- 二次根式教案 推薦度:
- 二次根式教案 推薦度:
- 二次根式數(shù)學(xué)教案 推薦度:
- 相關(guān)推薦
二次根式教案匯總五篇
作為一無(wú)名無(wú)私奉獻(xiàn)的教育工作者,總歸要編寫教案,借助教案可以恰當(dāng)?shù)剡x擇和運(yùn)用教學(xué)方法,調(diào)動(dòng)學(xué)生學(xué)習(xí)的積極性。怎樣寫教案才更能起到其作用呢?下面是小編幫大家整理的二次根式教案5篇,僅供參考,歡迎大家閱讀。
二次根式教案 篇1
活動(dòng)1、提出問(wèn)題
一個(gè)運(yùn)動(dòng)場(chǎng)要修兩塊長(zhǎng)方形草坪,第一塊草坪的長(zhǎng)是10米,寬是米,第二塊草坪的長(zhǎng)是20米,寬也是米。你能告訴運(yùn)動(dòng)場(chǎng)的負(fù)責(zé)人要準(zhǔn)備多少面積的草皮嗎?
問(wèn)題:10+20是什么運(yùn)算?
活動(dòng)2、探究活動(dòng)
下列3個(gè)小題怎樣計(jì)算?
問(wèn)題:1)-還能繼續(xù)往下合并嗎?
2)看來(lái)二次根式有的能合并,有的不能合并,通過(guò)對(duì)以上幾個(gè)題的觀察,你能說(shuō)說(shuō)什么樣的二次根式能合并,什么樣的'不能合并嗎?
二次根式加減時(shí),先將二次根式化簡(jiǎn)成最簡(jiǎn)二次根式后,再將被開方數(shù)相同的進(jìn)行合并。
活動(dòng)3
練習(xí)1指出下列每組的二次根式中,哪些是可以合并的二次根式?(字母均為正數(shù))
創(chuàng)設(shè)問(wèn)題情景,引起學(xué)生思考。
學(xué)生回答:這個(gè)運(yùn)動(dòng)場(chǎng)要準(zhǔn)備(10+20)平方米的草皮。
教師提問(wèn):學(xué)生思考并回答教師出示課題并說(shuō)明今天我們就共同來(lái)研究該如何進(jìn)行二次根式的加減法運(yùn)算。
我們可以利用已學(xué)知識(shí)或已有經(jīng)驗(yàn)來(lái)分組討論、交流,看看+到底等于什么?小組展示討論結(jié)果。
教師引導(dǎo)驗(yàn)證:
、僭O(shè)=,類比合并同類項(xiàng)或面積法;
、趯W(xué)生思考,得出先化簡(jiǎn),再合并的解題思路
、巯然(jiǎn),再合并
學(xué)生觀察并歸納:二次根式化為最簡(jiǎn)二次根式后,被開方數(shù)相同的能合并。
教師巡視、指導(dǎo),學(xué)生完成、交流,師生評(píng)價(jià)。
提醒學(xué)生注意先化簡(jiǎn)成最簡(jiǎn)二次根式后再判斷。
二次根式教案 篇2
教材分析:
本節(jié)內(nèi)容出自九年級(jí)數(shù)學(xué)上冊(cè)第二十一章第三節(jié)的第一課時(shí),本節(jié)在研究最簡(jiǎn)二次根式和二次根式的乘除的基礎(chǔ)上,來(lái)學(xué)習(xí)二次根式的加減運(yùn)算法則和進(jìn)一步完善二次根式的化簡(jiǎn)。本小節(jié)重點(diǎn)是二次根式的加減運(yùn)算,教材從一個(gè)實(shí)際問(wèn)題引出二次根式的加減運(yùn)算,使學(xué)生感到研究二次根式的加減運(yùn)算是解決實(shí)際問(wèn)題的需要。通過(guò)探索二次根式加減運(yùn)算,并用其解決一些實(shí)際問(wèn)題,來(lái)提高我們用數(shù)學(xué)解決實(shí)際問(wèn)題的意識(shí)和能力。另外,通過(guò)本小節(jié)學(xué)習(xí)為后面學(xué)生熟練進(jìn)行二次根式的加減運(yùn)算以及加、減、乘、除混合運(yùn)算打下了鋪墊。
