成大在线免费视频,亚洲精品免费一级视频,日韩亚洲欧美大陆,又黄又爽免费国产视频

<style id="t465f"></style>
<legend id="t465f"><u id="t465f"><thead id="t465f"></thead></u></legend>

<acronym id="t465f"></acronym>

<sub id="t465f"><ol id="t465f"><nobr id="t465f"></nobr></ol></sub>
<sub id="t465f"></sub>

三角形的內(nèi)角和教案

時間:2024-01-11 17:49:17 教案 投訴 投稿

三角形的內(nèi)角和教案

  作為一位兢兢業(yè)業(yè)的人民教師,總不可避免地需要編寫教案,教案是教學藍圖,可以有效提高教學效率。我們應(yīng)該怎么寫教案呢?下面是小編精心整理的三角形的內(nèi)角和教案,歡迎閱讀與收藏。

三角形的內(nèi)角和教案

三角形的內(nèi)角和教案1

  教學目標:

  1、通過測量、撕拼、折疊等探索活動,使學生發(fā)現(xiàn)三角形內(nèi)角和的度數(shù)是180?

  2、已知三角形兩個角的度數(shù),會求第三個角的度數(shù)。

  3、培養(yǎng)學生動手實踐,動腦思考的習慣。

  教學重點:

  了解三角形三個內(nèi)角的度數(shù)。

  教學難點:

  理解三角形三個內(nèi)角大小的關(guān)系。

  教具學具準備:

  課件三角形若干量角器剪刀。

  教材與學生

  教材創(chuàng)設(shè)了一個有趣的問題情境,通過對大小兩個三角形內(nèi)角和的大小比較來激發(fā)學生探索的興趣。教材為了得到三角形內(nèi)角和是180的結(jié)論安排了兩個活動,通過學生測量,折疊,撕拼來找到答案。

  學生在已有的會用量角器來度量一個角的度數(shù)的基礎(chǔ)上,會首先想到這種方法。但測量的誤差會導(dǎo)致測量不同,因此,學生會想到采取其他更好的辦法,通過親手實踐,得出結(jié)論。

  教學過程:

  一、呈現(xiàn)真實狀態(tài)。

  師:今天我們來研究三角形內(nèi)角和度數(shù)。這里有兩個三角形,一個是大三角形,一個是小三角形(圖略),到底哪一個三角形的內(nèi)角和比較大呢?

  學生各抒己見。

  二、提出問題:

  師;剛才我們觀察三角形哪個內(nèi)角和大,同學們有兩種不同的猜想,可以肯定,必定有錯下面我們來測量驗證。

 。1)以小組為單位請同學們拿出量角器,量一量,算一算圖中大小兩個三角形內(nèi)角和度數(shù),并做好記錄,記錄每個內(nèi)角的度數(shù)。

 。2)組內(nèi)交流。

 。3)全班交流。由小組匯報測出結(jié)果(三角形內(nèi)角和)

 。4)師小結(jié):我們通過測量發(fā)現(xiàn),每個三角形的內(nèi)角和測出結(jié)果接近180。

  意圖:通過這一操作活動,激發(fā)學生的興趣,讓學生積極參與培養(yǎng)學生的動手操作能力]

  三、自主探索、研究問題、歸納總結(jié):

  師引導(dǎo)提問:三角形的內(nèi)角和會不會就是180呢?

 。ㄒ唬┙M內(nèi)探索:

 。1)以小組為單位探索更好的.辦法。

  (2)以小組為單位邊展示邊匯報探索的過程與發(fā)現(xiàn)的結(jié)果。

 。ㄓ械男〗M想不出來,可以安排小組和小組之間進行交流,目的是讓學生通過實踐發(fā)現(xiàn)結(jié)果,在探索中發(fā)現(xiàn)問題,在討論中解決問題,是學生學習到良好的學習方法)

  (3)把你沒有想到的方法動手做一次

 。ㄊ箤W生更直觀地理解三角形的內(nèi)角和是180的證明過程)

 。4)根據(jù)學生的反饋情況教師進行操作演示。

  (二)教師演示

  撕拼法:

  1、教師取出三角形教具,把三個角撕下來,拼在一起,2、師:這三個內(nèi)角放在一起你有什么發(fā)現(xiàn)?

  生:發(fā)現(xiàn)三個內(nèi)角拼成一個平角。

  師:平角是多少度呢?說明什么?

  生:180?說明三個內(nèi)角和剛好等于180。

  師:這種方法是不是適用各種三角形呢?

  3、學生每人動手實踐,看看是不是不同的三角形是否都有這個特點,也能拼出一個平角呢?

  進行實驗后,結(jié)果發(fā)現(xiàn)同樣存在這一規(guī)律,三角形三個內(nèi)角和是180。

  折疊法:師:剛才我們通過測量發(fā)現(xiàn)三角形內(nèi)角和接近180,那是因為測量的不那么精確,所以說“接近”,又通過撕拼方法發(fā)現(xiàn)三角形的三個內(nèi)角剛好拼成一個平角,進一步說明三個內(nèi)角和是180,現(xiàn)在再來演示另一種實驗,再次證明我們的發(fā)現(xiàn)。

  你們也來試一試好嗎?

  在學生完成這一實踐后肯定這一發(fā)現(xiàn)

  三角形三個內(nèi)角和等于180?

  意圖:充分發(fā)揮了學生的主觀能動性,讓學生大膽去思考發(fā)言,把課堂交給學生,最后老師在演示達成共識,這樣學生學到知識印象頗深,也理解最為透徹,提高課堂教學的效率

  四、鞏固練習,知識升華。

  1、完成課本第28頁的“試一試”第三題。

  2、想一想:鈍角三角形最多有幾個鈍角?為什么?

  銳角三角形中的兩個內(nèi)角和能小于90嗎?

  3、有一個四邊形,你能不用量角器而算出它的四個內(nèi)角和嗎?

  意圖:這樣分層安排練習,注重培養(yǎng)學生的分析能力,同時也培養(yǎng)學生的思維能力和口頭表達能力。

  五、總結(jié)延伸

  這節(jié)課同學們通過測量,發(fā)現(xiàn)了問題,然后運用撕拼,折疊兩種方法驗證自己的猜想,得出結(jié)論,這種學習方式很好,我們在今后的學習中還要用到,我們今天探究了三角形的一個秘密,其實它的秘密還很多,有興趣的話,我們以后繼續(xù)研究。課后反思:

  當我設(shè)計這節(jié)課時,首先思考,學生面對這個新問題時會想到用那些方法來思考呢?很顯然,學生根據(jù)三角形大的內(nèi)角就大,是學生在探究時的真實想法,是一種合情推理,在探究過程中,怎樣對待學生的這個錯誤呢?我沒有簡單地予以否定,迫不及待的幫助,而是引導(dǎo)學生否定錯誤猜想,尋找錯誤產(chǎn)生的原因,在這個過程中,教師啟迪學生“轉(zhuǎn)化”的思想求得突破,然后引導(dǎo)學生進行操作驗證,從中得出結(jié)論,學生完整地經(jīng)歷探究的整個過程,不僅獲得知識,還獲得思想,充分發(fā)揮了學生的主觀能動性,使他們輕松愉快的學習,提高了課堂效率。

三角形的內(nèi)角和教案2

  【教學內(nèi)容】

  《人教版九年義務(wù)教育教科書數(shù)學》四年級下冊《三角形的內(nèi)角和》

  【教學目標】

  1.使學生知道三角形的內(nèi)角和是180,并能運用三角形的內(nèi)角和是180解決生活中常見的問題。

  2.讓學生經(jīng)歷量一量、折一折、拼一拼等動手操作的過程。通過觀察、判斷、交流和推理探索用多種方法證明三角形的內(nèi)角和是180。

  3.培養(yǎng)學生自主學習、互動交流、合作探究的能力和習慣,培養(yǎng)學習數(shù)學的興趣,感受學習數(shù)學的樂趣。

  【教學重點】

  使學生知道三角形的內(nèi)角和是180,并能運用它解決生活中常見的問題。

  【教學難點】

  通過多種方法驗證三角形的內(nèi)角和是180。

  【教學準備】

  課件。四組教學用三角板。鉛筆。大帆布兜子。固體膠。剪刀?曜尤舾伞

  【教學過程】

  一、激趣導(dǎo)入,提煉學習方法

  1.課程開始,教師耳朵上別著一根鉛筆,肩背大帆布兜子,里面裝著一個量角器和幾把缺了直角的三角板,手拿一張不規(guī)則的白紙,以一位老木匠的身份出現(xiàn)在學生面前。激發(fā)學生的好奇心。然后自述:“你們好,我是一個有三十多年工作經(jīng)驗的老木匠了。我收了三個徒弟,他們已經(jīng)從師學藝三年了,今天我想讓他們下山掙錢,可又不放心,想出幾道題考驗考驗他們,又不知我的題合不合適,大家想不想先當一會我的徒弟試試這幾道題呢?”

  2.繼續(xù)以老木匠的身份說:前幾天我造了一架柁,徒弟們能不能用我手中的工具驗證一下橫木和立柱是不是成直角的。

  3.選擇工具,總結(jié)方法。

  讓選擇不同工具的同學用自己的方法驗證。教師隨機板書:量一量、拼一拼、折一折。

  師:你們真是愛動腦筋的好徒弟,那么請聽好師傅的第二個問題。

  4.導(dǎo)入新課。

  圖中有很多三角形,不論什么樣的三角形都有三個角,這三個角就叫做三角形的內(nèi)角,徒弟們能不能用學過的方法或者你喜歡的方法求一求三角形三個內(nèi)角的和是多少?(板書課題:三角形的內(nèi)角和)

  二、動手操作,探索交流新知

  1.分組活動,探索新知

  根據(jù)學生的選擇把學生分成三組,分別采用量一量、折一折和拼一拼的方法探索新知。

  量一量組同學發(fā)給以下幾種學具:

  折一折組同學發(fā)給上面的三角形一組。

  拼一拼組同學發(fā)給上面的三角形一組、剪刀一把還有下面這樣的白紙一張。

  在學生探索的過程中教師要走近學生,與他們共同交流探討,在學生有困難的時候要適當給予引導(dǎo)。

  2.多方互動,交流新知

  師:請我的大徒弟(量一量組)的同學先來匯報你們的研究成果。

  (1)首先要求學生說一說你們小組是怎樣進行探究的'。

  (2)說出你們組的探究結(jié)果怎樣。(在此過程中教師不能急于糾正學生不正確的結(jié)論,因為這是知識的形成過程。)

  (3)請學生說說通過探究活動你們組得出的結(jié)論是什么。

  師:大徒弟就是大徒弟,匯報的真不錯。二徒弟(折一折組)你們有沒有更好的辦法呢?

  引導(dǎo)這一組從探究的過程和結(jié)論與同學、老師交流。

  師:別看小徒弟(拼一拼組)這么小,方法可能是最好的。快來把你們的方法給大家匯報匯報。

  同樣引導(dǎo)這一組從探究的過程和結(jié)論與同學、老師交流。

  3.思想碰撞,夯實新知

  師:三個徒弟你們能說說誰的方法最好嗎?

