y=ax^2+bx+c的圖象與坐標軸的交點:

  (1)圖象與y軸一定相交,交點坐標為(0,c);

  (2)當△=b^2-4ac>0,圖象與x軸交于兩點a(x,0)和b(x,0),其中的x1,x2是一元二次方程ax^2+bx+c=0

  (a≠0)的兩根.這兩點間的距離ab=|x-x|

  當△=0.圖象與x軸只有一個交點;

  當△<0.圖象與x軸沒有交點.當a>0時,圖象落在x軸的上方,x為任何實數(shù)時,都有y>0;當a<0時,圖象落在x軸的下方,x為任何實數(shù)時,都有y<0.

  5.拋物線y=ax^2+bx+c的最值:如果a>0(a<0),則當x= -b/2a時,y最小(大)值=(4ac-b^2)/4a.

  頂點的橫坐標,是取得最值時的自變量值,頂點的縱坐標,是最值的取值

  6.用待定系數(shù)法求二次函數(shù)的解析式

  (1)當題給條件為已知圖象經(jīng)過三個已知點或已知x、y的三對對應值時,可設解析式為一般形式:

  y=ax^2+bx+c(a≠0).

  (2)當題給條件為已知圖象的頂點坐標或?qū)ΨQ軸時,可設解析式為頂點式:y=a(x-h)^2+k(a≠0).

  (3)當題給條件為已知圖象與x軸的兩個交點坐標時,可設解析式為兩根式:y=a(x-x)(x-x)(a≠0).

  7.二次函數(shù)知識很容易與其它知識綜合應用,而形成較為復雜的綜合題目。因此,以二次函數(shù)知識為主的綜合性題目是中考的熱點考題,往往以大題形式出現(xiàn).

函數(shù)總結(jié)知識點初中6

  ∴當x1時函數(shù)取得最大值,且ymax(1)2(1)13例4、已知函數(shù)f(x)x22(a1)x2

  4],求實數(shù)a的取值(1)若函數(shù)f(x)的遞減區(qū)間是(,4]上是減函數(shù),求實數(shù)a的取值范圍(2)若函數(shù)f(x)在區(qū)間(,分析:二次函數(shù)的單調(diào)區(qū)間是由其開口方向及對稱軸決定的,要分清函數(shù)在區(qū)間A上是單調(diào)函數(shù)及單調(diào)區(qū)間是A的區(qū)別與聯(lián)系

  解:(1)f(x)的對稱軸是x可得函數(shù)圖像開口向上

  2(a1)21a,且二次項系數(shù)為1>0

  1a]∴f(x)的單調(diào)減區(qū)間為(,∴依題設條件可得1a4,解得a3

  4]上是減函數(shù)(2)∵f(x)在區(qū)間(,4]是遞減區(qū)間(,1a]的子區(qū)間∴(,∴1a4,解得a3

  例5、函數(shù)f(x)x2bx2,滿足:f(3x)f(3x)

 。1)求方程f(x)0的兩根x1,x2的和(2)比較f(1)、f(1)、f(4)的大小解:由f(3x)f(3x)知函數(shù)圖像的對稱軸為x(3x)(3x)23

  b3可得b62f(x)x26x2(x3)211

  而f(x)的圖像與x軸交點(x1,0)、(x2,0)關于對稱軸x3對稱

  x1x223,可得x1x26

  第三章第32頁由二次項系數(shù)為1>0,可知拋物線開口向上又134,132,431

  ∴依二次函數(shù)的對稱性及單調(diào)性可f(4)f(1)f(1)(III)課后作業(yè)練習六

 。á簦┙虒W后記:

  第三章第33頁

  擴展閱讀:初中數(shù)學函數(shù)知識點歸納

  學大教育

  初中數(shù)學函數(shù)板塊的知識點總結(jié)與歸類學習方法

  初中數(shù)學知識大綱中,函數(shù)知識占了很大的知識體系比例,學好了函數(shù),掌握了函數(shù)的'基本性質(zhì)及其應用,真正精通了函數(shù)的每一個模塊知識,會做每一類函數(shù)題型,就讀于中考中數(shù)學成功了一大半,數(shù)學成績自然上高峰,同時,函數(shù)的思想是學好其他理科類學科的基礎。初中數(shù)學從性質(zhì)上分,可以分為:一次函數(shù)、反比例函數(shù)、二次函數(shù)和銳角三角函數(shù),下面介紹各類函數(shù)的定義、基本性質(zhì)、函數(shù)圖象及函數(shù)應用思維方式方法。

  一、一次函數(shù)

  1.定義:在定義中應注意的問題y=kx+b中,k、b為常數(shù),且k≠0,x的指數(shù)一定為1。2.圖象及其性質(zhì)(1)形狀、直線

函數(shù)總結(jié)知識點初中7

  當k>0時,圖象分別位于第一、三象限,同一個象限內(nèi),y隨x的增大而減小;當k<0時,圖象分別位于二、四象限,同一個象限內(nèi),y隨x的增大而增大。

  >0時,函數(shù)在x<0上同為減函數(shù)、在x>0上同為減函數(shù);k<0時,函數(shù)在x<0上為增函數(shù)、在x>0上同為增函數(shù)。定義域為x≠0;值域為y≠0。

