反比例函數(shù)教案【精選】
作為一位杰出的老師,通常需要用到教案來輔助教學,編寫教案助于積累教學經驗,不斷提高教學質量。那么應當如何寫教案呢?下面是小編整理的反比例函數(shù)教案,僅供參考,希望能夠幫助到大家。
反比例函數(shù)教案1
教學目標
(一)教學知識點
1.從現(xiàn)實情境和已有的知識經驗出發(fā),討論兩個變量之間的相似關系,加深對函數(shù)概念的理解.
2.經歷抽象反比例函數(shù)概念的過程,領會反比例函數(shù)的意義,理解反比例函數(shù)的概念.
(二)能力訓練要求
結合具體情境體會反比例函數(shù)的意義,能根據已知條件確定反比例函數(shù)表達式.
(三)情感與價值觀要求
結合實例引導學生了解所討論的函數(shù)的表達形式,形成反比例函數(shù)概念的具體形象,是從感性認識到理性認識的轉化過程,發(fā)展學生的思維;同時體驗數(shù)學活動與人類生活的密切聯(lián)系及對人類歷史發(fā)展的作用.
教學重點
經歷抽象反比例函數(shù)概念的過程,領會反比例函數(shù)的意義,理解反比例函數(shù)的概念.
教學難點
領會反比例函數(shù)的意義,理解反比例函數(shù)的概念.
教學方法
教師引導學生進行歸納.
教具準備
投影片兩張
第一張:(記作5.1A)
第二張:(記作5.1B)
教學過程
Ⅰ.創(chuàng)設問題情境,引入新課
[師]我們在前面學過一次函數(shù)和正比例函數(shù),知道一次函數(shù)的表達式為y=kx+b.其中k,b為常數(shù)且k≠0,正比例函數(shù)的表達式為y=kx,其中k為不為零的常數(shù).但是在現(xiàn)實生活中,并不是只有這兩種類型的表達式.如從A地到B地的路程為1200km,某人開車要從A地到B地,汽車的速度v(km/h)和時間t(h)之間的關系式為vt=1200,則t= 中t和v之間的關系式肯定不是正比例函數(shù)和一次函數(shù)的關系式,那么它們之間的關系式究竟是什么關系式呢?這就是本節(jié)課我們要揭開的奧秘.
、.新課講解
[師]我們今天要學習的是反比例函數(shù),它是函數(shù)中的一種,首先我們先來回憶一下什么叫函數(shù)?
1.復習函數(shù)的定義
[師]大家還記得函數(shù)的定義嗎?
[生]記得.
在某變化過程中有兩個變量x,y.若給定其中一個變量x的值,y都有唯一確定的值與它對應,則稱y是x的函數(shù).
[師]大家能舉出實例嗎?
[生]可以.
例如購買單價是0.4元的鉛筆,總金額y(元)與鉛筆數(shù)n(個)的關系是y=0.4n.這是一個正比例函數(shù).
等腰三角形的頂角的'度數(shù)y與底角的度數(shù)x的關系為y=180-2x,y是x的一次函數(shù).
[師]很好,我們復習了函數(shù)的定義以及正比例函數(shù)和一次函數(shù)的表達式以后,再來看下面實際問題中的變量之間是否存在函數(shù)關系,若是函數(shù)關系,那么是否為正比例或一次函數(shù)關系式.
2.經歷抽象反比例函數(shù)概念的過程,并能類推歸納出反比例函數(shù)的表達式.
[師]請看下面的問題.
電流I,電阻R,電壓U之間滿足關系式U=IR,當U=220V時.
(1)你能用含有R的代數(shù)式表示I嗎?
(2)利用寫出的關系式完成下表:
R/Ω20406080100
I/A
當R越來越大時,I怎樣變化?當R越來越小呢?
(3)變量I是R的函數(shù)嗎?為什么?
請大家交流后回答.
[生](1)能用含有R的代數(shù)式表示I.
由IR=220,得I= .
(2)利用上面的關系式可知,從左到右依次填11,5.5,3.67,2.75,2.2.
從表格中的數(shù)據可知,當電阻R越來越大時,電流I越來越小;當R越來越小時,I越來越大.
(3)變量I是R的函數(shù).
由IR=220得I= .當給定一個R的值時,相應地就確定了一個I值,因此I是R的函數(shù).
[師]這位同學回答的非常精彩,下面大家再思考一個問題.
舞臺燈光為什么在很短的時間內將陽光燦爛的晴日變成濃云密布的陰天,或由黑夜變成白晝的?請大家互相交流后回答.
[生]根據I= ,當R變大時,I變小,燈光較暗;當R變小時,I變大,燈光較亮.所以通過改變電阻R的大小來控制電流I的變化,就可以在很短的時間內將陽光燦爛的晴日變成濃云密布的陰天,或由黑夜變成白晝.
投影片:(5.1A)
京滬高速公路全長約為1262km,汽車沿京滬高速公路從上海駛往北京,汽車行完全程所需的時間t(h)與行駛的平均速度v(km/h)之間有怎樣的關系?變量t是v的函數(shù)嗎?為什么?
[師]經過剛才的例題講解,大家可以獨立完成此題.如有困難再進行交流.
[生]由路程等于速度乘以時間可知1262=vt,則有t= .當給定一個v的值時,相應地就確定了一個t值,根據函數(shù)的定義可知t是v的函數(shù).
[師]從上面的兩個例題得出關系式
I= 和t= .
它們是函數(shù)嗎?它們是正比例函數(shù)嗎?是一次函數(shù)嗎?
[生]因為給定一個R的值,相應地就確定了一個I的值,所以I是R的函數(shù);同理可知t是v的函數(shù).但是從表達式來看,它們既不是正比例函數(shù),也不是一次函數(shù).
[師]我們知道正比例函數(shù)的關系式為y=kx(k≠0),一次函數(shù)的關系式為y=kx+b(k,b為常數(shù)且k≠0).大家能否根據兩個例題歸納出這一類函數(shù)的表達式呢?
[生]可以.由I= 與t= 可知關系式為y= (k為常數(shù)且k≠0).
[師]很好.
一般地,如果兩個變量x、y之間的關系可以表示成y= (k為常數(shù),k≠0)的形式,那么稱y是x的反比例函數(shù).
從y= 中可知x作為分母,所以x不能為零.
3.做一做
投影片(5.1B)
1.一個矩形的面積為20cm2,相鄰的兩條邊長分別為x cm和y cm,那么變量y是變量x的函數(shù)嗎?是反比例函數(shù)嗎?為什么?
2.某村有耕地346.2公頃,人口數(shù)量n逐年發(fā)生變化,那么該村人均占有耕地面積m(公頃/人)是全村人口數(shù)n的函數(shù)嗎?是反比例函數(shù)嗎?為什么?
3.y是x的反比例函數(shù),下表給出了x與y的一些值:
x-2-1
13
y
2-1
(1)寫出這個反比例函數(shù)的表達式;
(2)根據函數(shù)表達式完成上表.
[生]由面積等于長乘以寬可得xy=20.則有y= .變量y是變量x的函數(shù).因為給定一個x的值,相應地就確定了一個y的值,根據函數(shù)的定義可知變量y是變量x的函數(shù).再根據反比例函數(shù)的表達式可知y是x的反比例函數(shù).
[生]根據人均占有耕地面積等于總耕地面積除以總人數(shù)得m= .給定一個n的值,就相應地確定了一個m的值,因此m是n的函數(shù),又m= 符合反比例函數(shù)的形式,所以是反比例函數(shù).
[師]在做第3題之前,我們先回憶一下如何求正比例函數(shù)和一次函數(shù)的表達式.在y=kx中,要確定關系式的關鍵是求得非零常數(shù)k的值,因此需要一個條件即可;在一次函數(shù)y=kx+b中,要確定關系式實際上是要求得b和k的值,有兩個待定系數(shù)因此需要兩個條件.同理,在求反比例函數(shù)的表達式時,實際上是要確定k的值.因此只需要一個條件即可,也就是要有一組x與y的值確定k的值.所以要從表格中進行觀察.由x=-1,y=2確定k的值.然后再根據求出的表達式分別計算x或y的值.