  學生都會說自己的方法最好,再讓其他同學發(fā)表自己的意見,此時生生之間,師生之間交流。(教師要引導(dǎo)學生說出量一量的方法可能由于量的不夠準確,所以結(jié)果可能比180大一些,或小一些。而其他兩種方法沒有改變角的大小,所以他們的是正確的。)

  師:不論你量的怎樣認真都會有不準確的地方,這就叫誤差。而其他兩組同學的方法更準確。三角形的內(nèi)角和就是180。(板書:三角形的內(nèi)角和是180)

  四、走進生活,提升運用能力

  1.出示課前那架柁標出它的頂角是120,求它的一個底角是多少度?

  2.給你三根木條,能做出一個有兩個直角的三角形嗎?

  五、總結(jié)

  師:徒弟們你們經(jīng)過三年的苦學,終于學有所成了。今天,能說說你們在我這里都學到了什么手藝嗎?

  六、拓展新知,課外延伸

  師:俗話說“活到老,學到老。”你們下山后還要繼續(xù)探索,所以我要把我畢生都沒有完成的任務(wù)交給你們?nèi)パ芯俊?/p>

  大屏幕出示:

  能用你今天學過的知識和方法探索一下四邊形的內(nèi)角和是多少度嗎?

三角形的內(nèi)角和教案3

  【教學目標】

  1、知識與技能:

 。1)理解和掌握三角形的內(nèi)角和是180°。

 。2)運用三角形的內(nèi)角和知識解決實際問題和拓展性問題。

  2、過程與方法:

 。1)通過測量、撕拼、折疊等方法,探索和發(fā)現(xiàn)三角形三個內(nèi)角的和等于180°。

  (2)知道三角形兩個角的度數(shù),能求出第三個角的度數(shù)。

 。3)發(fā)展學生動手操作、觀察比較和抽象概括的能力。

  3、情感態(tài)度與價值觀:

  讓學生體驗數(shù)學活動的探索樂趣,通過教學中的活動體會數(shù)學的轉(zhuǎn)化思想。

  【教學重、難點】

  教學重點:理解掌握三角形的內(nèi)角和是180°。

  教學難點:運用三角形的內(nèi)角和知識解決實際問題。

  【教具準備】

  教學課件、各種三角形

  【教學過程】

  一、創(chuàng)設(shè)情景,引出問題

  1、猜謎語:

  形狀似座山,穩(wěn)定性能堅。三竿首尾連,學問不簡單。

  (打一圖形名稱)

  2、猜三角形

  師:老師這有1個三角形,它的一部分被智慧星給遮住了,猜猜這是什么三角形?它里面會出現(xiàn)兩個直角嗎?為什么?

  3、引出課題。

  師:為什么不會出現(xiàn)兩個直角?今天我們就再次走進數(shù)學王國,探討三角形的內(nèi)角和的奧秘。(板書課題)

  二、探究新知

  1、三角形的'內(nèi)角和

  師:三角形內(nèi)角和指的是什么?

  2、猜一猜。

  師:這個三角形的內(nèi)角和是多少度?

  3、驗證。

  讓學生用自己喜歡的方式驗證三角形的內(nèi)角和是不是180°。

  4、學生匯報。

 。1)測量

  師:匯報的測量結(jié)果,有的是180°,有的不是180°,為什么會出現(xiàn)這種情況?有沒有別的方法驗證?

  (2)剪拼

  A、學生上臺演示。

  B、請大家三人小組合作,用剪拼的方法驗證其它三角形。

  C、師演示。

 。3)折拼

  師:有沒有別的驗證方法?我在電腦里收索到折的方法,請同學們看一看他是怎么折的(課件演示)。

 。4)結(jié)論:三角形的內(nèi)角和是180。

 。5)數(shù)學小知識。

  5、鞏固知識。

 。1)解決課前問題,為什么一個三角形不可能有兩個直角?一個三角形中可以有2個鈍角嗎?

 。2)把兩個小三角形拼在一起,問:大三角形的內(nèi)角和是多少度。

  教師:為什么不是360°?

  三、解決相關(guān)問題

  師:接下來,利用三角形的內(nèi)角和我們來解決一些相關(guān)的問題吧!

  1、看圖,求未知角的度數(shù)。

  2、判斷。

  3、如果一個都不知道,或只知道1個角,你能知道三角形各角的度數(shù)嗎?

  求出下面三角形各角的度數(shù)。

  (1)我三邊相等。

  (2)我是等腰三角形,我的頂角是96°。

 。3)我有一個銳角是40°。

  4、求四邊形、五邊形內(nèi)角和。

  四、總結(jié)。

  師:這節(jié)課你有什么收獲?

  五、板書設(shè)計:(略)

三角形的內(nèi)角和教案4

  【教材分析】:

  新課標把三角形的內(nèi)角和作為第二學段中三角形的一個重要組成部分。本課是安排在三角形的特性及分類之后進行的,它是學生以后學習多邊形的內(nèi)角和及解決其它實際問題的基礎(chǔ)。教材所呈現(xiàn)的內(nèi)容,不但重視體現(xiàn)知識的形成過程,而且注意留給學生充分進行自主探索和交流的空間,安排了量一量、算一算和剪一剪、拼一拼兩個實驗操作活動,意圖使學生在動手操作、合作交流中發(fā)現(xiàn)并形成結(jié)論。

  【教學目標】

  知識與技能

  1.理解和掌握三角形的內(nèi)角和是180度。

  2.運用三角形的內(nèi)角和的知識解決實際問題。

  過程與方法

  經(jīng)歷三角形的內(nèi)角和的探究過程,體驗“發(fā)現(xiàn)——驗證——應(yīng)用”的學習模式。

  情感態(tài)度與價值觀

  在學習活動中,滲透探究知識的方法,提高學生學習的能力,培養(yǎng)學生的創(chuàng)新精神和實踐能力。

  【教學重點】

  重點:理解和掌握三角形的內(nèi)角和是180度。

  突破方法:引導(dǎo)學生用測量或剪拼的方法探究三角形的內(nèi)角和。合理猜想,測量驗證。

  【教學難點】

  用三角形的內(nèi)角和解決實際問題。

  突破方法:推理分析計算。運用推理,正確計算。

  教法:質(zhì)疑

  【教學方法】

  引導(dǎo),演示講解。

  學法:實踐操作,小組合作。

  【教學準備】:

  多媒體課件,銳角,直角,鈍角三角形的硬紙片,剪刀。

  【教學時間】

  一課時

  【教學過程】

  一.創(chuàng)設(shè)情境,引入新課

  師:同學們,我們這倆天學習了三角形的分類,通過對角的分類,我們能夠分成幾類三角形?

  生:三類,分別為銳角三角形,直角三角形,鈍角三角形。

  師:嗯,真好,那么對邊的分類呢?

  生:倆類,分別為等腰三角形,等邊三角形。

  師:老師想讓同學們幫老師畫一個三角形,能做到嗎?

  生:能。

  師:請聽要求,畫一個有一個角是直角的三角形,開始。(學生動手操作)

  師:再來一個可以嗎?請聽要求,畫一個有倆個角是直角的三角形,開始。

  生:不能畫,因為當倆個角是90度的時候,倆個頂點在一條線上,不能組成封閉圖形。

  師:回答的真好,那么為什么會出現(xiàn)這種情況呢?是因為三角形中的角而引起的,那么同學們想不想知道其中的.秘密呢?

  生:想。

  師:好,那么我們今天就一起來學習“三角形的內(nèi)角和”(出示板書)

 。ㄔO(shè)計意圖:通過學生的動手操作,發(fā)現(xiàn)問題所在,這樣更能調(diào)動學生的學習興趣,為了更好的學習這節(jié)課做鋪墊.)

  二.探究新知

  師:昨天呢,老師讓同學們一人做一個自己喜歡的三角形,請同學們拿出來,看一看你們做的是什么樣子的三角形。

  生1:銳角三角形。

  生2:直角三角形。

  生3:鈍角三角形。

  師:嗯,我們在上個星期學習了三角形的各部分名稱,誰能幫我告訴下同學們,角在哪里呢?

  生:里面的三個角,可以用角1,角2,角3來表示。

  師:嗯,這三個角我們也可以說成是三角形的內(nèi)角,好了,今天我們既然學習三角形的內(nèi)角和,也就是求成這三個角的度數(shù)和,你們猜一猜三角形內(nèi)角和的度數(shù)是多少呢?

  生:三角形的內(nèi)角和是180度。

  師:那么我們能不能一起用一些好的辦法來驗證一下呢?

  生1:我們可以用量角器分別量出這三個內(nèi)角的度數(shù),然后再加在一起就可以求出三角形內(nèi)角的和了。

  師:還有其他的辦法嗎?

  生2:我們可以用剪子剪下三個角,然后把它們拼在一起,看看這三個角拼在一起之后能夠呈現(xiàn)出什么樣子的角。

  生3:我可以用折的方法,把三個角的度數(shù)折在一起。

  師:同學們說的真好,既然有這么多的方法,到底哪個方法好呢?我們一起來研究一下,我把全班分成倆個小組,一隊用量的方法,一隊用拼的方法,看看哪個小組做的又對又快,開始。

 。ㄔO(shè)計意圖:通過學生的動手操作,合作交流,真正的把課堂還給學生,讓學生成為學習的主體,教師適時引導(dǎo),突出學生的學習的能力與價值。)

  三.總結(jié)任意三角形的內(nèi)角和是180度并做適當練習。

  四.板書設(shè)計

  三角形的內(nèi)角和

  量一量銳角三角形:75度+48度+58度=181度

  直角三角形:90度+45度+45度=180度

  鈍角三角形:120度+38度+22度=180度

  拼一拼圖形呈現(xiàn)

  折一折圖形呈現(xiàn)

三角形的內(nèi)角和教案5

  一、教學目標:

  1、理解掌握三角形內(nèi)角和是180°,并運用這一性質(zhì)解決一些簡單的問題。

  2、通過直觀操作的方法,引導(dǎo)學生探索并發(fā)現(xiàn)三角形內(nèi)角和等于180°,在實驗活動中,體驗探索的過程和方法。

  3、在探索和發(fā)現(xiàn)三角形內(nèi)角和的過程中獲得成功的體驗。

  難點:運用三角形內(nèi)角和等于180°的性質(zhì)解決一些實際問題。

  學具:量角器、直角三角形、銳角三角形和鈍角三角形各一個。

  我們已經(jīng)學過了三角形的知識,我們來復(fù)習一下,看看大屏幕,各是什么三角形?誰能說說什么是銳角三角形、直角三角形、鈍角三角形?追問:不管是什么三角形它們都有幾個角呢?這三個角都叫做三角形的內(nèi)角,而這三個內(nèi)角的和就是這個三角形的內(nèi)角和。那么誰來說一說什么是三角形的`內(nèi)角和?三角形有大有小,形狀也各不相同,那么它們的內(nèi)角和有沒有什么特點和規(guī)律呢?我們來看一個小片段,仔細聽它們都說了什么?