  因為在y=k/x(k≠0)中,x不能為0,y也不能為0,所以反比例函數(shù)的圖象不可能與x軸相交,也不可能與y軸相交。

  在一個反比例函數(shù)圖象上任取兩點P,Q,過點P,Q分別作x軸,y軸的平行線,與坐標軸圍成的`矩形面積為S1,S2則S1=S2=|K|

  反比例函數(shù)的圖象既是軸對稱圖形,又是中心對稱圖形,它有兩條對稱軸y=xy=-x(即第一三,二四象限角平分線),對稱中心是坐標原點。

  若設正比例函數(shù)y=mx與反比例函數(shù)y=n/x交于A、B兩點(m、n同號),那么AB兩點關于原點對稱。

  設在平面內(nèi)有反比例函數(shù)y=k/x和一次函數(shù)y=mx+n,要使它們有公共交點,則n^2+4k·m≥(不小于)0。

  反比例函數(shù)y=k/x的漸近線:x軸與y軸。

  反比例函數(shù)關于正比例函數(shù)y=x,y=-x軸對稱,并且關于原點中心對稱.

  反比例上一點m向x、y分別做垂線,交于q、w,則矩形mwqo(o為原點)的面積為|k|

  值相等的反比例函數(shù)重合,k值不相等的反比例函數(shù)永不相交。

  |k|越大,反比例函數(shù)的圖象離坐標軸的距離越遠。

  反比例函數(shù)圖象是中心對稱圖形,對稱中心是原點

函數(shù)總結(jié)知識點初中8

  一次函數(shù):一次函數(shù)圖像與性質(zhì)是中考必考的內(nèi)容之一。中考試題中分值約為10分左右題型多樣,形式靈活,綜合應用性強。甚至有存在探究題目出現(xiàn)。

  主要考察內(nèi)容:

  ①會畫一次函數(shù)的圖像,并掌握其性質(zhì)。

 、跁鶕(jù)已知條件,利用待定系數(shù)法確定一次函數(shù)的解析式。

 、勰苡靡淮魏瘮(shù)解決實際問題。

 、芸疾煲籭c函數(shù)與二元一次方程組,一元一次不等式的關系。

  突破方法:

 、僬_理解掌握一次函數(shù)的概念,圖像和性質(zhì)。

  ②運用數(shù)學結(jié)合的思想解與一次函數(shù)圖像有關的問題。

  ③掌握用待定系數(shù)法球一次函數(shù)解析式。

  ④做一些綜合題的訓練,提高分析問題的能力。

  函數(shù)性質(zhì):

  1.y的變化值與對應的x的變化值成正比例,比值為k.即:y=kx+b(k,b為常數(shù),k≠0),∵當x增加m,k(x+m)+b=y+km,km/m=k。

  2.當x=0時,b為函數(shù)在y軸上的點,坐標為(0,b)。

  3當b=0時(即y=kx),一次函數(shù)圖像變?yōu)檎壤瘮?shù),正比例函數(shù)是特殊的一次函數(shù)。

  4.在兩個一次函數(shù)表達式中:

  當兩一次函數(shù)表達式中的k相同,b也相同時,兩一次函數(shù)圖像重合;當兩一次函數(shù)表達式中的k相同,b不相同時,兩一次函數(shù)圖像平行;當兩一次函數(shù)表達式中的k不相同,b不相同時,兩一次函數(shù)圖像相交;當兩一次函數(shù)表達式中的k不相同,b相同時,兩一次函數(shù)圖像交于y軸上的同一點(0,b)。若兩個變量x,y間的關系式可以表示成Y=KX+b(k,b為常數(shù),k不等于0)則稱y是x的一次函數(shù)圖像性質(zhì)

  1、作法與圖形:通過如下3個步驟:

 。1)列表.

 。2)描點;[一般取兩個點,根據(jù)“兩點確定一條直線”的道理,也可叫“兩點法”。一般的y=kx+b(k≠0)的圖象過(0,b)和(-b/k,0)兩點畫直線即可。

  正比例函數(shù)y=kx(k≠0)的圖象是過坐標原點的一條直線,一般。0,0)和(1,k)兩點。(3)連線,可以作出一次函數(shù)的.圖象一條直線。因此,作一次函數(shù)的圖象只需知道2點,并連成直線即可。(通常找函數(shù)圖象與x軸和y軸的交點分別是-k分之b與0,0與b).

