- 二元一次方程公開課教案 推薦度:
- 相關推薦
二元一次方程公開課教案6篇
在教學工作者實際的教學活動中,時常要開展教案準備工作,教案是教學藍圖,可以有效提高教學效率。那么問題來了,教案應該怎么寫?下面是小編收集整理的二元一次方程公開課教案,希望能夠幫助到大家。
二元一次方程公開課教案1
教學目標
知識與技能
(1)初步理解二元一次方程和一次函數的關系;
(2)掌握二元一次方程組和對應的兩條直線之間的關系;
(3)掌握二元一次方程組的圖像解法.
過程與方法
(1)教材以“問題串”的形式,揭示方程與函數間的相互轉化,使學生在自主探索中學會不同數學知識間可以互相轉化的數學思想和方法;
(2)通過“做一做”引入例1,進一步發(fā)展學生數形結合的意識和能力.
情感與態(tài)度
(1)在探究二元一次方程和一次函數的對應關系中,在體會近似解與準確解中,培養(yǎng)學生勤于思考、精益求精的精神.
(2)在經歷同一數學知識可用不同的數學方法解決的過程中,培養(yǎng)學生的創(chuàng)新意識和變式能力.
教學重點
(1)二元一次方程和一次函數的關系;
(2)二元一次方程組和對應的兩條直線的關系.
教學難點
數形結合和數學轉化的思想意識.
教學準備
教具:多媒體課件、三角板.
學具:鉛筆、直尺、練習本、坐標紙.
教學過程
第一環(huán)節(jié):設置問題情境,啟發(fā)引導(5分鐘,學生回答問題回顧知識)
內容:
1.方程x+y=5的解有多少個?是這個方程的解嗎?
2.點(0,5),(5,0),(2,3)在一次函數y=的圖像上嗎?
3.在一次函數y=的圖像上任取一點,它的坐標適合方程x+y=5嗎?
4.以方程x+y=5的解為坐標的所有點組成的圖像與一次函數y=的圖像相同嗎?
由此得到本節(jié)課的第一個知識點:
二元一次方程和一次函數的圖像有如下關系:
(1)以二元一次方程的解為坐標的點都在相應的函數圖像上;
(2)一次函數圖像上的點的坐標都適合相應的二元一次方程.
第二環(huán)節(jié)自主探索方程組的解與圖像之間的關系(10分鐘,教師引導學生解決)
內容:
1.解方程組
2.上述方程移項變形轉化為兩個一次函數y=和y=2x,在同一直角坐標系內分別作出這兩個函數的圖像.
3.方程組的解和這兩個函數的圖像的交點坐標有什么關系?由此得到本節(jié)課的第2個知識點:二元一次方程和相應的兩條直線的關系以及二元一次方程組的圖像解法;
(1)求二元一次方程組的解可以轉化為求兩條直線的交點的橫縱坐標;
(2)求兩條直線的交點坐標可以轉化為求這兩條直線對應的函數表達式聯立的二元一次方程組的解.
(3)解二元一次方程組的方法有:代入消元法、加減消元法和圖像法三種。
注意:利用圖像法求二元一次方程組的解是近似解,要得到準確解,一般還是用代入消元法和加減消元法解方程組.
第三環(huán)節(jié)典型例題(10分鐘,學生獨立解決)
探究方程與函數的相互轉化
內容:例1用作圖像的方法解方程組
例2如圖,直線與的交點坐標是.
第四環(huán)節(jié)反饋練習(10分鐘,學生解決全班交流)
內容:
1.已知一次函數與的圖像的交點為,則。
2.已知一次函數與的圖像都經過點A(—2,0),且與軸分別交于B,C兩點,則的面積為()。
(A)4(B)5(C)6(D)7
3.求兩條直線與和軸所圍成的三角形面積。
4.如圖,兩條直線與的交點坐標可以看作哪個方程組的解?
第五環(huán)節(jié)課堂小結(5分鐘,師生共同總結)
內容:以“問題串”的形式,要求學生自主總結有關知識、方法:
1.二元一次方程和一次函數的.圖像的關系;
(1)以二元一次方程的解為坐標的點都在相應的函數圖像上;
(2)一次函數圖像上的點的坐標都適合相應的二元一次方程.