[生]設反比例函數(shù)的表達式為
y= .
(1)當x=-1時,y=2;
∴k=-2.
∴表達式為y=- .
(2)當x=-2時,y=1.
當x=- 時,y=4;
當x= 時,y=-4;
當x=1時,y=-2.
當x=3時,y=- ;
當y= 時,x=-3;
當y=-1時,x=2.
因此表格中從左到右應填
-3,1,4,-4,-2,2,- .
、.課堂練習
隨堂練習(P131)
Ⅳ.課時小結
本節(jié)課我們學習了反比例函數(shù)的定義,并歸納總結出反比例函數(shù)的表達式為y= (k為常數(shù),k≠0),自變量x不能為零.還能根據定義和表達式判斷某兩個變量之間的關系是否是函數(shù),是什么函數(shù).
、.課后作業(yè)
習題5.1
、.活動與探究
已知y-1與 成反比例,且當x=1時,y=4,求y與x的函數(shù)表達式,并判斷是哪類函數(shù)?
分析:由y與x成反比例可知y= ,得y-1與 成反比例的關系式為y-1= =k(x+2),由x=1、y=4確定k的值.從而求出表達式.
解:由題意可知y-1= =k(x+2).
當x=1時,y=4.
所以3k=4-1,
k=1.
即表達式為y-1=x+2,
y=x+3.
由上可知y是x的一次函數(shù).
板書設計
反比例函數(shù)教案2
教學目標
1. 經歷從實際問題抽象出反比例函數(shù)的探索過程,發(fā)展學生的抽象思維能力。
2. 理解反比例函數(shù)的概念,會列出實際問題的反比例函數(shù)關系式。
3. 使學生會畫出反比例函數(shù)的圖象。
4. 經歷對反比例函數(shù)圖象的觀察、分析、討論、概括過程,會說出它的性質。
教學重點
1、 使學生了解反比例函數(shù)的表達式,會畫反比例函數(shù)圖象
2、 使學生掌握反比例函數(shù)的圖象性質
3、 利用反比例函數(shù)解題
教學難點
1、 列函數(shù)表達式
2、 反比例函數(shù)圖象解題
教學過程
教師活動
一、作業(yè)檢查與講評
二、復習導入
1.什么是正比例函數(shù)?
我們知道當
(1) 當路程s一定,時間t與速度v成反比例,即vt=s(s是常數(shù))
(2) 當矩形面積一定時,長a和寬b成反比例,即ab=s(s是常數(shù))
創(chuàng)設問題情境
問題1:小華的爸爸早晨騎自行車帶小華到15千米外的鎮(zhèn)上去趕集,回來時讓小華乘坐公共汽車,用的時間少了。假設自行車和汽車的速度在行駛過程中都不變,爸爸要小華找出從家里到鎮(zhèn)上的時間和乘坐不同交通工具的速度之間的關系。
分析 和其他實際問題一樣,要探求兩個變量之間的關系,就應先選用適當?shù)姆柋硎咀兞,再根據題意列出相應的函數(shù)關系式.
設小華乘坐交通工具的速度是v千米/時,從家里到鎮(zhèn)上的時間是t小時.因為在勻速運動中,時間=路程÷速度,所以
從這個關系式中發(fā)現(xiàn):
1.路程一定時,時間t就是速度v的反比例函數(shù).即速度增大了,時間變小;速度減小了,時間增大.
2.自變量v的取值是v>0.
問題2:學校課外生物小組的同學準備自己動手,用舊圍欄建一個面積為24平方米的矩形飼養(yǎng)場.設它的一邊長為x(米),求另一邊的長y(米)與x的函數(shù)關系式.
分析 根據矩形面積可知
xy=24,即
從這個關系中發(fā)現(xiàn):
1.當矩形的面積一定時,矩形的一邊是另一邊的反比例函數(shù).即矩形的一邊長增大了,則另一邊減小;若一邊減小了,則另一邊增大;
2.自變量的取值是x>0.
三、新課講解
上述兩個函數(shù)都具有的形式,一般地,形如(k是常數(shù),k≠0)的函數(shù)叫做反比例函數(shù)(proportional function).
說明 1.反比例函數(shù)與正比例函數(shù)定義相比較,本質上,正比例y=kx,即,k是常數(shù),且k≠0;反比例函數(shù),則xy=k,k是常數(shù),且k≠0.可利用定義判斷兩個量x和y滿足哪一種比例關系.
2.反比例函數(shù)的解析式又可以寫成:( k是常數(shù),k≠0).
3.要求出反比例函數(shù)的解析式,只要求出k即可.
實踐應用
例1 下列函數(shù)關系中,哪些是反比例函數(shù)?
(1)已知平行四邊形的面積是12cm2,它的一邊是acm,這邊上的高是hcm,則a與h的函數(shù)關系;
(2)壓強p一定時,壓力F與受力面積s的關系;
(3)功是常數(shù)W時,力F與物體在力的方向上通過的距離s的函數(shù)關系.
(4)某鄉(xiāng)糧食總產量為m噸,那么該鄉(xiāng)每人平均擁有糧食y(噸)與該鄉(xiāng)人口數(shù)x的函數(shù)關系式.
例2 當m為何值時,函數(shù)是反比例函數(shù),并求出其函數(shù)解析式.
例3 將下列各題中y與x的函數(shù)關系與出來.
(1),z與x成正比例;
(2)y與z成反比例,z與3x成反比例;
(3)y與2z成反比例,z與成正比例;
例4 已知y與x2成反比例,并且當x=3時,y=2.求x=1.5時y的值.
分析 因為y與 x2成反比例,所以設,再用待定系數(shù)法就可以求出k,進而再求出y的值.
例5 已知y=y1+y2, y1與x成正比例,y2與x2成反比例,且x=2與x=3時,y的值都等于19.求y與x間的函數(shù)關系式.
小結
一般地,形如(k是常數(shù),k≠0)的函數(shù)叫做反比例函數(shù)(proportional function).
要求反比例函數(shù)的解析式,可通過待定系數(shù)法求出k值,即可確定.
練習2
1.分別寫出下列問題中兩個變量間的函數(shù)關系式,指出哪些是正比例函數(shù),哪些是反比例函數(shù),哪些既不是正比例函數(shù)也不是反比例函數(shù)?
(1)小紅一分鐘可以制作2朵花,x分鐘可以制作y朵花;
(2)體積為100cm3的長方體,高為hcm時,底面積為Scm2;
(3)用一根長50cm的鐵絲彎成一個矩形,一邊長為xcm時,面積為ycm2;
(4)小李接到對長為100米的管道進行檢修的任務,設每天能完成10米,x天后剩下的未檢修的管道長為y米.
2.已知y與x-2成反比例,當x=4時,y=3,求當x=5時,y的`值.
3.已知y=y1+y2, y1與成正比例,y2與x2成反比例.當x=1時,y=-12;當x=4時,y=7.(1)求y與x的函數(shù)關系式和x的取范圍;(2)當x=時,求y的值.
4.已知一個長方體的體積是100立方厘米,它的長是ycm,寬是5cm,高是xcm.
(1)寫出用高表示長的函數(shù)式;
(2)寫出自變量x的取值范圍;
(3)當x=3cm時,求y的值.
5.試用描點作圖法畫出問題1中函數(shù)的圖象.
上節(jié)的練習中,我們畫出了問題1中函數(shù)的圖象,發(fā)現(xiàn)它并不是直線.那么它是怎么樣的曲線呢?本節(jié)課,我們就來討論一般的反比例函數(shù)(k是常數(shù),k≠0)的圖象,探究它有什么性質.
二、探究歸納
1.畫出函數(shù)的圖象.