  教師放課件。

  課件內(nèi)容說明:一個大的直角三角形說:“我的個頭大,我的內(nèi)角和一定比你們大!币粋鈍角三角形說:“我有一個鈍角,我的內(nèi)角和才是最大的)一個小的銳角三角形很委屈的樣子說“是這樣嗎?”

  都聽清它們在爭論什么嗎?(它們在爭論誰的內(nèi)角和大。)誰能說一說你的想法?(學生各抒己見,是不評價)果真是這樣嗎?下面我們就來研究“三角形內(nèi)角和”。

  1、探究三角形內(nèi)角和的特點。

  (1)檢查作業(yè),并提出要求:

  昨天老師讓每位學生都分別剪出了銳角三角形、直角三角形和鈍角三角形,并量出了每個角的度數(shù),都完成了嗎?拿出來吧,一會我們要算出三角形的內(nèi)角和填在下面的表格里。我們來看一下表格以及要求。出示小組活動記錄表。

 、谛〗M合作。

  會使用表格了嗎?下面我們就以小組為單位,按照要求把結(jié)果填在小組長手中的表格內(nèi)。

  各組長進行匯報。發(fā)現(xiàn)了三角形的內(nèi)角和都是180°左右。

  師:實際上,三角形三個內(nèi)角和就是180°,只是因為測量有誤差,所以我們才得到剛才得到的數(shù)據(jù)。

  2、驗證推測。

  那么同學們有沒有什么辦法知道三角形的內(nèi)角和就是180°呢?大家可以討論一下,學生可能會想到用折拼或剪拼的方法來看一看三角形的三個角和起來是不是180°,也就是說三角形的三個角能不能拼成一個平角。師生先演示撕下三個角拼在一起是否是平角,同學們在下面操作進行體驗,再用課件演示把三個內(nèi)角折疊在一起(這時要注意平行折,把一個頂點放在邊上)學生也動手試一試。

  通過我們的驗證我們可以得出三角形的內(nèi)角和是180°。

  3、師談話:三個三角形討論的問題現(xiàn)在能解決了嗎?你現(xiàn)在想對這三個三角形說點什么嗎?(讓學生暢所欲言,對得出的三角形內(nèi)角和是180°做系統(tǒng)的整理。)

  4、同學們還有什么疑問嗎?大家想一想我們知道了三角形內(nèi)角和是180°可以干什么呢?(知道三角形中兩個角,可以求出第三個角)

  出示書28頁,試一試第3題,并講解。

  說明:在直角三角形中一個銳角等于30°,求另一個銳角。

  生獨立做,再訂正格式、以及強調(diào)不要忘記寫度。

  小結(jié):同學們有沒有不明白的地方?如果沒有我們來做練習。

  1、出示書29頁第一題。說明:第一幅圖是銳角三角形已知一個銳角是75°,另一個銳角是28°,求第三個銳角?第二幅圖是直角三角形已知一個銳角是35°,求另一個銳角?第三幅圖是鈍角三角形已知一個銳角是20°,另一個銳角是45°,求鈍角?

  完成,并填在書上。講一講直角三角形還有什么解法。

  2、出示29頁第2題。

  一個直角三角形說:我的兩個銳角之和正好等于90°。讓學生判斷。

  3、畫一畫:

  出示四邊形和六邊形。運用三角形內(nèi)角和是180°計算出各自的內(nèi)角和。你能推算出多邊形的內(nèi)角和嗎?

  三角形內(nèi)角和180度是科學家帕斯卡12歲時發(fā)現(xiàn)的。我們同學還沒到12歲,看你能不能通過自己的努力也去探索和發(fā)現(xiàn)。

  讓學生說說在這節(jié)課上的收獲!

三角形的內(nèi)角和教案6

  教學目標:

  1、知識目標:通過測量、拼、折疊等方法探索和發(fā)現(xiàn)三角形的內(nèi)角和等于180°;已知三角形兩個角的度數(shù),會求出第三個角的度數(shù)。

  2、能力目標:通過討論爭辯、操作、推理等培養(yǎng)學生的思維能力和解決問題的能力;培養(yǎng)學生的空間觀念,使學生的創(chuàng)新能力得到發(fā)展;使學生初步掌握由特殊到一般的邏輯思辨方法和先猜想后驗證的研究問題的方法。

  3、情感目標:培養(yǎng)學生的合作精神和探索精神;培養(yǎng)學生運用數(shù)學的意識。

  教學重、難點:

  掌握三角形的內(nèi)角和是180°。驗證三角形的內(nèi)角和是180°。

  學生分析:

  在上學期學生已經(jīng)掌握了角的分類及度量問題。在本課之前,學生又研究了三角形的分類。這些都為進一步研究三角形內(nèi)角和作了知識儲備和心理準備,為本課內(nèi)容的教學作了鋪墊。三角形的內(nèi)角和是三角形的一個重要性質(zhì)。它有助于理解三角形的三個內(nèi)角之間的關(guān)系,是進一步學習、研究幾何問題的基礎(chǔ)。

  教學流程:

  一、創(chuàng)設(shè)情境,激發(fā)興趣

 。ㄕn件出示:兩個三角形爭論,大的對小的說,我的內(nèi)角和比你大。)

 。▽W生小聲議論著,爭論著。)

  師:同學們,你們能不能幫助大三角形和小三角形解決這個問題啊?

  生:可以把這兩個三角形的內(nèi)角比一比。

  生:它們不是一個角在比較,可怎么比呀?

  生:我們先畫出一個大三角形,再畫一個小三角形。分別量一量這兩個三角形三個內(nèi)角的度數(shù),這樣就知道誰的內(nèi)角和大,誰的內(nèi)角和小啦。

  師:那好,我們今天就來研究“三角形的內(nèi)角和”。(板書課題。)

  【設(shè)計意圖:通過多媒體出示,引起學生興趣,使學生想探索大、小三角形的內(nèi)角和到底誰大?】

  二、動手操作,探索新知

  1、初步感知。

  師讓學生分別畫出不同形狀的三角形。學生用量角器測量三角形三個內(nèi)角的度數(shù),并做著記錄,并統(tǒng)一填表格。(表格略。)

  生匯報測量的結(jié)果:內(nèi)角和約等于180°。

  師啟發(fā)學生發(fā)現(xiàn)三角形的內(nèi)角和180°。(師板書:三角形的內(nèi)角和是180°。)

  【設(shè)計意圖:通過這種方法可以得出準確的結(jié)論,也容易被學生理解和接受?赡艹霈F(xiàn)問題:用測量的方法得到的結(jié)果不是剛好180°。使學生明白是因為測量存在誤差的緣故!

  2、用拼角法驗證。

  師:剛才同學們發(fā)現(xiàn),三角形的內(nèi)角和約等于180°,那么到底是不是這樣呢?

  生:我們手里有一些三角形,可以動手拼一拼。

  生:還可以剪一剪。

  師:那同學們就開始吧!

 。▽W生動手進行拼、剪、折等方法,檢驗三角形內(nèi)角和的度數(shù)。)

  生:銳角三角形的內(nèi)角可以拼成一個平角。因為平角是180°,所以銳角三角形的三個內(nèi)角和是180°。

  生:我把一個直角三角形的三個內(nèi)角剪下來,拼成了一個平角,所以直角三角形的三個內(nèi)角和也是180°。

  生:鈍角三角形的內(nèi)角和也是180°。

 。◣煱鍟喝切蔚膬(nèi)角和是180°。)

  【設(shè)計意圖:使學生明確,因為全面研究了直角三角形、銳角三角形和鈍角三角形這三類三角形的內(nèi)角和,所以可以得出“三角形的內(nèi)角和等于180°”這一結(jié)論。通過這些過程使學生明白:探究問題有不同的方法、途徑,并且方法之間可以互為驗證,達到結(jié)論的統(tǒng)一,從而使學生明白獲得探究問題的方法比獲得結(jié)論更為重要!

  三、鞏固新知,拓展應(yīng)用

  1.出示題目:在三角形中,已知∠1=78°,∠2=44°,求∠3=的度數(shù)。

  2.已知∠1、∠2、∠3是三角形的三個內(nèi)角,猜一猜下面的三角形各是什么三角形?(圖略,分別是銳角、直角、鈍角三角形。)學生猜后,教師抽去遮蓋的紙,進行驗證。

  通過以上的練習使學生對三角形內(nèi)角和的應(yīng)用有個初步認識,并積累解決問題的經(jīng)驗。

  3.師:(出示一個大三角形)它的內(nèi)角和是多少度?

  生:180 °。

  師:(出示一個很小的三角形)它的內(nèi)角和是多少度?

  生:180 °。

  師:(把大三角形平均分成兩份。指均分后的一個小三角形)它的內(nèi)角和是多少度?(生有的答90°,有的答180°。)

  師:哪個對?為什么?

  生:180°對,因為它還是一個三角形。

  師:每個小三角形的度數(shù)是180°,那么這樣的兩個小三角形拼成一個大三角形,內(nèi)角和是多少度?(這時學生的答案又出現(xiàn)了180°和360°兩種。)師:究竟誰對呢?(學生臉上露出疑問。經(jīng)過一番激烈的討論探究后,學生開始舉手回答。)

  生:180°。因為兩個三角形拼在一起,就變成了一個三角形了,每個三角形的.內(nèi)角和總是180°。

  生:我發(fā)現(xiàn)兩個小三角形拼成一個大三角形,拼接在一起的兩條邊上的兩個角沒有了,比原來兩個三角形少180°,所以大三角形的內(nèi)角和還是180°,不是360°。

  師:你真聰明。(課件演示。)

  四、小結(jié)

  師:同學們,你們今天學了“三角形的內(nèi)角和是180°”的新知識,現(xiàn)在能來幫助大、小三角形進行評判了吧?(生答能。)

  師:說一說本節(jié)課的收獲。這節(jié)課你掌握了哪些知識?學會了哪些研究問題的方法?

  五、探究性作業(yè)

  求下面幾個多邊形的內(nèi)角和。(圖形略。)

  【設(shè)計意圖:通過這樣的練習,培養(yǎng)學生思維的靈活性、多樣性,使不同層次的學生得到不同的發(fā)展,體現(xiàn)教學的層次性!