  2、性質(zhì):

  (1)在一次函數(shù)上的任意一點P(x,y),都滿足等式:y=kx+b(k≠0)。

  (2)一次函數(shù)與y軸交點的坐標總是(0,b),與x軸總是交于(-b/k,0)正比例函數(shù)的圖像都是過原點。

  3、函數(shù)不是數(shù),它是指某一變化過程中兩個變量之間的關系。

  4、k,b與函數(shù)圖像所在象限:

  y=kx時(即b等于0,y與x成正比例):

  當k>0時,直線必通過第一、三象限,y隨x的增大而增大;當k0,b>0,這時此函數(shù)的圖象經(jīng)過第一、二、三象限;當k>0,b

函數(shù)總結(jié)知識點初中9

  一、基本概念

  1.方程、方程的解(根)、方程組的解、解方程(組)

  2.分類:

  二、解方程的依據(jù)—等式性質(zhì)

  1.a=b←→a+c=b+c

  2.a=b←→ac=bc (c≠0)

  三、解法

  1.一元一次方程的解法:去分母→去括號→移項→合并同類項→

  系數(shù)化成1→解。

  2.元一次方程組的解法:⑴基本思想:“消元”⑵方法:①代入法

 、诩訙p法

  四、一元二次方程

  1.定義及一般形式:

  2.解法:⑴直接開平方法(注意特征)

 、婆浞椒(注意步驟—推倒求根公式)

 、枪椒ǎ

 、纫蚴椒纸夥(特征:左邊=0)

  3.根的判別式:

  4.根與系數(shù)頂?shù)年P系:

  逆定理:若,則以為根的一元二次方程是:。

  5.常用等式:

  五、可化為一元二次方程的方程

  1.分式方程

 、哦x

 、苹舅枷耄

  ⑶基本解法:①去分母法②換元法(如,)

 、闰灨胺椒

  2.無理方程

  ⑴定義

 、苹舅枷耄

 、腔窘夥ǎ孩俪朔椒(注意技巧!!)②換元法(例,)⑷驗根及方法

  3.簡單的二元二次方程組

  由一個二元一次方程和一個二元二次方程組成的`二元二次方程組都可用代入法解。

  六、列方程(組)解應用題

  一概述

  列方程(組)解應用題是中學數(shù)學聯(lián)系實際的一個重要方面。其具體步驟是:

  ⑴審題。理解題意。弄清問題中已知量是什么,未知量是什么,問題給出和涉及的相等關系是什么。

 、圃O元(未知數(shù))。①直接未知數(shù)②間接未知數(shù)(往往二者兼用)。一般來說,未知數(shù)越多,方程越易列,但越難解。

 、怯煤粗獢(shù)的代數(shù)式表示相關的量。

 、葘ふ蚁嗟汝P系(有的由題目給出,有的由該問題所涉及的等量關系給出),列方程。一般地,未知數(shù)個數(shù)與方程個數(shù)是相同的。

  ⑸解方程及檢驗。

 、蚀鸢浮

  綜上所述,列方程(組)解應用題實質(zhì)是先把實際問題轉(zhuǎn)化為數(shù)學問題(設元、列方程),在由數(shù)學問題的解決而導致實際問題的解決(列方程、寫出答案)。在這個過程中,列方程起著承前啟后的作用。因此,列方程是解應用題的關鍵。

  二常用的相等關系

  1.行程問題(勻速運動)

  基本關系:s=vt

  ⑴相遇問題(同時出發(fā)):

  + = ;

 、谱芳皢栴}(同時出發(fā)):

  若甲出發(fā)t小時后,乙才出發(fā),而后在B處追上甲,則

 、撬泻叫校;

  2.配料問題:溶質(zhì)=溶液_濃度

  溶液=溶質(zhì)+溶劑

  3.增長率問題:

  4.工程問題:基本關系:工作量=工作效率_工作時間(常把工作量看著單位“1”)。

  5.幾何問題:常用勾股定理,幾何體的面積、體積公式,相似形及有關比例性質(zhì)等。

函數(shù)總結(jié)知識點初中10

  二次根式

  學生已經(jīng)學過整式與分式,知道用式子可以表示實際問題中的數(shù)量關系。解決與數(shù)量關系有關的問題還會遇到二次根式。“二次根式”一章就來認識這種式子,探索它的性質(zhì),掌握它的運算。

  在這一章,首先讓學生了解二次根式的概念,并掌握以下重要結(jié)論:

  注:關于二次根式的運算,由于二次根式的乘除相對于二次根式的加減來說更易于掌握,教科書先安排二次根式的乘除,再安排二次根式的加減!岸胃降某顺币还(jié)的內(nèi)容有兩條發(fā)展的線索。一條是用具體計算的例子體會二次根式乘除法則的合理性,并運用二次根式的乘除法則進行運算;一條是由二次根式的乘除法則得到

  并運用它們進行二次根式的化簡。

  “二次根式的加減”一節(jié)先安排二次根式加減的內(nèi)容,再安排二次根式加減乘除混合運算的內(nèi)容。在本節(jié)中,注意類比整式運算的有關內(nèi)容。例如,讓學生比較二次根式的加減與整式的加減,又如,通過例題說明在二次根式的運算中,多項式乘法法則和乘法公式仍然適用。這些處理有助于學生掌握本節(jié)內(nèi)容。

  一元二次方程

  學生已經(jīng)掌握了用一元一次方程解決實際問題的方法。在解決某些實際問題時還會遇到一種新方程——一元二次方程!耙辉畏匠獭币徽戮蛠碚J識這種方程,討論這種方程的解法,并運用這種方程解決一些實際問題。

  本章首先通過雕像設計、制作方盒、排球比賽等問題引出一元二次方程的概念,給出一元二次方程的一般形式。然后讓學生通過數(shù)值代入的方法找出某些簡單的一元二次方程的解,對一元二次方程的解加以體會,并給出一元二次方程的根的概念,“降次——解一元二次方程”一節(jié)介紹配方法、公式法、因式分解法三種解一元二次方程的方法。下面分別加以說明。