2.方程組和對應的兩條直線的關系:
(1)方程組的解是對應的兩條直線的交點坐標;
(2)兩條直線的交點坐標是對應的方程組的解;
3.解二元一次方程組的方法有3種:
(1)代入消元法;
(2)加減消元法;
(3)圖像法.要強調的是由于作圖的不準確性,由圖像法求得的解是近似解.
第六環(huán)節(jié)作業(yè)布置
習題7.7A組(優(yōu)等生)1、2、3B組(中等生)1、2C組1、2
二元一次方程公開課教案2
教學目標:
1.會用加減消元法解二元一次方程組.
2.能根據方程組的特點,適當選用代入消元法和加減消元法解二元一次方程組.
3.了解解二元一次方程組的消元方法,經歷從“二元”到“一元”的轉化過程,體會解二元一次方程組中化“未知”為“已知”的“轉化”的思想方法.
教學重點:
加減消元法的理解與掌握
教學難點:
加減消元法的靈活運用
教學方法:
引導探索法,學生討論交流
教學過程:
一、情境創(chuàng)設
買3瓶蘋果汁和2瓶橙汁共需要23元,買5瓶蘋果汁和2瓶橙汁共需33元,每瓶蘋果汁和每瓶橙汁售價各是多少?
設蘋果汁、橙汁單價為x元,y元。
我們可以列出方程3x+2y=23
5x+2y=33
問:如何解這個方程組?
二、探索活動
活動一:
1、上面“情境創(chuàng)設”中的方程,除了用代入消元法解以外,還有其他方法求解嗎?
2、這些方法與代入消元法有何異同?
3、這個方程組有何特點?
解法一:3x+2y=23①
5x+2y=33②
由①式得③
把③式代入②式
33
解這個方程得:y=4
把y=4代入③式
則
所以原方程組的.解是x=5
y=4
解法二:3x+2y=23①
5x+2y=33②
由①—②式:
3x+2y-(5x+2y)=23-33
3x-5x=-10
解這個方程得:x=5
把x=5代入①式,
3×5+2y=23
解這個方程得y=4
所以原方程組的解是x=5
y=4
把方程組的兩個方程(或先作適當變形)相加或相減,消去其中一個未知數,把解二元一次方程組轉化為解一元一次方程,這種解方程組的方法叫做加減消元法,簡稱加減法.
三、例題教學:
例1.解方程組x+2y=1①
3x-2y=5②
解:①+②得,4x=6
將代入①,得
解這個方程得:
所以原方程組的解是
例2.解方程組5x-2y=4①
2x-3y=-5②
解:①×3,得
15x-6y=12③
、凇3,得
4x-6y=-10④
、邸,得:
11x=22
解這個方程得x=2
將x=2代入①,得
5×2-2y=4
解這個方程得:y=3
所以原方程組的解是x=2
y=3
鞏固練習(二):練一練1.(2)(3)(4)2
四、思維拓展:
解方程組:
五、小結:
1、掌握加減消元法解二元一次方程組
2、靈活選用代入消元法和加減消元法解二元一次方程組
六、作業(yè)
習題10.31.(3)(4)2
二元一次方程公開課教案3
一、教學目標
1、通過與一元一次方程的比較,能說出二元一次方程的概念,并會辨別一個方程是不是二元一次方程;
2、通過探索交流,會辨別一個解是不是二元一次方程的解,能寫出給定的二元一次方程的解,了解方程解的不唯一性;
3、會將一個二元一次方程變形成用關于一個未知數的代數式表示另一個未知數的形式。
過程與方法目標:
經歷觀察、比較、猜想、驗證等數學學習活動,培養(yǎng)分析問題的能力和數學說理能力。
情感與態(tài)度目標
1、通過與一元一次方程的類比,探究二元一次方程及其解的概念,進一步培養(yǎng)運用類比轉化的思想解決問題的能力;
2、通過對實際問題的分析,培養(yǎng)關注生活,進一步體會方程是刻畫現實世界的有效數學模型,培養(yǎng)良好的數學應用意識。
二、重點、難點
重點:二元一次方程的概念及二元一次方程的解的概念。
難點
1、了解二元一次方程的解的不唯一性和相關性。即了解二元一次方程的解有無數個,但不是任意的兩個數是它的解。
2、把一個二元一次方程變形成用關于一個未知數的代數式表示另一個未知數的形式,其實質是解一個含有字母系數的方程。
三、教學方法與教學手段
1、通過創(chuàng)設問題情境,讓學生在尋求問題解決的過程中認識二元一次方程,了解二元一次方程的特點,體會到二元一次方程的引入是解決實際問題的需要。
2、通過觀察、思考、交流等活動,激發(fā)學習情緒,營造學習氣氛,給學生一定的時間和空間,自主探討,了解二元一次方程的'解的不唯一性和相關性。
3、通過學練結合,以游戲的形式讓學生及時鞏固所學知識。
四、教學過程
創(chuàng)設情境導入新課
1、一個數的3倍比這個數大6,這個數是多少?