解 1.列表:這個函數(shù)中自變量x的取值范圍是不等于零的一切實數(shù),列出x與y的對應值:
2.描點:用表里各組對應值作為點的坐標,在直角坐標系中描出在京各點點(-6,-1)、(-3,-2)、(-2,-3)等.
3.連線:用平滑的曲線將第一象限各點依次連起來,得到圖象的第一個分支;用平滑的曲線將第三象限各點依次連起來,得到圖象的另一個分支.這兩個分支合起來,就是反比例函數(shù)的圖象.
上述圖象,通常稱為雙曲線(hyperbola).
提問 這兩條曲線會與x軸、y軸相交嗎?為什么?
畫出反比例函數(shù)的圖象
1.這個函數(shù)的圖象在哪兩個象限?和函數(shù)的圖象有什么不同?
2.反比例函數(shù)(k≠0)的圖象在哪兩個象限內?由什么確定?
3.聯(lián)系一次函數(shù)的性質,你能否總結出反比例函數(shù)中隨著自變量x的增加,函數(shù)y將怎樣變化?有什么規(guī)律?
反比例函數(shù)有下列性質:
(1)當k>0時,函數(shù)的圖象在第一、三象限,在每個象限內,曲線從左向右下降,也就是在每個象限內y隨x的增加而減少;
(2)當k<0時,函數(shù)的圖象在第二、四象限,在每個象限內,曲線從左向右上升,也就是在每個象限內y隨x的增加而增加.
注 1.雙曲線的兩個分支與x軸和y軸沒有交點;
2.雙曲線的兩個分支關于原點成中心對稱.
以上兩點性質在上堂課的問題1和問題2中反映了怎樣的實際意義?
在問題1中反映了汽車比自行車的速度快,小華乘汽車比騎自行車到鎮(zhèn)上的時間少.
在問題2中反映了在面積一定的情況下,飼養(yǎng)場的一邊越長,另一邊越小.
三、實踐應用
例1 若反比例函數(shù)的圖象在第二、四象限,求m的值.
分析 由反比例函數(shù)的定義可知: ,又由于圖象在二、四象限,所以m+1<0,由這兩個條件可解出m的值.
解 由題意,得 解得.
例2 已知反比例函數(shù)(k≠0),當x>0時,y隨x的增大而增大,求一次函數(shù)y=kx-k的圖象經過的象限.
例3 已知反比例函數(shù)的圖象過點(1,-2).
(1)求這個函數(shù)的解析式,并畫出圖象;
(2)若點A(-5,m)在圖象上,則點A關于兩坐標軸和原點的對稱點是否還在圖象上?
例4 已知函數(shù)為反比例函數(shù).
(1)求m的值;
(2)它的圖象在第幾象限內?在各象限內,y隨x的增大如何變化?
(3)當-3≤x≤時,求此函數(shù)的最大值和最小值.
例5 一個長方體的體積是100立方厘米,它的長是y厘米,寬是5厘米,高是x厘米.
(1)寫出用高表示長的函數(shù)關系式;
(2)寫出自變量x的取值范圍;
(3)畫出函數(shù)的圖象.
說明 由于自變量x>0,所以畫出的反比例函數(shù)的圖象只是位于第一象限內的一個分支.
小結
本節(jié)課學習了畫反比例函數(shù)的圖象和探討了反比例函數(shù)的性質.
1.反比例函數(shù)的圖象是雙曲線(hyperbola).
2.反比例函數(shù)有如下性質:
(1)當k>0時,函數(shù)的圖象在第一、三象限,在每個象限內,曲線從左向右下降,也就是在每個象限內y隨x的增加而減少;
(2)當k<0時,函數(shù)的圖象在第二、四象限,在每個象限內,曲線從左向右上升,也就是在每個象限內y隨x的增加而增加.
五、課堂練習
1.在同一直角坐標系中畫出下列函數(shù)的圖象:
2.已知y是x的反比例函數(shù),且當x=3時,y=8,求:
(1)y和x的函數(shù)關系式;
(2)當時,y的值;
(3)當x取何值時,?
3.若反比例函數(shù)的圖象在所在象限內,y隨x的增大而增大,求n的值.
4.已知反比例函數(shù)經過點A(2,-m)和B(n,2n),求:
(1)m和n的值;
(2)若圖象上有兩點P1(x1,y1)和P2(x2,y2),且x1<0< x2,試比較y1和 y2的大小
四、課后作業(yè)布置
課后練習卷一份
六、課后教學反思
反比例函數(shù)教案3
教學設計思想
本節(jié)課是在學習了反比例函數(shù)的概念,反比例函數(shù)的圖像和性質等相關知識的基礎上引入的。首先創(chuàng)設問題情境,展示反比例函數(shù)在實際生活中的應用情況,激發(fā)學生的求知欲和濃厚的學習興趣。接下來主要討論了反比例函數(shù)在體積、面積這樣的實際問題中的應用。分析實際問題中變量之間的關系,建立反比例函數(shù)模型,進而解決問題。
教學目標
知識與技能
1、能靈活列反比例函數(shù)表達式解決一些實際問題。
2、能綜合利用幾何、方程、反比例函數(shù)的知識解決一些實際問題。
過程與方法
1、經歷分析實際問題中變量之間的.關系,建立反比例函數(shù)模型,進而解決問題。
2、體會數(shù)學與現(xiàn)實生活的緊密聯(lián)系,增強應用意識,提高運用代數(shù)方法解決問題的能力。
情感態(tài)度與價值觀
體驗反比例函數(shù)是有效地描述現(xiàn)實世界的重要手段,認識到數(shù)學是解決實際問題和進行交流的重要工具。
教學重難點
重點:掌握從實際問題中建構反比例函數(shù)模型。
難點:從實際問題中尋找變量之間的關系。關鍵是充分運用所學知識分析實際情況,建立函數(shù)模型,教學時注意分析過程,滲透數(shù)形結合的思想。
反比例函數(shù)教案4
一、教學目標
1.利用反比例函數(shù)的知識分析、解決實際問題
2.滲透數(shù)形結合思想,提高學生用函數(shù)觀點解決問題的能力
二、重點、難點
1.重點:利用反比例函數(shù)的知識分析、解決實際問題
2.難點:分析實際問題中的數(shù)量關系,正確寫出函數(shù)解析式
3.難點的突破方法:
用函數(shù)觀點解實際問題,一要搞清題目中的基本數(shù)量關系,將實際問題抽象成數(shù)學問題,看看各變量間應滿足什么樣的關系式(包括已學過的基本公式),這一步很重要;二是要分清自變量和函數(shù),以便寫出正確的函數(shù)關系式,并注意自變量的取值范圍;三要熟練掌握反比例函數(shù)的意義、圖象和性質,特別是圖象,要做到數(shù)形結合,這樣有利于分析和解決問題。教學中要讓學生領會這一解決實際問題的基本思路。
三、例題的意圖分析
教材第57頁的.例1,數(shù)量關系比較簡單,學生根據基本公式很容易寫出函數(shù)關系式,此題實際上是利用了反比例函數(shù)的定義,同時也是要讓學生學會分析問題的方法。
教材第58頁的例2是一道利用反比例函數(shù)的定義和性質來解決的實際問題,此題的實際背景較例1稍復雜些,目的是為了提高學生將實際問題抽象成數(shù)學問題的能力,掌握用函數(shù)觀點去分析和解決問題的思路。
補充例題一是為了鞏固反比例函數(shù)的有關知識,二是為了提高學生從圖象中讀取信息的能力,掌握數(shù)形結合的思想方法,以便更好地解決實際問題
反比例函數(shù)教案5
教學設計思路
由對現(xiàn)實問題的討論抽象出反比例函數(shù)的概念,通過對問題的解決進一步明確:
1.反比例函數(shù)的意義;
2.反比例函數(shù)的概念;
3.反比例函數(shù)的一般形式。
教學目標
知識與技能
1.從現(xiàn)實情境和已有的知識、經驗出發(fā),討論兩個變量之間的相依關系,加深對函數(shù)概念的理解。
2.經歷抽象反比例函數(shù)概念的過程,領會反比例函數(shù)的.意義,表述反比例函數(shù)的概念。
過程與方法
1.經歷對兩個變量之間相依關系的討論,培養(yǎng)辯證唯物主義觀點。
2.經歷抽象反比例函數(shù)概念的過程,發(fā)展抽象思維能力,提高數(shù)學化意識。
情感態(tài)度與價值觀
1.認識到數(shù)學知識是有聯(lián)系的,逐步感受數(shù)學內容的系統(tǒng)性;
2.通過分組討論,培養(yǎng)合作交流意識和探索精神。
教學重點和難點
理解和領會反比例函數(shù)的概念。
教學難點
領悟反比例函數(shù)的概念。
教學方法
啟發(fā)引導、分組討論
課時安排
1課時
教學媒體
課件
教學過程設計
復習引入
1.什么叫一次函數(shù)?一次函數(shù)的一般形式是怎樣的?什么叫正比例函數(shù)?它與算術中的正比例有怎樣的關系?