學(xué)生分析:
本節(jié)課的內(nèi)容是知識(shí)的延續(xù)和創(chuàng)新,學(xué)生積極主動(dòng)的投入討論、交流、建構(gòu)中,自主探索、動(dòng)手操作、協(xié)作交流,全班學(xué)生具有較扎實(shí)的知識(shí)和創(chuàng)新能力,通過(guò)自學(xué)、小組討論大部分學(xué)生能夠達(dá)到教學(xué)目標(biāo),少部分學(xué)生有困難,基礎(chǔ)差、自學(xué)能力差,因此要提供賞識(shí)性評(píng)價(jià)教學(xué)策略,給予個(gè)別關(guān)照、心理暗示以及適當(dāng)?shù)木窦?lì),克服自卑心理,讓他們逐步樹立自尊心與自信心,從而完成自己的學(xué)習(xí)任務(wù)。
設(shè)計(jì)理念:
新課程有效課堂教學(xué)明確倡導(dǎo),學(xué)生是學(xué)習(xí)的主人,在學(xué)生自學(xué)文本的基礎(chǔ)上動(dòng)手實(shí)踐、自主探究、合作交流,來(lái)倡導(dǎo)新的學(xué)習(xí)觀,讓他們完成二次根式加減知識(shí)研究。教師從過(guò)去知識(shí)的傳授者轉(zhuǎn)變?yōu)閷W(xué)生的.自主性、探究性、合作性學(xué)習(xí)活動(dòng)的設(shè)計(jì)者和組織者,與學(xué)生零距離接觸共同探究。在教學(xué)過(guò)程中教師設(shè)置開放的、面向?qū)嶋H的、富有挑戰(zhàn)性的問(wèn)題情境,使學(xué)生在嘗試、探索、思考、交流與合作中培養(yǎng)分析、歸納、總結(jié)的能力,把“要我學(xué)”變成“我要學(xué)”,通過(guò)開放式命題,嘗試從不同角度尋求解決問(wèn)題的方法,養(yǎng)成良好的學(xué)習(xí)習(xí)慣,掌握學(xué)習(xí)策略,并根據(jù)活動(dòng)中示范和指導(dǎo)培養(yǎng)學(xué)生大膽闡述并討論觀點(diǎn),說(shuō)明所獲討論的有效性,并對(duì)推論進(jìn)行評(píng)價(jià)。從而營(yíng)造一個(gè)接納的、支持的、寬容的良好氛圍進(jìn)行學(xué)習(xí)。
教學(xué)目標(biāo)知識(shí)與技能目標(biāo):
會(huì)化簡(jiǎn)二次根式,了解同類二次根式的概念,會(huì)進(jìn)行簡(jiǎn)單的二次根式的加減法;通過(guò)加減運(yùn)算解決生活的實(shí)際問(wèn)題。
過(guò)程與方法目標(biāo):
通過(guò)類比整式加減法運(yùn)算體驗(yàn)二次根式加減法運(yùn)算的過(guò)程;學(xué)生經(jīng)歷由實(shí)際問(wèn)題引入數(shù)學(xué)問(wèn)題的過(guò)程,發(fā)展學(xué)生的抽象概括能力。
情感態(tài)度與價(jià)值觀:
通過(guò)對(duì)二次根式加減法的探究,激發(fā)學(xué)生的探索熱情,讓學(xué)生充分參與到數(shù)學(xué)學(xué)習(xí)的過(guò)程中來(lái),使他們體驗(yàn)到成功的樂(lè)趣.