  反思:

  1、重視動手操作,讓學生在探究中收獲知識!稊(shù)學課程標準》指出:“有效的數(shù)學學習活動不能單純地依賴模仿與記憶,動手實踐、自主探索與合作交流是學生學習數(shù)學的重要方式!北竟(jié)課通過量、折、剪、拼等多種活動,使學生主動探究,找到新舊知識的聯(lián)系,得出研究問題的結(jié)論,有利于學生培養(yǎng)空間觀念和動手操作能力。

  2、小組合作學習是新課程倡導(dǎo)的學習方式,有利于培養(yǎng)學生的合作意識、探索能力、團隊精神。我們要從平時抓起,在平常的課堂中開展小組合作學習,可以是前后四人為一組,深入探究合作學習的方法和途徑。這樣學生學習方式的轉(zhuǎn)變才能落到實處,才不會變成某些公開課的擺設(shè)

三角形的內(nèi)角和教案7

  【教學內(nèi)容】:

  人教版九年義務(wù)教育小學數(shù)學四年級下冊第95頁內(nèi)容。

  【教學目標】:

  1、掌握三角形內(nèi)角和定理,并能進行簡單的運用。

  2、在探討三角形內(nèi)角和的過程中,培養(yǎng)學生轉(zhuǎn)化的數(shù)學思想。

  3、通過讓學生積極參與數(shù)學學習活動,培養(yǎng)學生對數(shù)學的好奇心和求知欲。讓學生切實感受到從動手操作中,引發(fā)猜想,最后驗證猜想得出結(jié)論。發(fā)展學生動手操作、觀察比較和抽象概括的能力。

  4、培養(yǎng)學生善于思考,勤于動手、勇于探索并發(fā)現(xiàn)結(jié)論的學習方法,使他們經(jīng)歷數(shù)學知識的形成過程。

  【教學重難點】:

  1、引導(dǎo)學生探索規(guī)律是否具有一般性,用不同的三角形驗證猜想,從而得出三角形內(nèi)角和為1800。通過做一做,應(yīng)用三角形內(nèi)角和求未知角的度數(shù)。

  2、在研究內(nèi)角和時,培養(yǎng)學生轉(zhuǎn)化的思想,把未知的知識轉(zhuǎn)化為已知的知識來研究。

  【教學流程】:

  一、復(fù)習導(dǎo)入:

  1、上一節(jié)課我們把三角形按角和邊進行了分類,誰來說一說按角可分成哪幾類?

  抽答,教師板書

  2、前邊我們還學習了三角形的高,誰來畫一畫他們的高。

  抽答:

  3、銳角、鈍角三角形的高把他們分成了兩個直角三角形。一個三角形中可以有三個銳角,為什么只能有一個直角呢?你能畫出含有兩個直角的三角形嗎?畫一畫。

  4、想一想為什么不能畫出含有兩個直角的三角形呢?你有什么猜想?

  二、教授新知

  1、三角形三個角含有某種關(guān)系,今天我們就一起來研究三角形的角,由于三角形的角都在其內(nèi)部,所以也叫內(nèi)角。

  教師板書:三角形內(nèi)角。

  (一)初次探索:

  1、我們先選一類出來研究,你們想先選哪一類呢?(直角三角形,因為其中一個角已知為900,只需研究另外兩個角就行了。)

  2、你們手上有熟悉的三角形嗎?(教師出示三角板)看,這是不是大家最熟悉的'直角三角形,誰來說一說它們另外兩個角的度數(shù)?

  抽答:教師板書

  3、同學們,請仔細觀察這兩組數(shù)據(jù),你有什么發(fā)現(xiàn)?

  抽答:

  4、一個多150,一個少150,他們的和怎樣?再加上它們都有一個900角,它們內(nèi)角和都為1800。大家想一想,是不是所有的直角三角形三內(nèi)角和都為1800?驗證一下,你手里的直角三角形,是這樣嗎?

  5、你是怎樣驗證的?結(jié)果怎樣?(量的)抽答:教師并板書

  6、你也是量的?量出的結(jié)果是?

  抽答:

  7、這么多小朋友都是量的,可是量出的結(jié)果不全是1800,為什么和我們的猜想不一樣呢?因為量有一定的誤差,如果拋開誤差,你覺得它的內(nèi)角和是多少?1800是一個什么樣角?你能把這三個角組成一個平角嗎?怎么做?

  抽答:

  8、怎么拼的?給大家展示展示。

  9、這說明直角三角形內(nèi)角和為1800。(板書:三內(nèi)角和=1800)

 。ǘ┰俅翁剿

  1、接下來該研究銳角和鈍角三角形了,請大家自行選擇一類來進行研究。待會和大家分享你的研究成果。

  2、你研究的哪一類三角形?用了什么方法?結(jié)果怎樣?(讓學生上黑板演示:量和拼的方法。)

  抽答:

  3、把你手里的銳角三角形向大家展示展示,形狀大小一樣嗎?(不一樣)你能得出什么結(jié)論?(銳角三角形內(nèi)角和=1800)教師板書。

 。ㄈ┻\用轉(zhuǎn)化的方法:

  1、還有其他的方法嗎?老師給大家介紹另一種方法,轉(zhuǎn)化的方法。銳角三角形的一條高把它分為兩個直角三角形,一個直角三角形內(nèi)角和為1800,兩個直角三角形內(nèi)角和就是3600,這個結(jié)論是不是錯了呀?

  2、你發(fā)現(xiàn)問題了,你來說說。

  抽答:

  3、誰研究的鈍角三角形?說說你是怎么研究的?結(jié)果怎樣?

  抽答:

  4、把你的鈍角三角形向大家展示展示,形狀大小一樣嗎?(不一樣)你能得出什么結(jié)論?(鈍角三角形內(nèi)角和為1800)教師板書。

  5、研究了直角、銳角、鈍角三角形,它們內(nèi)角和都為1800,你能得出什么結(jié)論?(所有三角形內(nèi)角和都為1800)

  齊答:教師并板書。

 。ㄋ模┰O(shè)疑,自行研究

  1、看看這個課題,你還有什么疑問嗎?老師有一個疑問,你能解答嗎?這里有一個這么大的三角形,還有一個這么小的三角形,相差這么大,內(nèi)角和能一樣嗎?

  抽答:

  2、說明角的大小和邊長是沒有關(guān)系的。所有的三角形的內(nèi)角和都為1800。

  三、課堂練習

  1、學習了三角形內(nèi)角和,如果已知其中兩個角,你能求出第三個角的度數(shù)嗎?請做一做練習一。(在一個三角形中,∠1=1400,∠2=250,求∠3的度數(shù)。)

  2、一個直角三角形已知其中一個非直角,你能求出另一個角的度數(shù)嗎?做一做練習二。(在一個直角三角形中,其中一個角為400,求另一個角的度數(shù)。)

  3、一個等腰三角形已知其中一個底角,其他角的度數(shù)你還能求嗎?看看練習三。(一個等腰三角形,已知底角為420,求另外兩個角的度數(shù)。)

  四、課堂小結(jié)

  1、這節(jié)課你學了什么新知識?

  2、我們是怎么研究的?(從大家熟悉的開始研究,從特殊到一般并運用了轉(zhuǎn)化的思想。)

  五、知識拓展

  1、研究了三角形內(nèi)角和,四邊形呢?你還能求嗎?你想怎么做?能用轉(zhuǎn)化的方法嗎?怎么做?

  抽答:

  六、總結(jié):

  這節(jié)課我們學習新知識時,用了很多方法,希望大家在以后的學習中

  想出更多的方法。在學了課本知識的基礎(chǔ)上還拓展了相關(guān)知識,希望大家在以后的學習中再接再厲。

  以下附上教材封面及教材內(nèi)容:

三角形的內(nèi)角和教案8

  教學目標

  通過猜想、驗證,了解三角形的內(nèi)角和是180度。在學習的過程中進一步激發(fā)學生探索數(shù)學規(guī)律的興趣,初步感知計算多邊形內(nèi)角和的公式。

  教學重難點

  三角形的內(nèi)角和

  課前準備

  電腦課件、學具卡片

  教學活動

  一、計算三角尺三個內(nèi)角的和。

  出示三角尺中的一個,提問:誰來說說三角尺上的三個角分別是多少度?

  引導(dǎo)學生說出90度、60度、30度。

  出示另一個三角尺,引導(dǎo)學生分別說出三個角的度數(shù):90度、45度、45度。

  提問:請同學們?nèi)芜x一個三角尺,算出他們?nèi)齻角一共多少度?

  學生計算后指名回答。

  師:三角尺三個角的和是180度。

  二、自主探索,解決問題

  提問:是不是任一個三角形三個角的和都是180度呢?請同學們在自備本上

  任畫一個三角形,量出它們?nèi)齻角分別是多少度,再求出它們的和,然后小組內(nèi)交流。

  學生小組活動,教師了解學生情況,個別同學加以輔導(dǎo)。

  全班交流:讓學生分別說出三個角的度數(shù)以及它們的和。

  提問:你發(fā)現(xiàn)了什么?

 。喝魏我粋三角形三個角的和都是180度。利用三角形的這一性質(zhì),我們可以解決許多問題。

  三、試一試

  要求學生先計算,再用量角器量,最后比較結(jié)果是否相同?讓學生說說計算的方法。

  教師說明:即使結(jié)果不完全一樣,是因為測量的結(jié)果存在誤差,我們還是以

  計算的結(jié)果為準。

  四、鞏固提高

  完成想想做做的題目。

  第1題

  學生獨立計算,交流算法。要求學生用量角器量出結(jié)果,和計算的結(jié)果想比較。

  第2題

  指導(dǎo)學生看圖,弄清拼成的三角形的三個內(nèi)角指的是哪三個角。計算三角形三個角的內(nèi)角和,幫助學生進一步理解:三角形三個內(nèi)角的`和是180度。

  第3題

  通過操作、計算,使學生認識到:不管三角形的大小怎樣變化,它的內(nèi)角和是不會變化的。

  第4、5、6

  引導(dǎo)學生運用三角形的分類及三角形內(nèi)角和的有關(guān)知識解決有關(guān)問題,重點培養(yǎng)學生靈活運用知識解決問題的能力。

三角形的內(nèi)角和教案9

  尊敬的各位評委老師:

  大家好!今天我很高興也很榮幸能有這個機會與大家共同交流,在深入鉆研教材,充分了解學生的基礎(chǔ)上,我準備從以下幾個方面進行說課:

  一、教材分析

  “三角形的內(nèi)角和”是三角形的一個重要性質(zhì),它有助于學生理解三角形內(nèi)角之間的關(guān)系,是進一步學習幾何的基礎(chǔ)。

  二、教學目標

  1、知識與技能:明確三角形的內(nèi)角的概念,使學生自主探究發(fā)現(xiàn)三角形內(nèi)角和等于180°,并運用這一規(guī)律解決問題。

  2、過程和方法:通過學生猜、量、拼、折、觀察等活動,培養(yǎng)學生發(fā)現(xiàn)問題、提出問題、分析問題和解決問題的能力。

  3、情感與態(tài)度:使學生感受數(shù)學圖形之美及轉(zhuǎn)化思想,體驗數(shù)學就在我們身邊。

  三、教學重難點

  教學重點:動手操作、自主探究發(fā)現(xiàn)三角形的內(nèi)角和是180°,并能進行簡單的運用。

  教學難點:采用多種途徑驗證三角形的內(nèi)角和是180°。

  四、學情分析

  通過前面的學習,學生已經(jīng)掌握了三角形的一些基礎(chǔ)知識,會量角,部分學生已經(jīng)知道三角形內(nèi)角和是180°,但不知道怎樣得出這個結(jié)論。

  五、教學法分析

  本節(jié)課采用自主探索、合作交流的教學方法,學生自主參與知識的構(gòu)建。領(lǐng)悟轉(zhuǎn)化思想在解決問題中的應(yīng)用。

  六、課前準備

  1、教師準備:多媒體課件、三角形教具。

  2、學生準備:銳、直、鈍角三角形各兩個,量角器、剪刀。

  七、教學過程

 。ㄒ唬、創(chuàng)設(shè)情境,激趣導(dǎo)入

  導(dǎo)入:“同學們,有三位老朋友已經(jīng)恭候我們多時了!埃ǔ鍪救切蝿赢嬚n件),讓學生依次說出各是什么三角形。

  課件分別閃爍三角形三個內(nèi)角,并介紹:“這三個角叫做三角形的內(nèi)角,把三個角的度數(shù)加起來,就是三角形的內(nèi)角和。請學生畫一個三角形,要求:有兩個直角。為什么不能畫,問題在哪呢?這節(jié)課我們就一起來探究三角形的內(nèi)角和。板書課題。

  (二)、自主探究、合作交流

  1、探索特殊三角形內(nèi)角和

  拿出自己的一副三角板,同桌之間互相說一說各個角的度數(shù)。

  三角形內(nèi)角和是多少度呢?指名匯報。90°+30°+60°=180°

  90°+45°+45°=180°

  從剛才兩個三角形內(nèi)角和的計算中,你發(fā)現(xiàn)了什么?