2、寫有數字5的黃卡和寫有數字2的藍卡若干張,問黃卡和藍卡各取幾張,才能使取到的卡片上的數字之和為22?
思考:這個問題中,有幾個未知數?能列一元一次方程求解嗎?如果設黃卡取x張,藍卡取y張,你能列出方程嗎?
3、在高速公路上,一輛轎車行駛2時的路程比一輛卡車行駛3時的路程還多20千米。如果設轎車的速度是a千米/時,卡車的速度是b千米/時,你能列出怎樣的方程?
師生互動探索新知
1、發(fā)現新知
引導學生觀察所列的方程:這兩個方程有哪些共同特征?這些特征與一元一次方程比較,哪些是相同的,哪些是不同的?你能給它們取個名字嗎?
根據它們的共同特征,你認為怎樣的方程叫做二元一次方程?(二元一次方程的定義:含有兩個未知數,且含有未知數的項的次數都是一次的方程叫做二元一次方程。)
2、鞏固新知
3、師生互動再探新知
(1)什么是方程的解?(使方程兩邊的值相等的未知數的值,叫做方程的解。)
(2)你能給二元一次方程的解下一個定義嗎?(使二元一次方程兩邊的值相等的一對未知數的值,叫做二元一次方程的一個解。)
若未知數設為,記做,若未知數設為,記做
4、檢驗新知
(1)檢驗下列各組數是不是方程的解:(學生感悟二元一次方程解的不唯一性)
(2)你能寫出方程x-y=1的一個解嗎?(再一次讓學生感悟二元一次方程的解的不唯一性)
5、自我挑戰(zhàn)三探新知
有3張寫有相同數字的藍卡和2張寫有相同數字的黃卡,這五張卡片上的數字之和為10。設藍卡上的數字為x,黃卡上的數字為y,根據題意列方程。
請找出這個方程的一個解,并寫出你得到這個解的過程。
學生在解二元一次方程的過程中體驗和了解二元一次方程解的不唯一性。
五、總結
比較一元一次方程和二元一次方程的相同點和不同點
相同點:方程兩邊都是整式,含有未知數的項的次數都是一次。
如果一個方程含有兩個未知數,并且所含未知項都為1次方,那么這個整式方程就叫做二元一次方程,有無窮個解,若加條件限定有有限個解。
二元一次方程公開課教案4
【教學目標】
【知識目標】
了解二元一次方程、二元一次方程組及其解等有關概念,并會判斷一組數是不是某個二元一次方程組的解。
【能力目標】
通過討論和練習,進一步培養(yǎng)學生的觀察、比較、分析的能力。
【情感目標】
通過對實際問題的分析,使學生進一步體會方程是刻畫現實世界的有效數學模型,培養(yǎng)學生良好的數學應用意識。
【重點】
二元一次方程組的含義
【難點】
判斷一組數是不是某個二元一次方程組的解,培養(yǎng)學生良好的數學應用意識。
【教學過程】
一、引入、實物投影
1、師:在一望無際呼倫貝爾大草原上,一頭老牛和一匹小馬馱著包裹吃力地行走著,老牛喘著氣吃力地說:“累死我了”,小馬說:“你還累,這么大的個,才比我多馱2個”老牛氣不過地說:“哼,我從你背上拿來一個,我的包裹就是你的2倍!”,小馬天真而不信地說:“真的?!”同學們,你們能否用數學知識幫助小馬解決問題呢?