2.在上一學段,我們研究了現(xiàn)實生活中成反比例的兩個量
反比例函數(shù)教案6
教學過程設計
一、創(chuàng)設情境 引入課題
活動1
問題:
你們還記得一次函數(shù)圖象與性質嗎?
設計意圖
通過創(chuàng)設問題情境,引導學生復習一次函數(shù)圖象的知識,激發(fā)學生參與課堂學習的熱情,為學習反比例函數(shù)的圖象奠定基礎。
師生形為:
教師提出問題。學生思考、交流,回答問題。教師根據學生活動情況進行補充和完善。
二、類比聯(lián)想 探究交流
活動2
問題:
例2 畫出反比例函數(shù)y= 與y=- 的圖象。
(教師先引導學生思考,示范畫出反比例函數(shù)y= 的圖象,再讓學生嘗試畫出反比例函數(shù)y=- 的圖象。)
設計意圖:
通過畫反比例函數(shù)的圖象使學生進一步了解用描點的方法畫函數(shù)圖象的基本步驟,其他函數(shù)的圖象奠定基礎,同時也培養(yǎng)了學生動手操作能力。
師生形為:
學生可以先自己動手畫圖,相互觀摩。
在此活動中,教師應重點關注:
1學生能否順利進行三種表示方法的相互轉換:
2是否熟悉作出函數(shù)圖象的主要步驟,會作反比例函數(shù)的圖象;
3在動手作圖的過程中,能否勤于動手,樂于探索。
比較y= 、y=- 的圖象有什么共同特征?它們之間有什么關系?
(由學生觀察思考,回答問題,并使學生了解反比例函數(shù)的圖象是一種雙曲線。)
設計意圖:
學生通過觀察比較,總結兩個反比例函數(shù)圖象的共同特征(都是雙曲線),以及在平面直角坐標系中的位置。在活動中,讓學生自己去觀察、類比發(fā)現(xiàn),過程讓學生自己去感受,結論讓學生自己去總結,實現(xiàn)學生主動參與、探究新知的目的。
師生形為:
學生分組針對問題結合畫出的圖象分類討論,歸納總結反比例函數(shù)圖象的共同點,為后面性質的探索打下基礎。
教師參與到學生的討論中去,積極引導。
(三)探索比較 發(fā)現(xiàn)規(guī)律
活動3
問題:
觀察反比例函數(shù)y= 與y=- 的圖象。
你能發(fā)現(xiàn)它們的共同特征以及不同點嗎?
每個函數(shù)的圖象分別位于哪幾個象限?
在每一個象限內,y隨x的變化如何變化?
由學生分小組討論,觀察思考后進行分析、歸納,得到反比例函數(shù)y= 的性質:
形狀: 反比例函數(shù)的圖象是由兩支雙曲線組成的.因此稱反比例函數(shù)的圖象為雙曲線;
位置: 當k0時,兩支雙曲線分別位于第一,三象限內,在每個象限內y隨x增大而減小;當k0時,兩支雙曲線分別位于第二,四象限內,在每個象限內y隨x增大而增大;
任意一組變量的乘積是一個定值,即xy=k.
(注意:雙曲線的兩個分支都不會與x軸,y軸相交。)
學生通過對反比例函數(shù)圖象進行觀察、分析,總結出了反比例函數(shù)的性質,使學生明白性質的可靠性;通過對函數(shù)圖象的位置與k值符號關系的探討,以及反比例函數(shù)的'兩個分支在相應的象限內,y隨x值的增大(或減小)而增大(或減小)的探討,有利于加深學生對性質的理解和掌握;使學生經歷從特殊到一般的過程,體驗知識產生、形成的過程,逐步達到培養(yǎng)學生抽象概括能力和激發(fā)求知欲望;同時通過對反比例函數(shù)增減性的討論,對學生進行辯證唯物主義思想教育.
四、 運用新知 拓展訓練
設計意圖:
拓展練習是為了讓學生靈活運用反比例函數(shù)性質解決問題,學生在研究問題的特點時,能夠緊扣性質進行分析,達到理解并掌握性質的目的.
師生形為:
學生獨立思考完成。
教師巡視,引導學困生完成任務。
五、歸納總結 布置作業(yè)
問題:
本節(jié)課學習了哪些知識?在知識應用過程中需要注意什么?你有什么收獲?
反比例函數(shù)教案7
備課過程,我認真研讀教材,認為本節(jié)課重點和難點就是掌握反比例函數(shù)的概念,以及如何與一次函數(shù)及一次函數(shù)中的正比例函數(shù)的區(qū)別。所以,我在講授新課前安排了對“函數(shù)”、“一次函數(shù)”及“正比例函數(shù)”概念及“一次函數(shù)”和“正比例函數(shù)”一般式的復習。
為了更好的引入“反比例函數(shù)”的概念,并能突出重點,我采用了課本上的問題情境,同時調整了課本上提供的“思考”的問題的位置,將它放到函數(shù)概念引出之后,讓學生體會在生活中有很多反比例關系。
情境設置:
汽車從南京開往上海,全程約300km,全程所用的時間t(h)隨v(km/h)的變化而變化。
(1)你能用含v的`代數(shù)式來表示t嗎?
。2)時間t是速度v的函數(shù)嗎?
設計意圖:與前面復習內容相呼應,讓同學們能在“做一做”和“議一儀”中感受兩個量之間的函數(shù)關系,同時也能注意到與所學“一次函數(shù)”,尤其是“正比例函數(shù)”的不同。從而自然地引入“反比例函數(shù)”概念。
為幫助學生更深刻的認識和掌握反比例函數(shù)概念,我引導學生將反比例函數(shù)的一般式進行變形,并安排了相應的例題。
一般式變形:(其中k均不為0)
通過對一般式的變形,讓學生從“形”上掌握“反比例函數(shù)”的概念,在結合“思考”的幾個問題,讓學生從“神”神上體驗“反比例函數(shù)”。
為加深難度,我又補充了幾個練習:
1、為何值時,為反比例函數(shù)?
2是的反比例函數(shù),是的正比例函數(shù),則與成什么關系?