  2、探索一般三角形的內(nèi)角和

  一般三角形的內(nèi)角和是多少度?猜一猜。你們能想辦法證明嗎?接下來,我們采用小組合作的方式進行探究,看看哪個組的方法多而且富有新意。

  3、匯報交流

  請小組代表匯報方法。

  1)量:你測量的三個內(nèi)角分別是多少度?和呢?(有不同意見)

  沒有統(tǒng)一的結(jié)果,有沒有其他方法?

  2)剪―拼:把三角形的三個內(nèi)角剪下來拼在一起,成為一個平角,利用平角是180°這一特點,得出結(jié)論。(學生嘗試驗證)

  3)折拼:學生邊演示邊匯報。把三角形的三個內(nèi)角都向內(nèi)折,把這三個內(nèi)角拼組成一個平角。所以得出三角形的內(nèi)角和是180°。(學生嘗試驗證)

  4)教師課件驗證結(jié)果。

  請看屏幕,老師也來驗證一下,是不是和你們的結(jié)果一樣?播放課件。我們可以得到一個怎樣的結(jié)論?

  學生回答后教師板書:三角形的內(nèi)角和是180°

  為什么有的小組用測量的方法不能得到180°?(誤差)

  4、驗證深化

  質(zhì)疑:大小不同的三角形,它們的內(nèi)角和會是一樣嗎?(一樣)

  誰能說一說不能畫出有兩個直角的三角形的原因?

 。ㄈ(yīng)用規(guī)律,解決問題:

  揭示規(guī)律后,學生要掌握知識,就要通過解答實際問題。

  1、為了讓學生積極參與,我設(shè)計了闖關(guān)的.活動來激勵學生的興趣。闖關(guān)成功會獲得小獎?wù)隆?/p>

  第一關(guān):基礎(chǔ)練習,要求學生利用“三角形內(nèi)角和是180°”這一規(guī)律在三角形內(nèi)已知兩個角,求第三個角(課件出示)

  第二關(guān),提高練習,

  ①已知等腰三角形的底角,求頂角。②求等邊三角形每個角的度數(shù)是多少。直角三角形已知一個銳角,求另一個。

  讓學生靈活應(yīng)用隱含條件來解決問題,進一步提高能力。

  2、小組合作練習,完成相應(yīng)做一做。

 。ㄋ模、課堂總結(jié),效果檢測。

  一節(jié)成功的好課要有一個好的開頭,更要有一個完美的結(jié)尾,數(shù)學是使人變聰明的學科,通過這節(jié)課的學習,你收獲了什么?學生們暢所欲言。接下來老師要檢查大家的學習效果,學生完成答題卡,組長評判,集體匯報。

 。ㄎ澹┳鳂I(yè)課下繼續(xù)探究三角形,看你有什么新發(fā)現(xiàn)。

  八、板書設(shè)計

  通過這樣的設(shè)計,使學生不僅學到科學的探究方法,而且體驗到探索的樂趣,使學生在自主中學習,在探究中發(fā)現(xiàn),在發(fā)現(xiàn)中成長。以上便是我對《三角形的內(nèi)角和》這一堂課的說課,謝謝大家!

三角形的內(nèi)角和教案10

  教學目標:

  知識與技能目標:

  1、會用平行線的性質(zhì)與平角的定義證明三角形內(nèi)角和等于180o;

  2、能用三角形內(nèi)角和等于180o進行角度計算和簡單推理,并初步學會利用輔助線解決問題,體會轉(zhuǎn)化思想在解決問題中的應(yīng)用。

  過程與方法目標:

  1、通過拼圖實驗、合作交流、推理論證的過程,體現(xiàn)“做中學”,發(fā)展學生的合情推理能力和邏輯思維能力,初步獲得科學研究的體驗;

  2、掌握三角形內(nèi)角和定理,并初步學會利用輔助線證題,同時培養(yǎng)學生觀察、猜想和論證能力。

  情感態(tài)度與價值觀目標:

  通過操作、交流、探究、表述、推理等活動,培養(yǎng)學生的合作精神,體會數(shù)學知識內(nèi)在的聯(lián)系與嚴謹性,鼓勵學生大膽提出疑問,培養(yǎng)學生良好的學習習慣。

  重點:

  三角形內(nèi)角和定理的證明及其簡單的應(yīng)用;

  難點:

  在三角形內(nèi)角和定理的證明過程中如何添加輔助線。

  教學流程:

  一、情境引入

  內(nèi)角三兄弟之爭

  在一個直角三角形里住著三個內(nèi)角,平時,它們?nèi)值芊浅F結(jié)可是有一天,老二突然不高興,發(fā)起脾氣來,它指著老大說:“你憑什么度數(shù)最大,我也要和你一樣大!”“不行。 崩洗笳f:“這是不可能的,否則,我們這個家就再也圍不起了……”“為什么?”老二很納悶。

  同學們,你們知道其中的道理嗎?

  目的`:通過對話激發(fā)學生的求知欲;讓學生通過小組討論:其中的道理。

  《7.5三角形的內(nèi)角和定理》知識點

  學習目標:

  1、掌握三角形外角的兩條性質(zhì);

  2、進一步熟悉和掌握證明的步驟、格式、方法、技巧。

  3、靈活運用三角形的外角和兩條性質(zhì)解決相關(guān)問題。

  4、三角形內(nèi)角和定理

  三角形內(nèi)角和定理:三角形的內(nèi)角和等于180°。

  《7.5三角形內(nèi)角和定理》同步測試含答案解析

  一、選擇題

  1、若一個三角形三個內(nèi)角度數(shù)的比為2:7:4,那么這個三角形是()

  A、直角三角形

  B、銳角三角形

  C、鈍角三角形

  D、等邊三角形

  【考點】三角形內(nèi)角和定理。

  【分析】根據(jù)三角形內(nèi)角和定理可分別求得每個角的度數(shù),從而根據(jù)最大角的度數(shù)確定其形狀。

  【解答】解:依題意,設(shè)三角形的三個內(nèi)角分別為:2x,7x,4x,∴2x+7x+4x=180°,∴7x≈97°,∴這個三角形是鈍角三角形。

  故選:C。

  【點評】此題主要考查學生對三角形內(nèi)角和定理及三角形形狀的判斷的綜合運用。

  2、已知△ABC的三個內(nèi)角∠A、∠B、∠C滿足關(guān)系式∠B+∠C=∠A,則此三角形()

  A、一定有一個內(nèi)角為45°

  B、一定有一個內(nèi)角為60°

  C、一定是直角三角形

  D、一定是鈍角三角形

  【考點】三角形內(nèi)角和定理。

  【分析】由三角形內(nèi)角和定理和已知條件得出∠A=90°,即可得出結(jié)論。

  【解答】解:∵∠A+∠B+∠C=180°,∠B+∠C=∠A,∴2∠A=180°,∴∠A=90°,即△ABC一定是直角三角形;

  故選:C。

  【點評】本題考查了三角形內(nèi)角和定理、直角三角形的判定方法;熟練掌握三角形內(nèi)角和定理,并能進行推理論證是解決問題的關(guān)鍵。

三角形的內(nèi)角和教案11

  教學目標

  ⑴探索并發(fā)現(xiàn)三角形的內(nèi)角和是180°,能利用這個知識解決實際問題。

 、茖W生在經(jīng)歷觀察、猜測、驗證的過程中,提升自身動手動腦及推理、歸納總結(jié)的能力。

 、窃趨⑴c學習的過程中,感受數(shù)學獨特的魅力,獲得成功體驗,并產(chǎn)生學習數(shù)學的積極情感。

  教學重點:檢驗三角形的內(nèi)角和是180°。

  教學難點:引導(dǎo)學生通過實驗探究得出三角形的內(nèi)角和是180度。

  教學環(huán)節(jié):問題情境與

  教師活動:學生活動媒體應(yīng)用設(shè)計意圖

  目標達成

  導(dǎo)入新課

  一、復(fù)習舊知,導(dǎo)入新課。

  1、復(fù)習三角形分類的知識。

  師出示三角形,生快速說出它的名稱。

  2、什么是三角形的內(nèi)角?

  我們通常所說的角就是三角形的內(nèi)角。為了便于稱呼,我們習慣用∠A、∠B、∠c來表示。

  什么是三角形的內(nèi)角和?

  三角形“三個內(nèi)角的度數(shù)之和”就是三角形的內(nèi)角和。用一個含有∠A、∠B、∠c的式子來表示應(yīng)該如何寫?∠A+∠B+∠c。

  3、今天這節(jié)課啊我們就一起來研究三角形的內(nèi)角和。(揭題:三角形的內(nèi)角和)

  由三角形的內(nèi)角引出三角形的內(nèi)角和,“∠A+∠B+∠c”的表示形式形象的體現(xiàn)出三內(nèi)角求和的關(guān)系

  二、動手操作,探究新知

  1、出示三角板,猜一猜。

  師:這個三角形的內(nèi)角和是多少度?熟悉這副三角板嗎?請拿出形狀與這塊一樣的三角板,并同桌互相指一指各個角的度數(shù)

  把三角形三個內(nèi)角的度數(shù)合起來就叫三角形的'內(nèi)角和。是不是所有的三角形的內(nèi)角和都是180°呢?你能肯定嗎?

  我們得想個辦法驗證三角形的內(nèi)角和是多少?可以用什么方法驗證呢?

  3.學生測量

  4.匯報的測量結(jié)果

  除了我們這節(jié)課大家想到的方法,還有很多方法也能驗證三角形的內(nèi)角和是180°到初中我們還要更嚴密的方法證明三角形的內(nèi)角和是180°

  5、鞏固知識。

  一個三角形中能不能有兩個直角?能不能有2個鈍角?