  (1)在介紹配方法時,首先通過實際問題引出形如的方程。這樣的方程可以化為更為簡單的形如的方程,由平方根的概念,可以得到這個方程的解。進而舉例說明如何解形如的方程。然后舉例說明一元二次方程可以化為形如的方程,引出配方法。最后安排運用配方法解一元二次方程的例題。在例題中,涉及二次項系數(shù)不是1的一元二次方程,也涉及沒有實數(shù)根的一元二次方程。對于沒有實數(shù)根的一元二次方程,學了“公式法”以后,學生對這個內(nèi)容會有進一步的理解。

  (2)在介紹公式法時,首先借助配方法討論方程的解法,得到一元二次方程的求根公式。然后安排運用公式法解一元二次方程的例題。在例題中,涉及有兩個相等實數(shù)根的一元二次方程,也涉及沒有實數(shù)根的一元二次方程。由此引出一元二次方程的解的三種情況。

  (3)在介紹因式分解法時,首先通過實際問題引出易于用因式分解法的一元二次方程,引出因式分解法。然后安排運用因式分解法解一元二次方程的例題。最后對配方法、公式法、因式分解法三種解一元二次方程的方法進行小結(jié)。

  “實際問題與一元二次方程”一節(jié)安排了四個探究欄目,分別探究傳播、成本下降率、面積、勻變速運動等問題,使學生進一步體會方程是刻畫現(xiàn)實世界的一個有效的數(shù)學模型。

  旋轉(zhuǎn)

  學生已經(jīng)認識了平移、軸對稱,探索了它們的性質(zhì),并運用它們進行圖案設計。本書中圖形變換又增添了一名新成員――旋轉(zhuǎn)!靶D(zhuǎn)”一章就來認識這種變換,探索它的性質(zhì)。在此基礎上,認識中心對稱和中心對稱圖形。

  “旋轉(zhuǎn)”一節(jié)首先通過實例介紹旋轉(zhuǎn)的概念。然后讓學生探究旋轉(zhuǎn)的性質(zhì)。在此基礎上,通過例題說明作一個圖形旋轉(zhuǎn)后的圖形的方法。最后舉例說明用旋轉(zhuǎn)可以進行圖案設計。

  “中心對稱”一節(jié)首先通過實例介紹中心對稱的概念。然后讓學生探究中心對稱的性質(zhì)。在此基礎上,通過例題說明作與一個圖形成中心對稱的圖形的方法。這些內(nèi)容之后,通過線段、平行四邊形引出中心對稱圖形的`概念。最后介紹關于原點對稱的點的坐標的關系,以及利用這一關系作與一個圖形成中心對稱的圖形的方法。

  “課題學習圖案設計”一節(jié)讓學生探索圖形之間的變換關系(平移、軸對稱、旋轉(zhuǎn)及其組合),靈活運用平移、軸對稱、旋轉(zhuǎn)的組合進行圖案設計。關注我們,搜微信公眾號:chzhshuxue

  圓

  圓是一種常見的圖形。在“圓”這一章,學生將進一步認識圓,探索它的性質(zhì),并用這些知識解決一些實際問題。通過這一章的學習,學生的解決圖形問題的能力將會進一步提高。

  “圓”一節(jié)首先介紹圓及其有關概念。然后讓學生探究與垂直于弦的直徑有關的結(jié)論,并運用這些結(jié)論解決問題。接下來,讓學生探究弧、弦、圓心角的關系,并運用上述關系解決問題。最后讓學生探究圓周角與圓心角的關系,并運用上述關系解決問題。

  “與圓有關的位置關系”一節(jié)首先介紹點和圓的三種位置關系、三角形的外心的概念,并通過證明“在同一直線上的三點不能作圓”引出了反證法。然后介紹直線和圓的三種位置關系、切線的概念以及與切線有關的結(jié)論。最后介紹圓和圓的位置關系。

  “正多邊形和圓”一節(jié)揭示了正多邊形和圓的關系,介紹了等分圓周得到正多邊形的方法。

  “弧長和扇形面積”一節(jié)首先介紹弧長公式。然后介紹扇形及其面積公式。最后介紹圓錐的側(cè)面積公式。

  概率初步

  將一枚硬幣拋擲一次,可能出現(xiàn)正面也可能出現(xiàn)反面,出現(xiàn)正面的可能性大還是出現(xiàn)反面的可能性大呢?學了“概率”一章,學生就能更好地認識這個問題了。掌握了概率的初步知識,學生還會解決更多的實際問題。

  “概率”一節(jié)首先通過實例介紹隨機事件的概念,然后通過擲幣問題引出概率的概念。

  “用列舉法求概率”一節(jié)首先通過具體試驗引出用列舉法求概率的方法。然后安排運用這種方法求概率的例題。在例題中,涉及列表及畫樹形圖。

  “利用頻率估計概率”一節(jié)通過幼樹成活率和柑橘損壞率等問題介紹了用頻率估計概率的方法。

  “課題學習鍵盤上字母的排列規(guī)律”一節(jié)讓學生通過這一課題的研究體會概率的廣泛應用。

函數(shù)總結(jié)知識點初中11

  當h>0時,y=a(_-h)^2的圖象可由拋物線y=a_^2向右平行移動h個單位得到,當h<0時,則向左平行移動|h|個單位得到.