2、請每個學習小組討論(討論2分鐘,然后發(fā)言)
這個問題由于涉及到老牛和小馬的馱包裹的兩個未知數,我們設老牛馱x個包裹,小馬馱y個包裹,老牛的包裹數比小馬多2個,由此得方程x-y=2,若老牛從小馬背上拿來1個包裹,這時老牛的包裹是小馬的2倍,得方程:x+1=2(y-1)
師:同學們能用方程的方法來發(fā)現、解決問題這很好,上面所列方程有幾個未知數?含未知數的項的次數是多少?(含有兩個未知數,并且所含未知數項的次數是1)
師:含有兩個未知數,并且含未知數項的次數都是1的方程叫做二元一次方程
注意:這個定義有兩個地方要注意①、含有兩個未知數,②、含未知數的次數是一次
練習(投影)
下列方程有哪些是二元一次方程
+2y=1xy+x=13x-=5x2-2=3x
xy=12x(y+1)=c2x-y=1x+y=0
二、議一議、
師:上面的方程中x-y=2,x+1=2(y-1)的x含義相同嗎?y呢?
師:由于x、y的含義分別相同,因而必同時滿足x-y=2和x+1=2(y-1),我們把這兩個方程用大括號聯立起來,寫成
x-y=2
x+1=2(y-1)
像這樣含有兩個未知數的兩個一次方程所組成的一組方程,叫做二元一次方程組。
如:2x+3y=35x+3y=8
x-3y=0x+y=8
三、做一做、
1、x=6,y=2適合方程x+y=8嗎?x=5,y=3呢?x=4,y=4呢?你還能找到其他x,y值適合x+y=8方程嗎?
2、X=5,y=3適合方程5x+3y=34嗎?x=2,y=8呢?
你能找到一組值x,y同時適合方程x+y=8和5x+3y=34嗎?
x=6,y=2是方程x+y=8的一個解,記作x=6同樣,x=5
y=2y=3
也是方程x+y=8的一個解,同時x=5又是方程5x+3y=34的一個解,
y=3
四、隨堂練習(P103)
五、小結:
1、含有兩未知數,并且含有未知數的項的.次數是一次的整式方程叫做二元一次方程。
2、二元一次方程的解是一個互相關聯的兩個數值,它有無數個解。
3、含有兩個未知數的兩個二元一次方程組成的一組方程,叫做二元一次方程組,它的解是兩個方程的公共解,是一組確定的值。
二元一次方程公開課教案5
一、教材分析
1、教材的地位和作用
函數、方程和不等式都是人們刻畫現實世界的重要數學模型。用函數的觀點看方程(組)與不等式,使學生不僅能加深對方程(組)、不等式的理解,提高認識問題的水平,而且能從函數的角度將三者統(tǒng)一起來,感受數學的統(tǒng)一美。本節(jié)課是學生學習完一次函數、一元一次方程及一元一次不等式的聯系后對一次函數和二元一次方程(組)關系的探究,學生在探索過程中體驗數形結合的思想方法和數學模型的應用價值,這對今后的學習有著十分重要的意義。
2、教學重難點
重點:一次函數與二元一次方程(組)關系的探索。
難點:綜合運用方程(組)、不等式和函數的知識解決實際問題。
3、教學目標
知識技能:理解一次函數與二元一次方程(組)的關系,會用圖象法解二元一次方程組。
數學思考:經歷一次函數與二元一次方程(組)關系的探索及相關實際問題的解決過程,學會用函數的觀點去認識問題。
解決問題:能綜合應用一次函數、一元一次方程、一元一次不等式、二元一次方程(組)解決相關實際問題。
情感態(tài)度:在探究活動中培養(yǎng)學生嚴謹的科學態(tài)度和勇于探索的科學精神,在師生、生生的交流活動中,學會與人合作,學會傾聽、欣賞和感悟,體驗數學的價值,建立自信心。
二、教法說明
對于認知主體——學生來說,他們已經具備了初步探究問題的能力,但是對知識的主動遷移能力較弱,為使學生更好地構建新的認知結構,促進學生的發(fā)展,我將在教學中采用探究式教學法。以學生為中心,使其在“生動活潑、民主開放、主動探索”的氛圍中愉快地學習。
三、教學過程
。ㄒ唬└兄磉厰祵W
學生已經學習過列方程(組)解應用題,因此可能列出一元一次方程或二元一次方程組,用方程模型解決問題。結合前面對一次函數與一元一次方程、一元一次不等式之間關系的探究,我自然地提出問題:“一次函數與二元一次方程組之間是否也有聯系呢?”,從而揭示課題。