  環(huán)節(jié)

  三、應(yīng)用所學,解決問題。

  1、基礎(chǔ)練習(課本第68頁做一做)

  在一個三角形中,∠1=140度,∠3=25度,求∠2的度數(shù)。

  2、判斷題

 。1)大三角形的內(nèi)角和大于180度。()

  (2)三角形的內(nèi)角和可能是180度。()

  (3)一個三角形中最多只能有一個直角。()

 。4)三角形的三個內(nèi)角分別可能是30度,60度,70度。()

  3、求出下面三角形各角的度數(shù)。

 。1)我三邊相等。

 。2)我是等腰三角形,我的頂角是96°。(3)我有一個銳角是40°。

  四、總結(jié):這節(jié)課你有什么收獲?

三角形的內(nèi)角和教案12

  教學內(nèi)容

  人教版小學數(shù)學第八冊第五單元第85頁例5

  任務(wù)分析

  教材分析: 《三角形的內(nèi)角和》是義務(wù)教育課程標準實驗教科書(數(shù)學)四年級下冊第五單元《三角形》中的一個教學內(nèi)容。這部分內(nèi)容是在學生學習了角的度量,角的分類,三角形的認識,三角形的分類的基上進行教學的。它是三角形的一個重要性質(zhì),有助于學生理解三角形的三個內(nèi)角之間的關(guān)系,也是進一步學習的基礎(chǔ)。教材通過實際操作,引導(dǎo)學生用實驗的方法探索并歸納出這一規(guī)律,即任意一個三角形,它的內(nèi)角和都是180度。教材在編寫上也深刻的體現(xiàn)出了讓學生探究的特點,通過動手操作探究發(fā)現(xiàn)三角形內(nèi)角和為180度。教學內(nèi)容的核心思想體現(xiàn)在讓學生經(jīng)歷猜想—驗證—結(jié)論的過程,來認識和體驗三角形內(nèi)角和的特點。

  學情分析:通過前面的學習,學生已經(jīng)掌握了三角形的一些基礎(chǔ)知識,會用工具量角、畫角,具備了探索三角形內(nèi)角和的知識與基礎(chǔ)技能。在四年級上冊《角的度量》的學習中,學生有接觸到兩把三角尺的內(nèi)角和是180°;并在相關(guān)的補充習題和數(shù)學練習冊的練習中,也有要求測量任意三角形的三個內(nèi)角的度數(shù)并求出它們的和的練習,很多學生已經(jīng)知道了三角形的內(nèi)角和是180°。但是要真正理解和掌握需要進行驗證,因此,學生在這節(jié)課上的主要任務(wù)是通過實驗操作驗證三角形的內(nèi)角和是180°。

  教學目標

  1、通過實驗、操作、推理歸納出三角形內(nèi)角和是180°。

  2、能運用三角形的內(nèi)角和是180°這一規(guī)律,求三角形未知角的度數(shù)并運用解決實際生活問題。

  3、通過拼擺,感受數(shù)學的轉(zhuǎn)化思想。

  教學重點

  探究發(fā)現(xiàn)和驗證“三角形的內(nèi)角和180度”。

  教學難點

  驗證三角形的內(nèi)角和是180度。

  教學準備

  多媒體課件,銳角三角形、直角三角形、鈍角三角形,剪刀,量角器等。

  教學過程

  一、復(fù)習舊知,學習鋪墊

  1、一個平角是多少度?等于幾個直角?

  2、如下圖,已經(jīng)∠ 1=35°,∠2=78°,求∠3是多少度?

  二、探究新知,理解規(guī)律

  1、說明三角形的三個內(nèi)角和

  說出手中三角形的類型(銳角三角形,直角三角形,鈍角三角形)并說出三角形有幾個角?

  師(指出):三角形的這三個角叫做三角形的三個內(nèi)角,這三個內(nèi)角的度數(shù)和叫做三角形的內(nèi)角和。

  板書課題:“三角形的內(nèi)角和”。

  揭示課題:今天我們一起來探究三角形的內(nèi)角和有什么規(guī)律。

  2、探究三角形的內(nèi)角和規(guī)律

  探究1:量一量,算一算

  以小組為單位,用量角器計算出三種三角形的內(nèi)角和各是多少度?

  生討論匯報,并引導(dǎo)學生發(fā)現(xiàn):三角形的內(nèi)角和接近180°。

  師:三角形的內(nèi)角和接近180°,那它到底與180° 有怎樣的關(guān)系呢?

  學生預(yù)設(shè):有學生可能會說出三角形的內(nèi)角和就是180°,這時老師可以提問,為什么就是180°?我們要進行驗證,你有什么辦法呢?

  探究2:擺一擺,拼一拼

  引導(dǎo):我們剛剛每個三角形都量了三次角,每一次度量都有誤差,所以量出來的內(nèi)角和有誤差。能不能換一種方法減少度量的次數(shù),減少誤差呢?

  生可能很難想到,可以提示學生:把三個內(nèi)角拼成一個角就只要量一次角。讓我們一起動手做一做

  如圖:

 。1)

  銳角的三個內(nèi)角拼成了一個平角,引導(dǎo)學生說出:銳角三角形的內(nèi)角和是180°.

  (2)

  讓學生小組合作用同樣的方法,發(fā)現(xiàn):直角三角形的內(nèi)角和也是180°.

 。3)

  讓學生獨立用同樣的方法,發(fā)現(xiàn):鈍角三角形的內(nèi)角和也是180°.

  引導(dǎo)學生歸納:三角形的內(nèi)角和是180°。

  是不是所有的三角形的`內(nèi)角和都是180°呢? (是,因為這三類三角形包括了所有三角形。)

  板書:三角形的內(nèi)角和是180°

  三、鞏固練習,應(yīng)用規(guī)律

  1、在一個三角形中,∠1=140°,∠3=25°,你能求出∠2的度數(shù)嗎?

  學生獨立完成,并說出原因:因為三角形的內(nèi)角和是180°,也就是∠1+∠2+∠3=180°,借助圖像

  ∠2 =180°-∠1-∠3 或 ∠2 =180°-(∠1+∠3)

  = 180°-140°-25° =180°-(140°+25°)

  =40°-25° =180°-165°

  =15° =15°

  2、一個等腰三角形的頂角是80°,它的兩個底角各是多少度?

  學生分析:因為等腰三角形的兩個底角相等,又因為三角形的內(nèi)角和是180°,所以

 。180°-80°)÷2

  =100°÷2

  =50°

  四、拓展練習,深化規(guī)律

  1、求出下面各角的度數(shù)。

 。1) (2)

  2、判斷

 。1)三角形任意兩個內(nèi)角的和大于第三個角。( )

 。2)銳角三角形任意兩個內(nèi)角的和大于直角。( )

 。3)有一個角是60°的等腰三角形不一定是等邊三角形。( )

  3、下面是兩塊三角形的玻璃打碎后留下的殘片,你知道它們原來各是什么三角形嗎?

 。 ) ( )

  五、課堂小結(jié),分享提升

  1、談?wù)勥@節(jié)課你有什么收獲?

  2、課后思考題

  三角形的內(nèi)角和是180°,那長方形、正方形的內(nèi)角和呢?(根據(jù)三角形的內(nèi)角和是180°求,參考課本88頁第12題,完成89頁16題)

  板書設(shè)計

三角形的內(nèi)角和教案13

  教學目標:

  1、通過量、剪、拼、擺等直觀操作的方法,讓學生探索并發(fā)現(xiàn)三角形內(nèi)角和等于180度。

  2、在活動交流中培養(yǎng)學生合作學習的意識和能力,讓學生經(jīng)歷猜測探索總結(jié)的數(shù)學學習過程,在實驗活動中體驗探索的過程和方法。

  3、通過運用三角形內(nèi)角和的性質(zhì)解決一些簡單的問題,使學生體會數(shù)學與現(xiàn)實生活的聯(lián)系,體會到數(shù)學的價值,增加學生學數(shù)學的信心和興趣。

  教學重點:

  探索發(fā)現(xiàn)三角形內(nèi)角和等于180并能應(yīng)用。

  教學難點:

  三角形內(nèi)角和是180的探索和驗證。

  教學過程:

  一、創(chuàng)設(shè)情境,提出問題

  師:大家喜歡猜謎語嗎?

  生:喜歡。

  師:下面請大家猜一個謎語(大屏幕出示形狀似座山,穩(wěn)定性能堅。三竿首尾連,學問不簡單。

 。ù蛞粠缀螆D形))

  生:三角形。

  師:三角形中都有哪些學問?

  生:三角形有三條邊,三個角,具有穩(wěn)定性。

  生:三角形按角分,可以分成銳角三角形、直角三角形、鈍角三角形。

  生:三角形按邊分,可以分成等腰三角形,不等邊三角形,其中等腰三角形又包含了兩條邊相等的三角形和等邊三角形。

  生:一個三角形中最多只能有一個直角,最多只能有一個鈍角,最少有兩個銳角。

  生:三角形的內(nèi)有和是180。

  生:(一臉疑惑)

  師:(板書:三角形的內(nèi)角和是180),你有什么疑惑? 生:什么是內(nèi)角?

  生:每個三角形的內(nèi)角和都是180嗎?

 。ǜ鶕(jù)學生的問題,在三角形的內(nèi)角和是180后面加上一個?)

  二、自主探索,實踐驗證

  1、理解內(nèi)角 師:什么是內(nèi)角?

  生:我認為三角形的內(nèi)角就是指三角形的三個角。

  師:三角形的每個角都是三角形的內(nèi)角,每個三角形都有三個內(nèi)角。

  2、理解內(nèi)角和。

  師:那三角形的內(nèi)角和又是指什么?

  生:我認為三角形的內(nèi)角和就是把三角形的三個內(nèi)角的度數(shù)加起來的和。

  師:為了方便,我們將三角形的每個內(nèi)角編上序號1、2、3、我們叫它1、2、3,這三個角的度數(shù)和,就是這個三角形的內(nèi)角和。

  3、實踐驗證

  師:每個三角形的內(nèi)角和都是180嗎?用什么方法來驗證呢?

  生:量一量每個角的度數(shù),然后加起來看看是不是180。

  師:請大家拿出課前準備的三角形,親自量一量,算一算。(學生動手量一量)

  師:誰愿意把你的勞動成果和大家分享一下?

  生:我量的這個三角形的三個內(nèi)角的`度數(shù)分別是60、60、60,加起來一共是180。

  師:這位同學量的是一個銳角三角形,并且是比較特殊的三角形等邊三角形。

  生:我量這個三角形的三個內(nèi)角的度數(shù)分別是45、45、90,加起來一共是180。

  師:這是我們?nèi)浅咧械囊粋,也比較特殊,是一個等腰直角三角形。

  生:我量的是三角尺中的另一個,三個內(nèi)角的度數(shù)分別是60、30、90,加起來一共是180 生:我量的是鈍角三角形,三個內(nèi)角的度數(shù)分別是85、60、38,加起來一共是183。

  師:你發(fā)現(xiàn)了什么?