  當h>0,k>0時,將拋物線y=a_^2向右平行移動h個單位,再向上移動k個單位,就可以得到y(tǒng)=a(_-h)^2+k的圖象;

  當h>0,k<0時,將拋物線y=a_^2向右平行移動h個單位,再向下移動|k|個單位可得到y(tǒng)=a(_-h)^2+k的圖象;

  當h<0,k>0時,將拋物線向左平行移動|h|個單位,再向上移動k個單位可得到y(tǒng)=a(_-h)^2+k的圖象;

  當h<0,k<0時,將拋物線向左平行移動|h|個單位,再向下移動|k|個單位可得到y(tǒng)=a(_-h)^2+k的圖象;

  因此,研究拋物線y=a_^2+b_+c(a≠0)的圖象,通過配方,將一般式化為y=a(_-h)^2+k的形式,可確定其頂點坐標、對稱軸,拋物線的大體位置就很清楚了.這給畫圖象提供了方便.

  2.拋物線y=a_^2+b_+c(a≠0)的圖象:當a>0時,開口向上,當a<0時開口向下,對稱軸是直線_=-b/2a,頂點坐標是(-b/2a,[4ac-b^2]/4a).

  3.拋物線y=a_^2+b_+c(a≠0),若a>0,當_≤-b/2a時,y隨_的增大而減小;當_≥-b/2a時,y隨_的增大而增大.若a<0,當_≤-b/2a時,y隨_的.增大而增大;當_≥-b/2a時,y隨_的增大而減小.

  4.拋物線y=a_^2+b_+c的圖象與坐標軸的交點:

  (1)圖象與y軸一定相交,交點坐標為(0,c);

  (2)當△=b^2-4ac>0,圖象與_軸交于兩點A(_?,0)和B(_?,0),其中的_1,_2是一元二次方程a_^2+b_+c=0

  (a≠0)的兩根.這兩點間的距離AB=|_?-_?|

  當△=0.圖象與_軸只有一個交點;

  當△<0.圖象與_軸沒有交點.當a>0時,圖象落在_軸的上方,_為任何實數(shù)時,都有y>0;當a<0時,圖象落在_軸的下方,_為任何實數(shù)時,都有y<0.

  5.拋物線y=a_^2+b_+c的最值:如果a>0(a<0),則當_=-b/2a時,y最小(大)值=(4ac-b^2)/4a.

  頂點的橫坐標,是取得最值時的自變量值,頂點的縱坐標,是最值的取值.

  6.用待定系數(shù)法求二次函數(shù)的解析式

  (1)當題給條件為已知圖象經(jīng)過三個已知點或已知_、y的三對對應值時,可設解析式為一般形式:

  y=a_^2+b_+c(a≠0).

  (2)當題給條件為已知圖象的頂點坐標或?qū)ΨQ軸時,可設解析式為頂點式:y=a(_-h)^2+k(a≠0).

  (3)當題給條件為已知圖象與_軸的兩個交點坐標時,可設解析式為兩根式:y=a(_-_?)(_-_?)(a≠0).

  7.二次函數(shù)知識很容易與其它知識綜合應用,而形成較為復雜的綜合題目。因此,以二次函數(shù)知識為主的綜合性題目是中考的熱點考題,往往以大題形式出現(xiàn).

函數(shù)總結(jié)知識點初中12

  課題

  3.5正比例函數(shù)、反比例函數(shù)、一次函數(shù)和二次函數(shù)

  教學目標

  1、掌握正(反)比例函數(shù)、一次函數(shù)和二次函數(shù)的概念及其圖形和性質(zhì)2、會用待定系數(shù)法確定函數(shù)的解析式

  教學重點

  掌握正(反)比例函數(shù)、一次函數(shù)和二次函數(shù)的概念及其圖形和性質(zhì)

  教學難點

  掌握正(反)比例函數(shù)、一次函數(shù)和二次函數(shù)的概念及其圖形和性質(zhì)

  教學方法

  講練結(jié)合法

  教學過程

 。↖)知識要點(見下表:)

  第三章第29頁函數(shù)名稱解析式圖像正比例函數(shù)ykx(k0)0x反比例函數(shù)一次函數(shù)ykxb(k0)0x二次函數(shù)yax2bxc(a0)y0xy0xky(k0)xyxy0xyy0xy0xyk0k0k0k0k0k0a0a0圖像過點(0,0)及(1,k)的直線雙曲線,x軸、y軸是它的漸近線與直線ykx平行且過點(0,b)的直線拋物線定義域RxxR且xoyyR且yoRR4acb2a0時,y,4aR值域R4acb2a0時,y,4aba0時,在-,上為增2a函數(shù),在,-單調(diào)性k0時,在,0,k0時為增函數(shù)0,上為減函數(shù)k0時,為增函數(shù)b上為減函數(shù)2ak0時為減函數(shù)k0時,在,0,k0時,為減函數(shù)0,上為增函數(shù)ba0時,在-,上為減2a函數(shù),在,-b上為增函數(shù)2a奇偶性奇函數(shù)奇函數(shù)b=0時奇函數(shù)b=0時偶函數(shù)a0且x-ymin最值無無無b時,2a24acb4ab時,2a24acb4aa0且x-ymax