重點(diǎn)、難點(diǎn):重點(diǎn):
合并被開放數(shù)相同的同類二次根式,會(huì)進(jìn)行簡(jiǎn)單的二次根式的加減法。
難點(diǎn):
二次根式加減法的實(shí)際應(yīng)用。
關(guān)鍵問(wèn)題 :
了解同類二次根式的概念,合并同類二次根式,會(huì)進(jìn)行二次根式的加減法。
教學(xué)方法:.
1. 引導(dǎo)發(fā)現(xiàn)法:在教師的啟發(fā)引導(dǎo)下,鼓勵(lì)學(xué)生積極參與,與實(shí)際問(wèn)題相結(jié)合,采用“問(wèn)題—探索—發(fā)現(xiàn)”的研究模式,讓學(xué)生自主探索,合作學(xué)習(xí),歸納結(jié)論,掌握規(guī)律。
2. 類比法:由實(shí)際問(wèn)題導(dǎo)入二次根式加減運(yùn)算;類比合并同類項(xiàng)合并同類二次根式。
3.嘗試訓(xùn)練法:通過(guò)學(xué)生嘗試,教師針對(duì)個(gè)別問(wèn)題進(jìn)行點(diǎn)撥指導(dǎo),實(shí)現(xiàn)全優(yōu)的教育效果。
二次根式教案 篇3
教學(xué)設(shè)計(jì)思想
新教材打破了舊教材從定義出發(fā),由理論到理論,按部就班的舊格局,創(chuàng)造出從實(shí)踐到理論再回到實(shí)踐,由淺入深,符合認(rèn)知結(jié)構(gòu)的新模式。本節(jié)首先通過(guò)四個(gè)實(shí)際問(wèn)題引出二次根式的概念,給出二次根式的意義。然后讓學(xué)生通過(guò)二次根式的意義和算術(shù)平方根的意義找出二次根式的三個(gè)性質(zhì)。本節(jié)通過(guò)學(xué)生所熟悉的實(shí)際問(wèn)題建立二次根式的'概念,使學(xué)生在經(jīng)歷將現(xiàn)實(shí)問(wèn)題符號(hào)化的過(guò)程中,進(jìn)一步體會(huì)二次根式的重要作用,發(fā)展學(xué)生的應(yīng)用意識(shí)。
教學(xué)目標(biāo)
知識(shí)與技能
1.知道什么是二次根式,并會(huì)用二次根式的意義解題;
2.熟記二次根式的性質(zhì),并能靈活應(yīng)用;
過(guò)程與方法
通過(guò)二次根式的概念和性質(zhì)的學(xué)習(xí),培養(yǎng)邏輯思維能力;
情感態(tài)度價(jià)值觀
1.經(jīng)歷將現(xiàn)實(shí)問(wèn)題符號(hào)化的過(guò)程,發(fā)展應(yīng)用的意識(shí);
2.通過(guò)二次根式性質(zhì)的介紹滲透對(duì)稱性、規(guī)律性的數(shù)學(xué)美。
教學(xué)重點(diǎn)和難點(diǎn)
重點(diǎn):(1)二次根式的意義;(2)二次根式中字母的取值范圍;
難點(diǎn):確定二次根式中字母的取值范圍。
教學(xué)方法
啟發(fā)式、講練結(jié)合
教學(xué)媒體
多媒體
課時(shí)安排
1課時(shí)
二次根式教案 篇4
教學(xué)目的
1.使學(xué)生掌握最簡(jiǎn)二次根式的定義,并會(huì)應(yīng)用此定義判斷一個(gè)根式是否為最簡(jiǎn)二次根式;
2.會(huì)運(yùn)用積和商的算術(shù)平方根的性質(zhì),把一個(gè)二次根式化為最簡(jiǎn)二次根式。
教學(xué)重點(diǎn)
最簡(jiǎn)二次根式的定義。
教學(xué)難點(diǎn)
一個(gè)二次根式化成最簡(jiǎn)二次根式的方法。
教學(xué)過(guò)程
一、復(fù)習(xí)引入
1.把下列各根式化簡(jiǎn),并說(shuō)出化簡(jiǎn)的根據(jù):
2.引導(dǎo)學(xué)生觀察考慮:
化簡(jiǎn)前后的根式,被開方數(shù)有什么不同?