關于課堂教學:
由于備課充分,我信心十足,課堂上情緒飽滿,學生們也受到我的影響,精神飽滿,課堂氣氛相對活躍。
在復習“函數(shù)”這一概念的時候,很多學生顯露出難色,顯然不是忘記了就是不知到如何表達。我舉了兩個簡單的實例,學生們立即就回憶起函數(shù)的本質含義,為學習反比例函數(shù)做了很好的鋪墊。一路走來,非常輕松。
對反比例函數(shù)一般式的變形,是課堂教學中較成功的一筆,就是因為這一探索過程,對于我補充的練習1這類屬中等難度的題型,班級中成績偏下的同學也能很好的掌握。
而對于練習3,對于初學反比例函數(shù)的學生來說,有點難度,大部分學生顯露出感興趣的神情,不少學生能很好得解答此類題。
經驗感想:
1、課前認真準備,對授課效果的影響是不容忽視的。
2、教師的精神狀態(tài)直接影響學生的精神狀態(tài)。
3、數(shù)學教學一定要重概念,抓本質。
4、課堂上要注重學生情感,表情,可適當調整教學深度。
反比例函數(shù)教案8
【教學目的】
1、知識目標:經歷觀察、歸納、交流的過程,探索反比例函數(shù)的主要性質及其圖像形狀。
2、能力目標:提高學生的觀察、分析能力和對圖形的感知水平。
3、情感目標:讓學生進一步體會反比例函數(shù)刻畫現(xiàn)實生活問題的作用。
【教學重點】
探索反比例函數(shù)圖象的主要性質及其圖像形狀。
【教學難點】
1、準確畫出反比例函數(shù)的圖象。
2、準確掌握并能運用反比例函數(shù)圖象的性質。
【教學過程】
活動1、匯海拾貝
讓學生回憶我們所學過得一次函數(shù)y=kx+b(k≠0),說出畫函數(shù)圖像的一般步驟。(列表、描點、連線),對照圖象回憶一次函數(shù)的性質。
活動2、學海歷練
讓學生仿照畫一次函數(shù)的方法畫反比例函數(shù)y=2/x和y=—2/x的圖像并觀察圖像的特點
活動3、成果展示
將各組的成果展示在大家的面前,并糾正可能出現(xiàn)的問題。
活動4、行家看臺
1.反比例函數(shù)的圖象是雙曲線
2.當k>0時,兩支雙曲線分別位于第一,三象限內當k<0時,兩支雙曲線分別位于第二,四象限內
3.雙曲線會越來越靠近坐標軸,但不會與坐標軸相交
活動5、星級挑戰(zhàn)
1星:
1、反比例函數(shù)y=—5/x的圖象大致是()
2、函數(shù)y=6/x的圖像在第象限,函數(shù)y=—4/x的.圖像在第象限。
2星:
1、函數(shù)y=(m—2)/x的圖像在二、四象限,則m的取值范圍是
2、函數(shù)y=(4—k)/x的圖像在一、三象限,則k的取值范圍是
3星:
1、下列反比例函數(shù)圖像的一個分支,在第三象限的是()
a、y=(3—π)/xb、y=2—1/xc、y=—3/xd、y=k/x
2、已知反比例函數(shù)y=—k/x的圖像在第二、四象限,那么一次函數(shù)y=kx+3的圖像經過()
a、第一、二、三象限b、第一、二、四象限
c、第一、三、四象限d、第二、三、四象限
4星:
1、在同一坐標系中,函數(shù)y=—k/x和y=kx—k的圖像大致是
2、反比例函數(shù)y=ab/x的圖像在第一、三象限,那么一次函數(shù)y=ax+b的圖像大致是
5星:
1、反比例函數(shù)y2m
1xm28,它的圖像在一、三象限,則2、反比例函數(shù)y
活動6、回味無窮k4k2,它的圖像在一、三象限,則k的取值范圍是x
1、反比例函數(shù)的圖象是雙曲線
2、當k>0時,兩支雙曲線分別位于第一,三象限內當k<0時,兩支雙曲線分別位于第二,四象限內
3、雙曲線會越來越靠近坐標軸,但不會與坐標軸相交活動
7、終極挑戰(zhàn)
如圖,矩形abcd的對角線bd經過坐標原點,矩形的邊分別平行于坐標軸,點c在反比例函數(shù)y=(k2—5k—10)/x的圖像上,若點a的坐標是(—2,—2)則k的值為
反比例函數(shù)教案9
知識技能目標
1.理解反比例函數(shù)的圖象是雙曲線,利用描點法畫出反比例函數(shù)的圖象,說出它的性質;
2.利用反比例函數(shù)的圖象解決有關問題。
過程性目標
1.經歷對反比例函數(shù)圖象的觀察、分析、討論、概括過程,會說出它的性質;
2.探索反比例函數(shù)的圖象的性質,體會用數(shù)形結合思想解數(shù)學問題。
教學過程
一、創(chuàng)設情境
上節(jié)的練習中,我們畫出了問題1中函數(shù)的圖象,發(fā)現(xiàn)它并不是直線。那么它是怎么樣的曲線呢?本節(jié)課,我們就來討論一般的反比例函數(shù)(k是常數(shù),k0)的圖象,探究它有什么性質。
二、探究歸納
1.畫出函數(shù)的圖象。
分析畫出函數(shù)圖象一般分為列表、描點、連線三個步驟,在反比例函數(shù)中自變量x 0.
解1.列表:這個函數(shù)中自變量x的取值范圍是不等于零的一切實數(shù),列出x與y的對應值:
2.描點:用表里各組對應值作為點的坐標,在直角坐標系中描出在京各點點(-6,-1) 、(-3,-2)、(-2,-3)等。
3.連線:用平滑的曲線將第一象限各點依次連起來,得到圖象的第一個分支;用平滑的曲線將第三象限各點依次連起來,得到圖象的另一個分支。這兩個分支合起來,就是反比例函數(shù)的圖象。
上述圖象,通常稱為雙曲線(hyperbola).
提問這兩條曲線會與x軸、y軸相交嗎?為什么?
學生試一試:畫出反比例函數(shù)的圖象(學生動手畫反比函數(shù)圖象,進一步掌握畫函數(shù)圖象的步驟).
學生討論、交流以下問題,并將討論、交流的結果回答問題。
1.這個函數(shù)的圖象在哪兩個象限?和函數(shù)的圖象有什么不同?
2.反比例函數(shù)(k0)的圖象在哪兩個象限內?由什么確定?
3.聯(lián)系一次函數(shù)的性質,你能否總結出反比例函數(shù)中隨著自變量x的增加,函數(shù)y將怎樣變化?有什么規(guī)律?
反比例函數(shù)有下列性質:
(1)當k0時,函數(shù)的圖象在第一、三象限,在每個象限內,曲線從左向右下降,也就是在每個象限內y隨x的增加而減少;
(2)當k0時,函數(shù)的圖象在第二、四象限,在每個象限內,曲線從左向右上升,也就是在每個象限內y隨x的增加而增加。
注1.雙曲線的`兩個分支與x軸和y軸沒有交點;
2.雙曲線的兩個分支關于原點成中心對稱。
以上兩點性質在上堂課的問題1和問題2中反映了怎樣的實際意義?
在問題1中反映了汽車比自行車的速度快,小華乘汽車比騎自行車到鎮(zhèn)上的時間少。
在問題2中反映了在面積一定的情況下,飼養(yǎng)場的一邊越長,另一邊越小。
三、實踐應用
例1若反比例函數(shù)的圖象在第二、四象限,求m的值。
分析由反比例函數(shù)的定義可知:,又由于圖象在二、四象限,所以m+10,由這兩個條件可解出m的值。
解由題意,得解得.
例2已知反比例函數(shù)(k0),當x0時,y隨x的增大而增大,求一次函數(shù)y=kx-k的圖象經過的象限。
分析由于反比例函數(shù)(k0 ),當x0時,y隨x的增大而增大,因此k0,而一次函數(shù)y=kx-k中,k0,可知,圖象過二、四象限,又-k0,所以直線與y軸的交點在x軸的上方。
解因為反比例函數(shù)(k0),當x0時,y隨x的增大而增大,所以k0,所以一次函數(shù)y=kx-k的圖象經過一、二、四象限。
例3已知反比例函數(shù)的圖象過點(1,-2).
(1)求這個函數(shù)的解析式,并畫出圖象;
(2)若點A(-5,m)在圖象上,則點A關于兩坐標軸和原點的對稱點是否還在圖象上?