  生:有的三角形的內(nèi)角和是180,而有的三角形的內(nèi)角和卻不是180。

  師:看來三角形的內(nèi)角和不一定是180。

  生:老師,測量會有誤差,量出來的不是很精確,那么求出來的結(jié)果也不夠精確。雖然不都是三個內(nèi)角加起來不都是180,但都接近180。

  生:都接近180就能說一定是180嗎?

  師:科學來不得半點虛假,看來這個是不能讓大家信服的。那還可以用什么方法來驗證呢?下面請同學們小組合作,發(fā)揮小組成員的智慧,充分利用大家的學具進行驗證,比一比哪些組的方法富有新意,開始!

 。▽W生在小組內(nèi)進行探索驗證。教師巡視,參與到學生的研究中)

  師:請每個小組選擇一個代言人,和大家分享一下你們的智慧。

  生:(邊展示邊交流)我們小組運用了折一折的方法,把三角形的三個內(nèi)角都向內(nèi)折,三個內(nèi)角就拼成了一個平角,也就是180,所以我們小組得出三角形的內(nèi)角和是180。

  師:你折的只是銳角三角形,只能證明銳角三角形的內(nèi)角和是180,直角三角形,鈍角三角形是不是也是這樣的?

  生:我們小組也有折的直角三角形,鈍角三角形。

 。ㄆ渌某蓡T展示不同的三角形)

  師:看這個小組的同學想問題多全面呀,不僅想到了用什么方法,還想到了用不同的三角形進行驗證,老師實在是佩服你們組的智慧,讓我們把掌聲送給他們!

  師:哪個小組和他們的方法不一樣?

  生:我們小組把三角形的三個內(nèi)角都撕了下來,拼在了一起,正好拼成了一個平角,也就是180。我們也實驗了不同的三角形,三個內(nèi)角都可以拼成平角,所以我們小組得出結(jié)論,三角形的內(nèi)角和是180。

  師:這個小組的方法簡便,易操作,很好。

  生:我們小組成員是這樣想的,一個長方形有4個直角,每個直角90,那么長方形的內(nèi)角和就是360,每個長方形都可以平均分成兩個直角三角形,每個直角三角形的內(nèi)角和就是180。 師:你們小組很聰明,從長方形的內(nèi)角和聯(lián)想到直角三角形的內(nèi)角和是180,從不同的角度去思考問題,謝謝你為我們提供了這么好的方法!

  4、小結(jié)

  師:剛才同學們用量、折、剪、拼、計算、推理等這么多巧妙的方法得出了無論是什么樣的三角形的內(nèi)角和都是1800,你還有什么疑問嗎?

  生:沒有。

  師:(去掉問號)那就讓我們大聲地讀出來三角形的內(nèi)角和是1800。

  三、鞏固應(yīng)用,加深理解

  1、說一說每個三角形的內(nèi)角和是多少度

  師:(出示一個大三角形)這個大三角形的內(nèi)角和是多少度?

  生: 180

  師:(出示一個小三角形)這個小三角形的內(nèi)角和是多少度?

  生:180

  師:(演示)把這兩個三角形拼在一起,拼成的大三角形的內(nèi)角和是多少度?

  生:180

  師:為什么每個三角形的內(nèi)角和是1800,而合起來還是180呢?另外那180去哪兒了?

  生:把兩個三角形拼成一個大三角形,兩個直角不再是大三角形的內(nèi)角,所以少了180

  師:(演示)把一個大三角形分成兩個三角形,每個三角形的內(nèi)角和是多少度?

  生:180

  2、求下面各角的度數(shù)

  師:如果老師告訴你一個三角形的兩個角的度數(shù),你能說出第三個角的度數(shù)嗎?

 。ǔ觯

  生:三角形內(nèi)角和是180,在第一個三角形中,用180-75-28,A=77

  生:用180-90-35,C =55。

  生:第二個三角形是直角三角形,B是直角,也可以直接用90-35=55。

  生:第三個三角形中,用180-20-45,B=115。

  3、一個等腰三角形的風箏,它的一個底角是70,它的頂角是多少度?

  生:等腰三角形的兩個底角相等,所以用180-70-70 4、

  師:三角形的內(nèi)角和在我們的生活中應(yīng)用很廣泛,老師給大家?guī)硪粋在建筑中應(yīng)用的例子。

  在設(shè)計這座大橋時,如果設(shè)計師將斜拉的鋼索與橋柱形成的夾角設(shè)計成了56,建筑師在造橋時怎樣才能確定鋼索與橋柱是否形成了這個角度?

  生:用量角器量一量

  師:量哪個角?量一量斜拉的鋼索與橋柱形成的夾角嗎?

  生:橋面與橋柱形成一個直角,是90,斜拉的鋼索與橋柱形成的夾角是56,那么用180-90-56=34,就是斜拉的鋼索與橋面的夾角,所以只要讓斜拉的鋼索與橋面的夾角是34,那么斜拉的鋼索與橋柱形成的夾角就是56

  師:你真是個善于觀察、善于思考的孩子,努力學習,將來一定會成為一名優(yōu)秀的建筑師。

  四、回顧總結(jié),拓展延伸

  師:40分鐘很快就過去了,你愿意把自己的收獲與大家共同分享嗎?

  生:我知道了三角形的內(nèi)角和是180。

  生:無論是大三角形,還是小三角形,無論是銳角三角形,還是鈍角三角形,還是銳角三角形,內(nèi)角和都是180。

  生:把一個大三角形分成兩個小三角形,每個三角形的內(nèi)角和還是180,把兩個小三角形拼成一個大三角形,大三角形的內(nèi)角和還是180。

  生:我可以用撕、拼、折等方法來驗證三角形的內(nèi)角和是180。

  師:這個同學不僅學會了知識,而且學會了方法,我們只有學會了方法,才能更好地去探究更多的知識。

  師:那你現(xiàn)在知道為什么一個三角形內(nèi)只能有一個直角或一個鈍角嗎?

  生:兩個直角的度數(shù)之和是180,再加上一個角,三個角的度數(shù)之和超過了180,所以一個三角形中最多只能有一個直角。

  生:兩個鈍角的度數(shù)之和就超過了180,再加上一個角,就更大了,所以一個三角形中最多只能有一個鈍角。

  師:我們學習知識,必須知其然并知其所以然。

  師:三角形中還有許許多多的學問,讓我們在以后的學習中繼續(xù)去研究。

三角形的內(nèi)角和教案14

  學科:數(shù)學

  年級/冊:4年級下冊

  教材版本:人教版

  課題名稱:4年級下冊第五單元《三角形的內(nèi)角和》

  教學目標:

  掌握探究方法(猜想—驗證—歸納總結(jié)),學會用“轉(zhuǎn)化”的數(shù)學思想探究三角形內(nèi)角和。

  重難點分析

  重點分析:教材在呈現(xiàn)教學內(nèi)容時,不但重視知識的形成過程,而且注意留給學生充分進行自主探索和交流的空間。三角形的內(nèi)角和的性質(zhì)沒有直接給出,而是提供了豐富多彩的動手實踐的素材,讓學生通過探索、實驗、討論、交流而獲得,從而讓學生在動手操作,積極探索的活動過程中掌握知識,積累數(shù)學經(jīng)驗,同時發(fā)展空間觀念和推理能力,不斷提高自己的思維水平。

  難點分析:通過近四年的數(shù)學學習,學生已初步掌握了一些學習數(shù)學的基本方法,具備了一定的動手操作、觀察比較和合作交流的能力。但是圍繞數(shù)學問題開展初步的討論活動,能比較清楚的表達自己的意見,認真傾聽他人的發(fā)言,這些初步的數(shù)學交流能力還欠缺。

  教學方法:

  1、探索過程中培養(yǎng)學生的動手實踐能力、協(xié)作能力及創(chuàng)新意識和探究精神,發(fā)展學生的空間思維能力,同時使學生養(yǎng)成獨立思考的習慣。

  2、在活動中,讓學生體驗主動探究數(shù)學規(guī)律的樂趣,體驗學數(shù)學的價值,激發(fā)學生學習數(shù)學的熱情。

  教學過程

  導(dǎo)入:各位同學大家好,今天由我來和大家一起學習人教版四年級下冊《三角形的內(nèi)角和》,我們前面學習和了解了三角形的相關(guān)知識,請大家說說三角形按角分,可以分成哪幾類?知識講解(難點突破)

  例五:畫出幾個不同類型的`三角形。量一量,算一算,三角形3個內(nèi)角的和各是多少度?解決這個問題的時候,我們先來了解一下什么是三角形的內(nèi)角和?

  講解:三角形內(nèi)兩條邊所夾的角就叫做這個三角形的內(nèi)角。每個三角形都有三個內(nèi)角,這三個內(nèi)角的度數(shù)加起來就是三角形的內(nèi)角和。

 。ㄒ唬┝恳涣浚何覀?nèi)绾谓鉀Q這個問題呢?

  同學們請看,這里有一個直角三角形,我們先分別量一量這個直角三角形三個內(nèi)角的度數(shù)并標注。90°30°60°現(xiàn)在我們將這三個內(nèi)角的度數(shù)加起來等于180度°通過測量計算發(fā)現(xiàn)這個直角三角形內(nèi)角和都是180°,是不是所有直角三角形的內(nèi)角和都是180°呢?同學們你們也來量一量你剛才畫的直角三角形3個內(nèi)角的度數(shù),算一算是不是也和老師的結(jié)果一樣呢?注意在測量要認真,力求準確。停頓數(shù)秒從剛才的測量和計算結(jié)果中,你發(fā)現(xiàn)了什么?你是不是發(fā)現(xiàn)直角三角形的內(nèi)角和都是180°當然有些同學的測量結(jié)果不是等于180°,這是我們在測量時,由于在測量工具、測量方法等各方面的原因,使我們的測量結(jié)果存在一定的誤差。實際上,直角三角形三角形內(nèi)角和就等于180°。

  (二)

  1、提出猜想:剛才我們通過測量和計算發(fā)現(xiàn)了直角三角形內(nèi)角和等于180,那你能不能大膽的猜測一下:銳角三角形內(nèi)角和,鈍角三角形的內(nèi)角和是不是也是180°呢?

  2、動手操作,驗證猜想這時每個同學的心中都有了猜測的答案,這個猜想是否成立呢?除了用量角器量一量,你還有其他辦法來驗證嗎?聰明的你,是不是想到好辦法了,那就快快動手吧!