  第三章第30頁b24acb2注:二次函數(shù)yaxbxca(x(a0))a(xm)(xn)2a4abb4acb2對稱軸x,頂點(,)

  2a2a4a2拋物線與x軸交點坐標(m,0),(n,0)(II)例題講解

  例1、求滿足下列條件的二次函數(shù)的解析式:(1)拋物線過點A(1,1),B(2,2),C(4,2)(2)拋物線的`頂點為P(1,5)且過點Q(3,3)

 。3)拋物線對稱軸是x2,它在x軸上截出的線段AB長為2且拋物線過點(1,7)。2,

  解:(1)設yax2bxc(a0),將A、B、C三點坐標分別代入,可得方程組為

  abc1a1解得b4yx24x24a2bc216a4bc2c2(2)設二次函數(shù)為ya(x1)25,將Q點坐標代入,即a(31)253,得

  a2,故y2(x1)252x24x3

 。3)∵拋物線對稱軸為x2;

  ∴拋物線與x軸的兩個交點A、B應關于x2對稱;∴由題設條件可得兩個交點坐標分別為A(2∴可設函數(shù)解析式為:ya(x2代入方程可得a1

  ∴所求二次函數(shù)為yx24x2,

  2,0)、B(222,0)

  2)(x22)a(x2)22a,將(1,7)

  5),例2:二次函數(shù)的圖像過點(0,8),(1,(4,0)

 。1)求函數(shù)圖像的頂點坐標、對稱軸、最值及單調(diào)區(qū)間(2)當x取何值時,①y≥0,②y(2)由y0可得x22x80,解得x4或x2由y0可得x22x80,解得2x4

  例3:求函數(shù)f(x)x2x1,x[1,1]的最值及相應的x值

  113x1(x)2,知函數(shù)的圖像開口向上,對稱軸為x

  224111]上是增函數(shù)!嘁李}設條件可得f(x)在[1,]上是減函數(shù),在[,22131]時,函數(shù)取得最小值,且ymin∴當x[1,24131又∵11

函數(shù)總結(jié)知識點初中13

  1、反比例函數(shù)的表達式

  X是自變量,Y是X的函數(shù)

  y=k/x=k·1/x

  xy=k

  y=k·x^(-1)(即:y等于x的負一次方,此處X必須為一次方)

  y=kx(k為常數(shù)且k≠0,x≠0)若y=k/nx此時比例系數(shù)為:k/n

  2、函數(shù)式中自變量取值的范圍

 、賙≠0;②在一般的情況下,自變量x的.取值范圍可以是不等于0的任意實數(shù);③函數(shù)y的取值范圍也是任意非零實數(shù)。

  解析式y(tǒng)=k/x其中X是自變量,Y是X的函數(shù),其定義域是不等于0的一切實數(shù)

  y=k/x=k·1/x

  xy=k

  y=k·x^(-1)

  y=kx(k為常數(shù)(k≠0),x不等于0)

  3、反比例函數(shù)圖象

  反比例函數(shù)的圖像屬于以原點為對稱中心的中心對稱的雙曲線(hyperbola),反比例函數(shù)圖像中每一象限的每一支曲線會無限接近X軸Y軸但不會與坐標軸相交(K≠0)。

  4、反比例函數(shù)中k的幾何意義是什么?有哪些應用?

  過反比例函數(shù)y=k/x(k≠0),圖像上一點P(x,y),作兩坐標軸的垂線,兩垂足、原點、P點組成一個矩形,矩形的面積S=x的絕對值_y的絕對值=(x_y)的絕對值=|k|

  研究函數(shù)問題要透視函數(shù)的本質(zhì)特征。反比例函數(shù)中,比例系數(shù)k有一個很重要的幾何意義,那就是:過反比例函數(shù)圖象上任一點P作x軸、y軸的垂線PM、PN,垂足為M、N則矩形PMON的面積S=PM·PN=|y|·|x|=|xy|=|k|。

  所以,對雙曲線上任意一點作x軸、y軸的垂線,它們與x軸、y軸所圍成的矩形面積為常數(shù)。從而有k的絕對值。在解有關反比例函數(shù)的問題時,若能靈活運用反比例函數(shù)中k的幾何意義,會給解題帶來很多方便。

函數(shù)總結(jié)知識點初中14

  1.常量和變量

  在某變化過程中可以取不同數(shù)值的量,叫做變量.在某變化過程中保持同一數(shù)值的量或數(shù),叫常量或常數(shù).

  2.函數(shù)

  設在一個變化過程中有兩個變量x與y,如果對于x在某一范圍的每一個值,y都有唯一的值與它對應,那么就說x是自變量,y是x的函數(shù).

  3.自變量的取值范圍

  (1)整式:自變量取一切實數(shù).(2)分式:分母不為零.

  (3)偶次方根:被開方數(shù)為非負數(shù).

  (4)零指數(shù)與負整數(shù)指數(shù)冪:底數(shù)不為零.