[設計意圖]建構主義認為,在實際情境中學習可以激發(fā)學生的學習興趣。因此,用“上網收費”這一生活實際創(chuàng)設情境,并用問題啟發(fā)學生去思、鼓勵學生去探、激勵學生去說,努力給學生造成“心求通而未能得,口欲言而不能說”的情勢,從而喚起學生強烈的求知欲,使他們以躍躍欲試的姿態(tài)投入到探索活動中來。
教學引入
師:教材在《四邊形》這一章《引言》里有這樣一句話:把一個長方形折疊就可以得到一個正方形,F在請同學們拿出一個長方形紙條,按動畫所示進行折疊處理。
動畫演示:
場景一:正方形折疊演示
師:這就是我們得到的正方形。下面請同學們拿出三角板(刻度尺)和圓規(guī),我們來研究正方形的幾何性質—邊、角以及對角線之間的關系。請大家測量各邊的長度、各角的大小、對角線的長度以及對角線交點到各頂點的長度。
[學生活動:各自測量。]
鼓勵學生將測量結果與鄰近同學進行比較,找出共同點。
講授新課
找一兩個學生表述其結論,表述是要注意糾正其語言的規(guī)范性。
動畫演示:
場景二:正方形的性質
師:這些性質里那些是矩形的性質?
[學生活動:尋找矩形性質。]
動畫演示:
場景三:矩形的性質
師:同樣在這些性質里尋找屬于菱形的性質。
[學生活動;尋找菱形性質。]
動畫演示:
場景四:菱形的性質
師:這說明正方形具有矩形和菱形的全部性質。
及時提出問題,引導學生進行思考。
師:根據這些性質,我們能不能給正方形下一個定義?怎么樣給正方形下一個準確的定義?
[學生活動:積極思考,有同學做躍躍欲試狀。]
師:請同學們回想矩形與菱形的定義,可以根據矩形與菱形的定義類似的給出正方形的定義。
學生應能夠向出十種左右的定義方式,其余作相應鼓勵,把以下三種板書:
“有一組鄰邊相等的矩形叫做正方形。”
“有一個角是直角的菱形叫做正方形。”
“有一個角是直角且有一組鄰邊相等的平行四邊形叫做正方形。”
[學生活動:討論這三個定義正確不正確?三個定義之間有什么共同和不同的地方?這出教材中采用的是第三種定義方式。]
師:根據定義,我們把平行四邊形、矩形、菱形和正方形它們之間的關系梳理一下。
。ǘ┫硎芴骄繕啡
1、探究一次函數與二元一次方程的關系
[設計意圖]用一連串的問題引導學生發(fā)現一次函數與二元一次方程在數與形兩個方面的關系,為探索二元一次方程組的'解與直線交點坐標的關系作好鋪墊。
2、探究一次函數與二元一次方程組的關系
[設計意圖]學生經過自主探索、合作交流,從數和形兩個角度認識一次函數與二元一次方程組的關系,真正掌握本節(jié)課的重點知識,從而在頭腦中再現知識的形成過程,避免單純地記憶,使學習過程成為一種再創(chuàng)造的過程。此時教師及時對學生進行鼓勵,充分肯定學生的探究成果,關注學生的情感體驗。
。ㄈ┏俗腔劭燔
例題:我市一家電信公司給顧客提供兩種上網收費方式:方式A以每分0。1元的價格按上網時間計費;方式B除收月基費20元外再以每分0。05元的價格按上網時間計費。如何選擇收費方式能使上網者更合算?
[設計意圖]為培養(yǎng)學生的發(fā)散思維和規(guī)范解題的習慣,引導學生將上網問題延伸為例題,并用問題:“你家選擇的上網收費方式好嗎?”再次激起學生強烈的求知欲望和主人翁的學習姿態(tài)。通過此問題的探究,使學生有效地理解本節(jié)課的難點,體會數形結合這一思想方法的應用。
。ㄋ模w驗成功喜悅
1、搶答題
2、旅游問題
[設計意圖]抓住學生對競爭充滿興趣的心理特征,用搶答題使學生的眼、耳、腦、口得到充分的調動,并在搶答中品味成功的快樂,提高思維的速度。在學生感興趣的旅游問題中,進一步培養(yǎng)學生應用數學的意識,更好地促進學生對本節(jié)課難點的理解和應用,幫助學生不斷完善新的認知結構。
。ㄎ澹┓窒砟阄沂斋@
在課堂臨近尾聲時,向學生提出:通過今天的學習,你有什么收獲?你印象最深的是什么?