分析(1)反比例函數(shù)的圖象過點(1,-2),即當x=1時,y=-2.由待定系數(shù)法可求出反比例函數(shù)解析式;再根據解析式,通過列表、描點、連線可畫出反比例函數(shù)的圖象;
(2)由點A在反比例函數(shù)的圖象上,易求出m的值,再驗證點A關于兩坐標軸和原點的對稱點是否在圖象上。
解(1)設:反比例函數(shù)的解析式為:(k0).
而反比例函數(shù)的圖象過點(1,-2),即當x=1時,y=-2.
所以,k=-2.
即反比例函數(shù)的解析式為:.
(2)點A(-5,m)在反比例函數(shù)圖象上,所以,點A的坐標為.
點A關于x軸的對稱點不在這個圖象上;
點A關于y軸的對稱點不在這個圖象上;
點A關于原點的對稱點在這個圖象上;
例4已知函數(shù)為反比例函數(shù)。
(1)求m的值;
(2)它的圖象在第幾象限內?在各象限內,y隨x的增大如何變化?
(3)當-3時,求此函數(shù)的最大值和最小值。
解(1)由反比例函數(shù)的定義可知:解得,m=-2.
(2)因為-20,所以反比例函數(shù)的圖象在第二、四象限內,在各象限內,y隨x的增大而增大。
(3)因為在第個象限內,y隨x的增大而增大,所以當x=時,y最大值= ;
當x=-3時,y最小值= .
所以當-3時,此函數(shù)的最大值為8,最小值為.
例5一個長方體的體積是100立方厘米,它的長是y厘米,寬是5厘米,高是x厘米。
(1)寫出用高表示長的函數(shù)關系式;
(2)寫出自變量x的取值范圍;
( 3)畫出函數(shù)的圖象。
解(1)因為100=5xy,所以.
(2)x0.
(3)圖象如下:
說明由于自變量x0,所以畫出的反比例函數(shù)的圖象只是位于第一象限內的一個分支。
四、交流反思
本節(jié)課學習了畫反比例函數(shù)的圖象和探討了反比例函數(shù)的性質。
1.反比例函數(shù)的圖象是雙曲線(hyperbola).
2.反比例函數(shù)有如下性質:
(1)當k0時,函數(shù)的圖象在第一、三象限,在每個象限內,曲線從左向右下降,也就是在每個象限內y隨x的增加而減少;
(2)當k0時,函數(shù)的圖象在第二、四象限,在每個象限內,曲線從左向右上升,也就是在每個象限內y隨x的增加而增加。
五、檢測反饋
1.在同一直角坐標系中畫出下列函數(shù)的圖象:
(1) ; (2) .
2.已知y是x的反比例函數(shù),且當x=3時,y=8,求:
(1)y和x的函數(shù)關系式;
(2)當時,y的值;
(3)當x取何值時,?
3.若反比例函數(shù)的圖象在所在象限內,y隨x的增大而增大,求n的值。
4.已知反比例函數(shù)經過點A(2,-m)和B(n,2n),求:
(1)m和n的值;
(2)若圖象上有兩點P1(x1,y1)和P2( x2,y2),且x1 x2,試比較y1和y2的大小。
反比例函數(shù)教案10
【學習目標】
1、經歷抽象反比例函數(shù)概念的過程,體會反比例函數(shù)的含義,理解反比例函數(shù)的概念。
2、理解反比例函數(shù)的意義,根據題目條件會求對應量的值,能用待定系數(shù)法求反比例函數(shù)關系。
3、讓學生經歷在實際問題中探索數(shù)量關系的過程,養(yǎng)成用數(shù)學思維方式解決實際問題的習慣,體會數(shù)學在解決實際問題中的作用。
【學習重點】
理解反比例函數(shù)的意義,確定反比例函數(shù)的解析式。
【學習難點】
反比例函數(shù)的解析式的確定。
【學法指導】
自主、合作、探究
教學互動設計
【自主學習,基礎過關】
一、自主學習:
(一)復習鞏固
1.在一個變化的過程中,如果有兩個變量x和y,當x在其取值范圍內任意取一個值時,y,則稱x為,y叫x的..
2.一次函數(shù)的解析式是:;當時,稱為正比例函數(shù).
3.一條直線經過點(2,3)、(4,7),求該直線的解析式.
以上這種求函數(shù)解析式的方法叫:
(二)自主探究
提出問題:下列問題中,變量間的對應關?可用怎樣的函數(shù)關系式表示?
1.如圖K-3-8,已知反比例函數(shù)的圖象經過三個點A(-4,-3),B(2m,y1),C(6m,y2),其中m>0.
(1)當y1-y2=4時,求m的值;
(2)過點B,C分別作x軸、y軸的垂線,兩垂線相交于點D,點P在x軸上,若△PBD的面積是8,請寫出點P的坐標(不需要寫解答過程).
26.1.2反比例函數(shù)的圖象和性質:課文練習
1.下面關于反比例函數(shù)y=-3x與y=3x的說法中,不正確的是( )
A.其中一個函數(shù)的圖象可由另一個函數(shù)的圖象沿x軸或y軸翻折“復印”得到[
B.它們的圖象都是軸對稱圖形
C.它們的圖象都是中心對稱圖形
D.當x>0時,兩個函數(shù)的函數(shù)值都隨自變量的增大而增大
反比例函數(shù)教案11
教學目標:
1、知識與能力目標:
。1)復習反比例函數(shù)概念、圖象與性質的知識點,通過相應知識點的配套練習加深學生對反比例函數(shù)本章知識的理解與掌握。
。2)能夠根據問題中的條件確定反比例函數(shù)的解析式,會畫出它的圖象,并根據問題確定自變量的取值范圍及增減性。
2、過程與方法目標:通過對相關問題的變式探究,正確運用反比例函數(shù)知識,進一步體驗形成解決問題的一些基本策略,發(fā)展實踐能力和創(chuàng)新精神。
3、情感態(tài)度與價值觀目標:創(chuàng)設教學情景,鼓勵學生主動參與反比例函數(shù)復習活動,激發(fā)學習興趣,獲得問題解決后的樂趣,繼續(xù)滲透數(shù)形結合等數(shù)學思想方法。
教學重點和難點
重點:進一步掌握反比例函數(shù)的概念、圖像、性質并正確運用。
難點:反比例函數(shù)性質的靈活運用。數(shù)形結合思想的應用。
教學方法:
探究——討論——交流——總結
教學媒體:
多媒體課件。
教學過程:
一、知識梳理:
同學們,今天我們就來復習反比例函數(shù),通過今天的復習課,希望大家加深對反比例函數(shù)知識的理解和運用首先請同學們回憶一下,對反比例函數(shù)你了解那知識?
課件展示:
1、反比例函數(shù)的意義
2、反比例函數(shù)的圖象與性質
3、利用反比例函數(shù)解決實際問題
二、合作交流、解讀探究
(一)與反比例函數(shù)的意義有關的問題
課件展示:
憶一憶:什么是反比例函數(shù)?
要求學生說出反比例函數(shù)的意義及其等價形式
鞏固練習:課件展示:
1、下列函數(shù)中,哪些是反比例函數(shù)?
(1)y= 5/x(2)y=x/4+2 (3)y= -5/3x(4)y=-7 x的-1次方(5)y=1/x+4
2、寫出下列問題中的函數(shù)關系式,并指出它們是什么函數(shù)?
⑴當路程s一定時,時間t與平均速度v之間的關系。
⑵質量為m(kg)的氣體,其體積v(m3)與密度ρ(kg/m3)之間的關系。
3、若y=為反比例函數(shù),則m=______
4、若y=(m-1)為反比例函數(shù),則m=______ 。
。ǘ┻\用反比例函數(shù)的圖象與性質解決問題
1、反比例函數(shù)的圖象是
2、圖象性質見下表(課件展示):
3、做一做(課件展示)
(1)函數(shù)y=的圖象在第______象限,當x<0時,y隨x的增大而______ 。
。2)雙曲線y=經過點(-3,______)。
。3)函數(shù)y=的圖象在二、四象限內,m的取值范圍是______ 。
。4)若雙曲線經過點(-3,2),則其解析式是______.