化簡(jiǎn)前的被開方數(shù)有分?jǐn)?shù),分式;化簡(jiǎn)后的被開方數(shù)都是整數(shù)或整式,且被開方數(shù)中開得盡方的因數(shù)或因式,被移到根號(hào)外。
3.啟發(fā)學(xué)生回答:
二次根式,請(qǐng)同學(xué)們考慮一下被開方數(shù)符合什么條件的二次根式叫做最簡(jiǎn)二次根式?
二、講解新課
1.總結(jié)學(xué)生回答的內(nèi)容后,給出最簡(jiǎn)二次根式定義:
滿足下列兩個(gè)條件的二次根式叫做最簡(jiǎn)二次根式:
(1)被開方數(shù)的因數(shù)是整數(shù),因式是整式;
(2)被開方數(shù)中不含能開得盡的.因數(shù)或因式。
最簡(jiǎn)二次根式定義中第(1)條說(shuō)明被開方數(shù)不含有分母;分母是1的例外。第(2)條說(shuō)明被開方數(shù)中每個(gè)因式的指數(shù)小于2;特別注意被開方數(shù)應(yīng)化為因式連乘積的形式。
2.練習(xí):
下列各根式是否為最簡(jiǎn)二次根式,不是最簡(jiǎn)二次根式的說(shuō)明原因:
3.例題:
例1 把下列各式化成最簡(jiǎn)二次根式:
例2 把下列各式化成最簡(jiǎn)二次根式:
4.總結(jié)
把二次根式化成最簡(jiǎn)二次根式的根據(jù)是什么?應(yīng)用了什么方法?
當(dāng)被開方數(shù)為整數(shù)或整式時(shí),把被開方數(shù)進(jìn)行因數(shù)或因式分解,根據(jù)積的算術(shù)平方根的性質(zhì),把開得盡方的因數(shù)或因式用它的算術(shù)平方根代替移到根號(hào)外面去。
當(dāng)被開方數(shù)是分?jǐn)?shù)或分式時(shí),根據(jù)分式的基本性質(zhì)和商的算術(shù)平方根的性質(zhì)化去分母。
此方法是先根據(jù)分式的基本性質(zhì)把被開方數(shù)的分母化成能開得盡方的因式,然后分子、分母再分別化簡(jiǎn)。
三、鞏固練習(xí)
1.把下列各式化成最簡(jiǎn)二次根式:
2.判斷下列各根式,哪些是最簡(jiǎn)二次根式?哪些不是最簡(jiǎn)二次根式?如果不是,把它化成最簡(jiǎn)二次根式。
四、小結(jié)
本節(jié)課學(xué)習(xí)了最簡(jiǎn)二次根式的定義及化簡(jiǎn)二次根式的方法。同學(xué)們掌握用最簡(jiǎn)二次根式的定義判斷一個(gè)根式是否為最簡(jiǎn)二次根式,要根據(jù)積的算術(shù)平方根和商的算術(shù)平方根的性質(zhì)把一個(gè)根式化成最簡(jiǎn)二次根式,特別注意當(dāng)被開方數(shù)為多項(xiàng)式時(shí)要進(jìn)行因式分解,被開方數(shù)為兩個(gè)分?jǐn)?shù)的和則要先通分,再化簡(jiǎn)。
五、布置作業(yè)
下列各式化成最簡(jiǎn)二次根式:
二次根式教案 篇5
教學(xué)目的:
1、在二次根式的混合運(yùn)算中,使學(xué)生掌握應(yīng)用有理化分母的方法化簡(jiǎn)和計(jì)算二次根式;
2、會(huì)求二次根式的代數(shù)的值;
3、進(jìn)一步提高學(xué)生的綜合運(yùn)算能力。