  方法:

  A、拼一拼的方法

  B、折一折的方法把三角形的角1折向它的對邊,使頂點落在對邊上,然后另外兩個角相向?qū)φ,使它們的頂點與角1的頂點互相重合,通過折疊的方法,三角形的三個內(nèi)角折到一起正好組成一個平角,所以也能證明三角形的內(nèi)角和是180°。

  同學們我們通過量一量拼一拼折一折,發(fā)現(xiàn)無論是直角三角形,銳角三角形鈍角三角形,它們內(nèi)角和都等于180度,我們通過動作操作,折一折,拼一拼,把三角形的三個內(nèi)角轉(zhuǎn)換成了一個平角,成功的得到了這個結(jié)論,讓我們?yōu)樽约旱某晒恼疲↓R讀結(jié)論。(板書:得到結(jié)論)

  小結(jié):通過剪拼的方法,把三個角剪下來,拼在一起,三角形的三個內(nèi)角正好拼成一個平角,因為平角是180°,所以三角形的內(nèi)角和是180°三角形的形狀和大小雖然不同,但是三角形的內(nèi)角和都是180度。說明三角形的內(nèi)角和和他的形狀大小無關(guān)

  課堂練習(難點鞏固)

  總結(jié):我們今天用量一量,折一折,拼一拼的方法得到了三角形的內(nèi)角和等于180°這一結(jié)論,希望同學們在在以后的學習中大膽探索,去發(fā)現(xiàn)數(shù)學的奧秘吧!我們今天的課程就到這里了,同學們再見!

三角形的內(nèi)角和教案15

  教材分析

  教材的小標題為“探索與發(fā)現(xiàn)”,說明這部分內(nèi)容要求學生自主探索,并發(fā)現(xiàn)有關(guān)三角形內(nèi)角和性質(zhì)。

  教材創(chuàng)設(shè)了一個有趣的問題情境,以此激發(fā)學生的興趣,引出探索活動。首先,教師應(yīng)使學生明確“內(nèi)角”的意義,然后引導(dǎo)學生探索三角形內(nèi)角和等于多少。大多數(shù)學生會想到用測量角的方法,此時就可以安排小組活動。每組同學可以畫出大小、形狀不同的若干個三角形,分別量出三個內(nèi)角的度數(shù),并求出它們的和,填寫在教材提供的表中。最后發(fā)現(xiàn),大小、形狀不同的三角形,每一個三角形內(nèi)角和都在180°左右。

  三角形的內(nèi)角和是否正好等于180°呢?教材中安排了兩個活動:一是把三角形三個內(nèi)角撕下來,再拼在一起,組成一個平角,因此三角形內(nèi)角和是180°。二是把三個內(nèi)角折疊在一起,發(fā)現(xiàn)也能組成一個平角。每個活動都要使學生動手試一試,加深對三角形內(nèi)角和的認識,體驗三角形內(nèi)角和性質(zhì)的探索過程。

  另外,教材還從兩個方面引導(dǎo)學生應(yīng)用三角形的內(nèi)角和:一是根據(jù)三角形中已知的兩個角的度數(shù),求另一個角的度數(shù);二是直角三角形里的兩個銳角和等于90°,鈍角三角形里的兩個銳角和小于90°。

  學情分析

  學生在前面的學習中已經(jīng)認識了三角形的基本特征及分類,并且在四年級(上冊)教材里已經(jīng)知道了兩塊三角尺上的每一個角的度數(shù),知道了平角是180°;學生通過前幾年的學習,已具備了初步的動手操作能力和主動探究能力以及合作學習的習慣,所以在學生具備這些數(shù)學知識和能力的基礎(chǔ)上,來引導(dǎo)學生探索和發(fā)現(xiàn)三角形內(nèi)角和是180°這一性質(zhì)。

  要讓學生明確一個三角形分成兩個小三角形后,每個三角形內(nèi)角和還是180°,兩個小三角形拼成一個大三角形,大三角形的內(nèi)角和也是180°。

  教學目標

  1、知識目標:讓學生探索與發(fā)現(xiàn)三角形的內(nèi)角和是180°,已知三角形的兩個角度,會求出第三個角度。

  2、能力目標:培養(yǎng)學生動手操作和合作交流的能力,促進掌握學習數(shù)學的方法。

  3、情感目標:培養(yǎng)學生自主學習、積極探索的好習慣,激發(fā)學生學習數(shù)學應(yīng)用數(shù)學的興趣。

  教學重點和難點

  教學重點:掌握三角形的內(nèi)角和是180°,會應(yīng)用三角形的內(nèi)角和解決實際問題。

  教學難點:讓學生經(jīng)歷探索和發(fā)現(xiàn)三角形的內(nèi)角和是180°的過程。

  教學過程:

  (一)、激趣導(dǎo)入:

  1、認識三角形內(nèi)角

  我們已經(jīng)認識了什么是三角形,誰能說出三角形有什么特點?

  (三角形是由三條線段圍成的圖形,三角形有三個角,…。)

  請看屏幕(課件演示三條線段圍成三角形的過程)。

  三條線段圍成三角形后,在三角形內(nèi)形成了三個角,(課件分別閃爍三個角及它的弧線),我們把三角形里面的這三個角分別叫做三角

  形的內(nèi)角。(這里,有必要向?qū)W生直觀介紹“內(nèi)角”。)

  2、設(shè)疑激趣

  現(xiàn)在有兩個三角形朋友為了一件事正在爭論,我們來幫幫它們。(播放課件)

  同學們,請你們給評評理:是這樣嗎?

  現(xiàn)在出現(xiàn)了兩種不同的意見,有的同學認為大三角形的內(nèi)角和大,還有部分同學認為兩個三角形的內(nèi)角和的度數(shù)都是一樣的。那么到底誰說得對呢?

  這節(jié)課我們就一起來研究這個問題。(板書課題:三角形的內(nèi)角和)

  (二)、動手操作,探究新知

  1、探究特殊三角形的內(nèi)角和

  師拿出兩個三角板,問:它們是什么三角形?

  (直角三角形)

  請大家拿出自己的兩個三角尺,在小組內(nèi)說說每一個三角尺上三個角的度數(shù),并求出這兩個直角三角形的內(nèi)角和。

  (由于學生在四年級(上冊)教材里已經(jīng)知道了兩塊三角尺上的每一個角的度數(shù),所以能夠很快求得每塊三角尺的3個角的和都是180°)

  從剛才兩個三角形內(nèi)角和的計算中,你們發(fā)現(xiàn)了什么?

  (這兩個三角形的內(nèi)角和都是180°)。

  這兩個三角形都是直角三角形,并且是特殊的三角形。

  2、探究一般三角形內(nèi)角和

 。1).猜一猜。

  猜一猜其它三角形的內(nèi)角和是多少度呢?(可能是180°)

 。2).操作、驗證一般三角形內(nèi)角和是180°。

  所有三角形的內(nèi)角和究竟是不是180°,你能用什么辦法來證明,使別人相信呢?

 。ǹ梢韵攘砍雒總內(nèi)角的度數(shù),再加起來。)

  測量計算,是嗎?那就請四人小組共同計算吧!

  老師讓每個同學都準備了直角三角形、銳角三角形和鈍角三角形三種不同的三角形,并量出了每個內(nèi)角的度數(shù),下面就請同學們在小組內(nèi)每種各選一個求出它們的內(nèi)角和,把結(jié)果填在表中:

  (3)小組匯報結(jié)果。

  請各小組匯報探究結(jié)果

  提問:你們發(fā)現(xiàn)了什么?

  小結(jié):通過測量計算我們發(fā)現(xiàn)每個三角形的三個內(nèi)角和都在180°左右。

  3繼續(xù)探究

 。1)動手操作,驗證猜測。

  沒有得到統(tǒng)一的結(jié)果。這個辦法不能使人很信服,怎么辦?還有其它辦法嗎?請同學們動腦筋想一想,能通過動手操作來驗證嗎?

  (先小組討論,再匯報方法)

  大家的辦法都很好,請你們小組合作,動手操作。

 。2)學生操作,教師巡視指導(dǎo)。(3)全班交流匯報驗證方法、結(jié)果。

  學生放在投影儀上展示給大家看。(剪拼、撕拼、折拼)

  我們可以得出一個怎樣的結(jié)論?(三角形的內(nèi)角和是180°)

  引導(dǎo)學生通過剪拼、撕拼和折拼的方法發(fā)現(xiàn):各類三角形的三個內(nèi)角都可以拼成一個平角,使學生證實三角形內(nèi)角和確實是180°,測量計算有誤差。

  5、辨析概念,透徹理解。

 。ǔ鍪疽粋大三角形)它的內(nèi)角和是多少度?

 。ǔ鍪疽粋很小的三角形)它的內(nèi)角和是多少度?

  一塊三角尺的內(nèi)角和180°,兩塊同樣的三角尺拼成的一個大三角形的內(nèi)角和又是多少呢?(學生有的`答360°,有的180°.)

  把大三角形平均分成兩份。每個小三角形的內(nèi)角和是多少度?(生有的答90°,有的180°。)

  這兩道題都有兩種答案,到底哪個對?為什么?

 。▽W生個個臉上露出疑問。)

  大家可以在小組內(nèi)用三角尺拼一拼,也可以畫一畫,互相討論。

  經(jīng)過一翻激烈的討論探究后,學生發(fā)現(xiàn):三角形不論位置、大小、形狀如何,它的內(nèi)角和總是180°

 。ㄈ┬〗Y(jié)

  剛才同學們用很多方法證明了無論是什么樣的三角形內(nèi)角和都是180°,現(xiàn)在讓我們用自豪的、肯定的語氣讀出我們的發(fā)現(xiàn):“三角形的內(nèi)角和是180°”。

  (四)、鞏固練習,拓展應(yīng)用

  下面,我們就根據(jù)三角形內(nèi)角和的知識來解決一些相關(guān)的數(shù)學問題。(課件)

  1、求三角形中一個未知角的度數(shù)。

 。1)在三角形中,已知∠1=85°,∠2=65°,求∠3。

 。2)在三角形中,已知∠1=98°,∠2=49°,求∠3。

  2、判斷

  (1)一個三角形的三個內(nèi)角度數(shù)是:90°、75°、25°。()

 。2)一個三角形至少有兩個角是銳角。()

 。3)鈍角三角形的內(nèi)角和比銳角三角形的內(nèi)角和大。()

 。4)直角三角形的兩個銳角和等于90°。()

  3、解決生活實際問題。

 。1)爸爸給小紅買了一個等腰三角形的風箏,它的一個底角是70°,它的頂角是多少度?

 。2)交通警示牌“讓”為等邊三角形,求其中一個角的度數(shù)。

  4、拓展練習。

  利用三角形內(nèi)角和是180°,求出下面四邊形、六邊形的內(nèi)角和?(課件)

  小組的同學討論一下,看誰能找到最佳方法。

  學生匯報,在圖中畫上虛線,教師課件演示。

  請同學們自己在練習本上計算。

  (四)、課堂總結(jié)

  通過這節(jié)課的學習,你有哪些收獲?

【三角形的內(nèi)角和教案】相關(guān)文章:

《三角形的內(nèi)角和》教案03-01

三角形內(nèi)角和教案02-19

《三角形內(nèi)角和》數(shù)學教案07-18

《三角形的內(nèi)角和》教案(精選10篇)03-31

《三角形內(nèi)角和》數(shù)學教案02-13

三角形內(nèi)角和教案(精選22篇)02-22

三角形內(nèi)角和教案(通用21篇)02-24

三角形內(nèi)角和教案合集八篇05-15

三角形內(nèi)角和教案匯編六篇05-15