。5)已知點A(-2,y1),B(-1,y2) C(4,y3)都在反比例函數(shù)y=的.圖象上,則y1、y2與y3的大小關系(從大到。開___________ 。
。ㄈ)綜合運用(課件展示)
一次函數(shù)的圖像y=ax+b與反比例函數(shù)y=交與M(2,m)、N(-1,-4)兩點。(1)求反比例函數(shù)和一次函數(shù)的解析式;(2)根據圖像寫出反比例函數(shù)的值大于一次函數(shù)的值的X的取值范圍
三、隨堂練習
見課件
四、小結
1、反比例函數(shù)的意義
2、反比例函數(shù)的圖象與性質
五、作業(yè):
配套練習22頁21.22題
反比例函數(shù)教案12
第一課時
教學設計思想
本節(jié)課是在學習了反比例函數(shù)的概念,反比例函數(shù)的圖像和性質等相關知識的基礎上引入的。首先創(chuàng)設問題情境,展示反比例函數(shù)在實際生活中的應用情況,激發(fā)學生的求知欲和濃厚的學習興趣。接下來主要討論了反比例函數(shù)在體積、面積這樣的實際問題中的應用。分析實際問題中變量之間的關系,建立反比例函數(shù)模型,進而解決問題。
教學目標
知識與技能
1、能靈活列反比例函數(shù)表達式解決一些實際問題。
2、能綜合利用幾何、方程、反比例函數(shù)的知識解決一些實際問題。
過程與方法
1、經歷分析實際問題中變量之間的.關系,建立反比例函數(shù)模型,進而解決問題。
2、體會數(shù)學與現(xiàn)實生活的緊密聯(lián)系,增強應用意識,提高運用代數(shù)方法解決問題的能力。
情感態(tài)度與價值觀
體驗反比例函數(shù)是有效地描述現(xiàn)實世界的重要手段,認識到數(shù)學是解決實際問題和進行交流的重要工具。
教學重難點
重點:掌握從實際問題中建構反比例函數(shù)模型。
難點:從實際問題中尋找變量之間的關系。關鍵是充分運用所學知識分析實際情況,建立函數(shù)模型,教學時注意分析過程,滲透數(shù)形結合的思想。
教學方法
啟發(fā)引導、合作探究
教學媒體
課件
教學過程設計
。ㄒ唬﹦(chuàng)設問題情境,引入新課
[師]有關反比例函數(shù)的表達式,圖像的特征我們都研究過了,那么,我們學習它們的目的是什么呢?
[生]是為了應用。
[師]很好。學習的目的是為了用學到的知識解決實際問題。究竟反比例函數(shù)能解決一些什么問題呢?本節(jié)課我們就來學一學。
問題:某?萍夹〗M進行野外考察,途中遇到一片十幾米寬的爛泥濕地,為了安全、迅速通過這片濕地,他們沿著前進路線鋪墊了若干塊木板,構筑成一條臨時通道,從而順利完成了任務的情境。
反比例函數(shù)教案13
一、教學目標
1.使學生理解并掌握反比例函數(shù)的概念
2.能判斷一個給定的函數(shù)是否為反比例函數(shù),并會用待定系數(shù)法求函數(shù)解析式
3.能根據實際問題中的條件確定反比例函數(shù)的解析式,體會函數(shù)的模型思想
二、重、難點
1.重點:理解反比例函數(shù)的概念,能根據已知條件寫出函數(shù)解析式
2.難點:理解反比例函數(shù)的概念
3.難點的突破方法:
。1)在引入反比例函數(shù)的概念時,可適當復習一下第11章的正比例函數(shù)、一次函數(shù)等相關知識,這樣以舊帶新,相互對比,能加深對反比例函數(shù)概念的理解
。2)注意引導學生對反比例函數(shù)概念的理解,看形式,等號左邊是函數(shù)y,等號右邊是一個分式,自變量x在分母上,且x的指數(shù)是1,分子是不為0的常數(shù)k;看自變量x的取值范圍,由于x在分母上,故取x≠0的一切實數(shù);看函數(shù)y的取值范圍,因為k≠0,且x≠0,所以函數(shù)值y也不可能為0。講解時可對照正比例函數(shù)y=kx(k≠0),比較二者解析式的相同點和不同點。
。3)(k≠0)還可以寫成(k≠0)或xy=k(k≠0)的形式
三、例題的意圖分析
教材第46頁的思考題是為引入反比例函數(shù)的概念而設置的,目的是讓學生從實際問題出發(fā),探索其中的數(shù)量關系和變化規(guī)律,通過觀察、討論、歸納,最后得出反比例函數(shù)的概念,體會函數(shù)的模型思想。
教材第47頁的例1是一道用待定系數(shù)法求反比例函數(shù)解析式的題,此題的目的一是要加深學生對反比例函數(shù)概念的理解,掌握求函數(shù)解析式的方法;二是讓學生進一步體會函數(shù)所蘊含的“變化與對應”的思想,特別是函數(shù)與自變量之間的單值對應關系。
補充例1、例2都是常見的題型,能幫助學生更好地理解反比例函數(shù)的概念。補充例3是一道綜合題,此題是用待定系數(shù)法確定由兩個函數(shù)組合而成的新的函數(shù)關系式,有一定難度,但能提高學生分析、解決問題的能力。
四、課堂引入
1.回憶一下什么是正比例函數(shù)、一次函數(shù)?它們的一般形式是怎樣的'?
2.體育課上,老師測試了百米賽跑,那么,時間與平均速度的關系是怎樣的?
五、例習題分析
例1.見教材P47
分析:因為y是x的反比例函數(shù),所以先設,再把x=2和y=6代入上式求出常數(shù)k,即利用了待定系數(shù)法確定函數(shù)解析式。
例1.(補充)下列等式中,哪些是反比例函數(shù)
。1)(2)(3)xy=21(4)(5)(6)(7)y=x-4
分析:根據反比例函數(shù)的定義,關鍵看上面各式能否改寫成(k為常數(shù),k≠0)的形式,這里(1)、(7)是整式,(4)的分母不是只單獨含x,(6)改寫后是,分子不是常數(shù),只有(2)、(3)、(5)能寫成定義的形式
例2.(補充)當m取什么值時,函數(shù)是反比例函數(shù)?
分析:反比例函數(shù)(k≠0)的另一種表達式是(k≠0),后一種寫法中x的次數(shù)是-1,因此m的取值必須滿足兩個條件,即m-2≠0且3-m2=-1,特別注意不要遺漏k≠0這一條件,也要防止出現(xiàn)3-m2=1的錯誤
反比例函數(shù)教案14
教學任務分析
教學目標
知識技能
通過對“杠桿原理”等實際問題與反比例函數(shù)關系的探究,使學生能夠從函數(shù)的觀點來解決一些實際問題
數(shù)學思考
通過對實際問題中變量之間關系的分析,建立函數(shù)模型,運用已學過的反比例函數(shù)知識加以解決,體會數(shù)學建模思想和學以致用的數(shù)學理念
解決問題
分析實際問題中變量之間的關系,建立反比例函數(shù)模型解決問題,進一步運用函數(shù)的圖像、性質挖掘杠桿原理中蘊涵的道理
情感態(tài)度
利用函數(shù)探索古希臘科學家阿基米德發(fā)現(xiàn)的“杠桿定律”,使學生的求知欲望得到激發(fā),再通過自己所學知識解決了身邊的問題,大大提高了學生學習數(shù)學的興趣
重點
運用反比例函數(shù)解釋生活中的一些規(guī)律、解決一些實際問題
難點
把實際問題利用反比例函數(shù)轉化為數(shù)學問題加以解決
教學流程安排
活動流程圖
活動內容和目的
活動1創(chuàng)設情境,引出問題
活動2分析解決問題
活動3從函數(shù)的觀點進一步分析規(guī)律
活動4鞏固練習
活動5課堂小結、布置作業(yè)
教師提出生活中遇到的難題,請學生幫助解決,激發(fā)學生的興趣
與學生共同分析實際問題中的變量關系,引導學生利用反比例函數(shù)解決問題
引導學生追尋杠桿原理中蘊涵的規(guī)律,從反比例函數(shù)的圖象、性質等角度挖掘
通過課堂練習,提高學生運用反比例函數(shù)解決實際問題的'能力
歸納、總結所學,體會利用函數(shù)的觀點解決實際問題
教學過程設計
問題與情境
師生行為
設計意圖
活動1
如何打開這個未開封的奶粉桶呢?—
教師提出實際生活中的問題,學生提出解決辦法,教師引出利用杠桿原理解決問題。
能否從數(shù)學角度探索杠桿原理中蘊涵的變量關系呢?