  4.函數(shù)值

  對于自變量在取值范圍內(nèi)的一個確定的值,如當x=a時,函數(shù)有唯一確定的對應值,這個對應值,叫做x=a時的函數(shù)值.

  5.函數(shù)的表示法

  (1)解析法;(2)列表法;(3)圖象法.

  6.函數(shù)的圖象

  把自變量x的一個值和函數(shù)y的對應值分別作為點的橫坐標和縱坐標,可以在平面直角坐標系內(nèi)描出一個點,所有這些點的集合,叫做這個函數(shù)的圖象.由函數(shù)解析式畫函數(shù)圖象的步驟:

  (1)寫出函數(shù)解析式及自變量的取值范圍;

  (2)列表:列表給出自變量與函數(shù)的一些對應值;

  (3)描點:以表中對應值為坐標,在坐標平面內(nèi)描出相應的點;

  (4)連線:用平滑曲線,按照自變量由小到大的順序,把所描各點連接起來.

  7.一次函數(shù)

  (1)一次函數(shù)

  如果y=kx+b(k、b是常數(shù),k≠0),那么y叫做x的一次函數(shù).

  特別地,當b=0時,一次函數(shù)y=kx+b成為y=kx(k是常數(shù),k≠0),這時,y叫做x的正比例函數(shù).

  (2)一次函數(shù)的圖象

  一次函數(shù)y=kx+b的圖象是一條經(jīng)過(0,b)點和點的直線.特別地,正比例函數(shù)圖象是一條經(jīng)過原點的直線.需要說明的是,在平面直角坐標系中,“直線”并不等價于“一次函數(shù)y=kx+b(k≠0)的圖象”,因為還有直線y=m(此時k=0)和直線x=n(此時k不存在),它們不是一次函數(shù)圖象.

  (3)一次函數(shù)的'性質(zhì)

  當k>0時,y隨x的增大而增大;當k<0時,y隨x的增大而減。本y=kx+b與y軸的交點坐標為(0,b),與x軸的交點坐標為.

  (4)用函數(shù)觀點看方程(組)與不等式

 、偃魏我辉淮畏匠潭伎梢赞D(zhuǎn)化為ax+b=0(a,b為常數(shù),a≠0)的形式,所以解一元一次方程可以轉(zhuǎn)化為:一次函數(shù)y=kx+b(k,b為常數(shù),k≠0),當y=0時,求相應的自變量的值,從圖象上看,相當于已知直線y=kx+b,確定它與x軸交點的橫坐標.

 、诙淮畏匠探M對應兩個一次函數(shù),于是也對應兩條直線,從“數(shù)”的角度看,解方程組相當于考慮自變量為何值時兩個函數(shù)值相等,以及這兩個函數(shù)值是何值;從“形”的角度看,解方程組相當于確定兩條直線的交點的坐標.

 、廴魏我辉淮尾坏仁蕉伎梢赞D(zhuǎn)化ax+b>0或ax+b<0(a、b為常數(shù),a≠0)的形式,解一元一次不等式可以看做:當一次函數(shù)值大于0或小于0時,求自變量相應的取值范圍.

  8.反比例函數(shù)(1)反比例函數(shù)

 。1)如果(k是常數(shù),k≠0),那么y叫做x的反比例函數(shù).

  (2)反比例函數(shù)的圖象反比例函數(shù)的圖象是雙曲線.

  (3)反比例函數(shù)的性質(zhì)

 、佼攌>0時,圖象的兩個分支分別在第一、三象限內(nèi),在各自的象限內(nèi),y隨x的增大而減。

  ②當k<0時,圖象的兩個分支分別在第二、四象限內(nèi),在各自的象限內(nèi),y隨x的增大而增大.

  ③反比例函數(shù)圖象關于直線y=±x對稱,關于原點對稱.

  (4)k的兩種求法

  ①若點(x0,y0)在雙曲線上,則k=x0y0.②k的幾何意義:

  若雙曲線上任一點A(x,y),AB⊥x軸于B,則S△AOB

  (5)正比例函數(shù)和反比例函數(shù)的交點問題

  若正比例函數(shù)y=k1x(k1≠0),反比例函數(shù),則當k1k2<0時,兩函數(shù)圖象無交點;

  當k1k2>0時,兩函數(shù)圖象有兩個交點,坐標分別為由此可知,正反比例函數(shù)的圖象若有交點,兩交點一定關于原點對稱.

  1.二次函數(shù)

  如果y=ax2+bx+c(a,b,c為常數(shù),a≠0),那么y叫做x的二次函數(shù).

  幾種特殊的二次函數(shù):y=ax2(a≠0);y=ax2+c(ac≠0);y=ax2+bx(ab≠0);y=a(x-h(huán))2(a≠0).

  2.二次函數(shù)的圖象

  二次函數(shù)y=ax2+bx+c的圖象是對稱軸平行于y軸的一條拋物線.由y=ax2(a≠0)的圖象,通過平移可得到y(tǒng)=a(x-h(huán))2+k(a≠0)的圖象.