教學(xué)重點(diǎn):在二次根式的混合運(yùn)算中,靈活選擇有理化分母的方法化簡(jiǎn)二次根式
教學(xué)難點(diǎn):正確進(jìn)行二次根式的混合運(yùn)算和求含有二次根式的代數(shù)式的值
教學(xué)過(guò)程:
一、二次根式的混合運(yùn)算
例1 計(jì)算:
分析:(1)題是二次根式的加減運(yùn)算,可先把前三個(gè)二次根式化最簡(jiǎn)二次根式,把第四式的分母有理化,然后再進(jìn)行二次根式的加減運(yùn)算。
(2)題是含乘方、加、減和除法的混合運(yùn)算,應(yīng)按運(yùn)算的順序進(jìn)行計(jì)算,先算括號(hào)內(nèi)的式子,最后進(jìn)行除法運(yùn)算。注意的計(jì)算。
練習(xí)1:P206 / 8--① P207 / 1①②
例2 計(jì)算
問(wèn):計(jì)算思路是什么?
答:先把第一人的括號(hào)內(nèi)的.式子通分,把第二個(gè)括號(hào)內(nèi)的式子的分母有理化,再進(jìn)行計(jì)算。
二、求代數(shù)式的值。 注意兩點(diǎn):
(1)如果已知條件為含二次根式的式子,先把它化簡(jiǎn);
(2)如果代數(shù)式是含二次根式的式子,應(yīng)先把代數(shù)式化簡(jiǎn),再求值。
例3 已知,求的值。
分析:多項(xiàng)式可轉(zhuǎn)化為用與表示的式子,因此可根據(jù)已知條件中的及的值。求得與的值。在計(jì)算中,先把及的式了有理化分母?墒褂(jì)算簡(jiǎn)便。
例4 已知,求的值。
觀察代數(shù)式的特點(diǎn),請(qǐng)說(shuō)出求這個(gè)代數(shù)式的值的思路。
答:所求的代數(shù)式中,相減的兩個(gè)式子的分母都含有二次根式,為化去它們的分母中的根號(hào),可以分別先把各自的分母有理化或進(jìn)行]通分,把這個(gè)代數(shù)式化簡(jiǎn)后,再求值。
三、小結(jié)
1、對(duì)于二次根式的混合混合運(yùn)算。應(yīng)根據(jù)二次根式的加、減、乘除和乘方運(yùn)算的順序進(jìn)行,即先進(jìn)行乘方運(yùn)算,再進(jìn)行乘、除運(yùn)算,最后進(jìn)行加、減運(yùn)算。如果有括號(hào),先進(jìn)行括號(hào)內(nèi)的式子的運(yùn)算,運(yùn)算結(jié)果要化為最簡(jiǎn)二次根式。
2、在代數(shù)式求值問(wèn)題中,如果已知條件所求式子中有含二次根式(或分式)的式子,應(yīng)先把它們化簡(jiǎn),然后再求值。
3、在進(jìn)行二次根式的混合運(yùn)算時(shí),要根據(jù)題目特點(diǎn),靈活選擇解題方法,目的在于使計(jì)算更簡(jiǎn)捷。
四、作業(yè)
P206 / 7 P206 / 8---②③
【二次根式教案】相關(guān)文章:
二次根式數(shù)學(xué)教案11-26
二次根式教案4篇02-05
二次根式教案7篇01-24
二次根式的教學(xué)反思04-10
《二次根式的加減》教學(xué)反思03-05
二次根式的加減教學(xué)反思12-22
《二次根式》初中數(shù)學(xué)教學(xué)反思03-28