讓學生了解到日常生活中存在著許多兩個量之間具有反比例關系的例子,自然引入課題
活動2
展示問題1:
幾位同學玩撬石頭的游戲,已知阻力和阻力臂不變,分別是1200牛頓和0.5米,設動力為F,動力臂為;卮鹣铝袉栴}:
。1)動力F與動力臂有怎樣的函數(shù)關系?
。2)小剛、小強、小健、小明分別選取了動力臂為為1米、1.5米、2米、3米的撬棍,你能得出他們各自撬動石頭至少需要多大的力嗎?從上述的運算中我們觀察出什么規(guī)律?
不妨列表描點畫出圖象
。▓D象在第三象限會有嗎?)
分析問題中變量間的關系
分析動力F與動力臂的關系,將撬石頭的實際問題轉化為反比例函數(shù)問題。由抽象到具體,驗證幾個具體的數(shù)值通過驗證幾個數(shù)值,進行列表描點,作出圖象觀察規(guī)律,,進一步從圖象的變化趨勢上解釋規(guī)律
在數(shù)學課上引用一個物理力學的實際問題,一下子抓住了學生的獵奇心理,激發(fā)了他們的學習興趣;最后落實到運用數(shù)學來解決,學生可以體會到數(shù)學的基礎性和重要性,激發(fā)學生求知的熱情
教師按照學生的認知規(guī)律有層次、有步驟地引導學生分析解決問題
活動3
從函數(shù)的觀點進一步分析規(guī)律
。3)用反比例函數(shù)的性質解釋:開啟桶蓋時用長的改錐還是短的改錐?在我們使用撬棍時,為什么動力臂越長就越省力?問題
。4)受條件限制,無法得知撬石頭時的阻力,小剛選擇了動力臂為1.2米的撬棍,用了500牛頓的力剛好撬動;小明身體瘦小,只有300牛頓的力量,他該選擇動力臂為多少的撬棍才能撬動這塊大石頭呢?
。5)地球重量的近似值為(即為阻力),假設阿基米德有500牛頓的力量,阻力臂為20xx千米,請你幫助阿基米德設計該用動力臂為多長的杠桿才能把地球撬動?利用反比例函數(shù)的變化規(guī)律解釋實際生活中一些問題深入挖掘動力臂與動力F又有怎樣的函數(shù)關系呢?待定系數(shù)法解決函數(shù)問題公元前3世紀,古希臘科學家阿基米德發(fā)現(xiàn)了著名的“杠桿定律”:
阻力阻力臂=動力動力臂,他形象地說,“給我一個支點我可以把地球撬動”
從函數(shù)的角度深層次挖掘變量間的關系,在這一過程中學生逐漸建立運用運動變化的觀點解釋一些現(xiàn)象,實現(xiàn)從靜到動的轉變舉一反三,函數(shù)模型未變,但兩個量的角色發(fā)生變化,深入探究,體會其中的變與不變的函數(shù)思想激發(fā)學生學習興趣,培養(yǎng)科學探索精神
活動4
展示練習
市政府計劃建設一項水利工程,工程需要運送的土石方總量為米,某運輸公司承辦了該項工程運送土方的任務。
。1)運輸公司平均每天的工作量(單位:米3/天)與完成運送任務所需的時間(單位:天)之間具有怎樣的函數(shù)關系?
。ǎ玻┻@個運輸公司有100輛卡車,每天一共可運送土石方立方米,則公司完成全部運輸任務需要多長時間?
。ǎ常┊敼疽詥栴}(2)中的速度工作了40天后,由于工程進度的需要,剩下的所有運輸任務必須在50天內完成,公司至少需要再增加多少輛卡車才能按時完成任務?教師展示練習,學生認真審題、思考學生認真審題后自主探究學生建立了反比例函數(shù)關系后求值學生相互討論,協(xié)作解決問題(3),請學生代表匯報他們討論的結果,教師作適時、適當?shù)囊龑Ш椭笇?/p>
提醒學生:應把較復雜的問題分解,將難點逐一擊破,從不同的角度利用不同的方法解決問題
通過鞏固練習,讓學生進一步加深對反比例函數(shù)的運用和理解,更深層次體會建立反比例模型解決實際問題的思想,鞏固和提高所學知識
給學生足夠的時間和空間,給他們創(chuàng)造展示他們能力和所學知識的機會可從不同角度入手,培養(yǎng)學生從多角度審視、解決問題的能力
活動6
歸納、總結
作業(yè):教科書習題17.2第6題
教師引導學生回憶、總結,教師予以補充
通過小結,使學生把所學知識進一步內化、系統(tǒng)化
反比例函數(shù)教案15
教學目標:
1.能運用反比例函數(shù)的相關知識分析和解決一些簡單的實際問題。
2.在解決實際問題的過程中,進一步體會和認識反比例函數(shù)是刻
畫現(xiàn)實世界中數(shù)量關系的一種數(shù)學模型。
教學重點運用反比例函數(shù)解決實際問題
教學難點運用反比例函數(shù)解決實際問題
教學過程:
一、情景創(chuàng)設
引例:小麗是一個近視眼,整天眼鏡不離鼻子,但自己一直不理解自己的眼鏡配制的原理,很是苦悶,近來她了解到近視眼鏡的度數(shù)y(度)與鏡片的焦距為x(m)成反比例,并請教師傅了解到自己400度的近視眼鏡鏡片的焦距為0.2m,可惜她不知道反比例函數(shù)的概念,所以她寫不出y與x的.函數(shù)關系式,我們大家正好學過反比例函數(shù)了,誰能幫助她解決這個問題呢?
反比例函數(shù)在生活、生產實際中也有著廣泛的應用。
例如:在矩形中S一定,a和b之間的關系?你能舉例嗎?
二、例題精析
例1、見課本73頁
例2、見課本74頁
例3、某氣球內充滿一定質量的氣體,當溫度不變時,氣球內氣體的氣壓p(千帕)是氣球體積V(米3)的反比例函數(shù)(1)寫出這個函數(shù)解析式(2)當氣球的體積為0.8m3時,氣球的氣壓是多少千帕?(3)當氣球內的氣壓大于144千帕時,氣球將爆炸,為了安全起見,氣球的體積不小于多少立方米?
四、課堂練習課本P74練習1、2題
五、課堂小結反比例函數(shù)的應用
六、課堂作業(yè)課本P75習題9.3第1、2題
七、教學反思
更多初二數(shù)學教案,請點擊
【反比例函數(shù)教案】相關文章:
反比例函數(shù)教案01-15
反比例函數(shù)的意義教案01-23
反比例函數(shù)教案15篇02-14
反比例函數(shù)教學設計03-07
反比例函數(shù)教學設計11篇05-22
反比例教案02-17
函數(shù)概念教案11-26
冪函數(shù)教案04-07
《函數(shù)的應用》教案02-26