  3.二次函數(shù)的性質(zhì)

  二次函數(shù)y=ax2+bx+c的性質(zhì)對應在它的圖象上,有如下性質(zhì):

  (1)拋物線y=ax2+bx+c的頂點是,對稱軸是直線,頂點必在對稱軸上;

  (2)若a>0,拋物線y=ax2+bx+c的開口向上,因此,對于拋物線上的任意一點(x,y),當x<時,y隨x的增大而減;當x>時,y隨x的增大而增大;當x=,y有最小值;若a<0,拋物線y=ax2+bx+c的開口向下,因此,對于拋物線上的任意一點(x,y),當x<,y隨x的增大而增大;當時,y隨x的增大而減;當x=時,y有最大值;

  (3)拋物線y=ax2+bx+c與y軸的交點為(0,c);

  (4)在二次函數(shù)y=ax2+bx+c中,令y=0可得到拋物線y=ax2+bx+c與x軸交點的情況:

  <0時,拋物線y=ax2+bx+c與x軸沒有公共點.=0時,拋物線y=ax2+bx+c與x軸只有一個公共點,即為此拋物線的頂點;當=b2-4ac>0,拋物線y=ax2+bx+c與x軸有兩個不同的公共點,它們的坐標分別是和,這兩點的距離為;當當4.拋物線的平移

  拋物線y=a(x-h(huán))2+k與y=ax2形狀相同,位置不同.把拋物線y=ax2向上(下)、向左(右)平移,可以得到拋物線y=a(x-h(huán))2+k.平移的方向、距離要根據(jù)h、k的值來決定.

函數(shù)總結(jié)知識點初中15

  I.定義與定義表達式

  一般地,自變量_和因變量y之間存在如下關系:y=a_^2+b_+c

  (a,b,c為常數(shù),a≠0,且a決定函數(shù)的開口方向,a>0時,開口方向向上,a<0時,開口方向向下,IaI還可以決定開口大小,IaI越大開口就越小,IaI越小開口就越大.)則稱y為_的二次函數(shù)。

  二次函數(shù)表達式的右邊通常為二次三項式。

  II.二次函數(shù)的三種表達式

  一般式:y=a_^2+b_+c(a,b,c為常數(shù),a≠0)

  頂點式:y=a(_-h)^2+k[拋物線的頂點P(h,k)]

  交點式:y=a(_-_?)(_-_?)[僅限于與_軸有交點A(_?,0)和B(_?,0)的拋物線]

  注:在3種形式的互相轉(zhuǎn)化中,有如下關系:

  h=-b/2a k=(4ac-b^2)/4a _?,_?=(-b±√b^2-4ac)/2a

  III.二次函數(shù)的圖像

  在平面直角坐標系中作出二次函數(shù)y=_^2的'圖像,可以看出,二次函數(shù)的圖像是一條拋物線。

  IV.拋物線的性質(zhì)

  1.拋物線是軸對稱圖形。對稱軸為直線_=-b/2a。

  對稱軸與拋物線的交點為拋物線的頂點P。特別地,當b=0時,拋物線的對稱軸是y軸(即直線_=0)

  2.拋物線有一個頂點P,坐標為:P(-b/2a,(4ac-b^2)/4a)當-b/2a=0時,P在y軸上;當Δ=b^2-4ac=0時,P在_軸上。

  3.二次項系數(shù)a決定拋物線的開口方向和大小。

  當a>0時,拋物線向上開口;當a<0時,拋物線向下開口。|a|越大,則拋物線的開口越小。

  4.一次項系數(shù)b和二次項系數(shù)a共同決定對稱軸的位置。

  當a與b同號時(即ab>0),對稱軸在y軸左;

  當a與b異號時(即ab<0),對稱軸在y軸右。

  5.常數(shù)項c決定拋物線與y軸交點。

  拋物線與y軸交于(0,c)

  6.拋物線與_軸交點個數(shù)

  Δ=b^2-4ac>0時,拋物線與_軸有2個交點。

  Δ=b^2-4ac=0時,拋物線與_軸有1個交點。

  Δ=b^2-4ac<0時,拋物線與_軸沒有交點。

  _的取值是虛數(shù)(_=-b±√b^2-4ac的值的相反數(shù),乘上虛數(shù)i,整個式子除以2a)

  V.二次函數(shù)與一元二次方程

  特別地,二次函數(shù)(以下稱函數(shù))y=a_^2+b_+c,當y=0時,二次函數(shù)為關于_的一元二次方程(以下稱方程),即a_^2+b_+c=0

  此時,函數(shù)圖像與_軸有無交點即方程有無實數(shù)根。函數(shù)與_軸交點的橫坐標即為方程的根。

【函數(shù)總結(jié)知識點初中】相關文章:

初中函數(shù)知識點總結(jié)01-12

函數(shù)知識點總結(jié)06-09

高一函數(shù)知識點總結(jié)12-01

初二函數(shù)知識點總結(jié)05-30

初中數(shù)學函數(shù)總結(jié)04-09

函數(shù)知識點總結(jié)[實用15篇]06-09

高一數(shù)學函數(shù)知識點總結(jié)4篇02-05

一次函數(shù)基本知識點總結(jié)05-03

初中數(shù)學函數(shù)教案02-23

初二數(shù)學一次函數(shù)知識點總結(jié)04-15