[設計意圖]培養(yǎng)學生歸納和語言表達能力,鼓勵學生從數學知識、數學方法和數學情感等方面進行自我評價。
。╅_拓嶄新天地
1、數學日記
2、布置作業(yè)
[設計意圖]新課程強調發(fā)展學生數學交流的能力,用數學日記給學生提供一種表達數學思想方法和情感的方式,以體現評價體系的多元化,并使學生嘗試用數學的眼睛觀察事物,體驗數學的價值。作業(yè)由必做題和選做題組成,體現分層教學,讓“不同的人在數學上得到不同的發(fā)展”。
四、教學設計反思
1、貫穿一個原則——以學生為主體的原則
2、突出一個思想——數形結合的思想
3、體現一個價值——數學建模的價值
4、滲透一個意識——應用數學的意識
二元一次方程公開課教案6
教學建議
一、重點、難點分析
本節(jié)的教學重點是使學生學會用代入法.教學難點在于靈活運用代入法,這要通過一定數量的練習來解決;另一個難點在于用代入法求出一個未知數的值后,不知道應把它代入哪一個方程求另一個未知數的值比較簡便.
解二元一次方程組的關鍵在于消元,即將“二元”轉化為“一元”.我們是通過等量代換的方法,消去一個未知數,從而求得原方程組的解.
二、知識結構
三、教法建議
1.關于檢驗方程組的解的問題.教材指出:“檢驗時,需將所求得的一對未知數的值分別代入原方程組里的每一個方程中,看看方程的左、右兩邊是不是相等.”教學時要強調“原方程組”和“每一個”這兩點.檢驗的作用,一是使學生進一步明確代入法是求方程組的解的一種基本方法,通過代入消元的確可以求得方程組的解二是進一步鞏固二元一次方程組的解的概念,強調
這一對數值才是原方程組的解,并且它們必須使兩個方程左、右兩邊的值都相等;三是因為我們沒有用方程組的同解原理而是用代換(等式的傳遞)來解方程組的,所以有必要檢驗求出來的這一對數值是不是原方程組的解;四是為了杜絕變形和計算時發(fā)生的錯誤.檢驗可以口算或在草稿紙上演算,教科書中沒有寫出.
2.教學時,應結合具體的例子指出這里解二元一次方程組的關鍵在于消元,即把“二元”轉化為“一元”.我們是通過等量代換的方法,消去一個未知數,從而求得原方程組的解.早一些指出消元思想和把“二元”轉化為“一元”的方法,這樣,學生就能有較強的目的性.
3.教師講解例題時要注意由簡到繁,由易到難,逐步加深.隨著例題由簡到繁,由易到難,要特別強調解方程組時應努力使變形后的方程比較簡單和代入后化簡比較容易.這樣不僅可以求解迅速,而且可以減少錯誤.
一、素質教育目標
(一)知識教學點
1.掌握用代入法解二元一次方程組的步驟.
2.熟練運用代入法解簡單的二元一次方程組.
。ǘ┠芰τ柧汓c
1.培養(yǎng)學生的分析能力,能迅速在所給的二元一次方程組中,選擇一個系數較簡單的方程進行變形.
2.訓練學生的'運算技巧,養(yǎng)成檢驗的習慣.
。ㄈ┑掠凉B透點
消元,化未知為已知的數學思想.
。ㄋ模┟烙凉B透點
通過本節(jié)課的學習,滲透化歸的數學美,以及方程組的解所體現出來的奇異的數學美.
二、學法引導
1.教學方法:引導發(fā)現法、練習法,嘗試指導法.
2.學生學法:在前面已經學過一元一次方程的解法,求二元一次方程組的解關鍵是化二元方程為一元方程,故在求解過程當中始終應抓住消元的思想方法.
三、重點、難點、疑點及解決辦法
。ǎ┲攸c
使學生會用代入法解二元一次方程組.
。ǘ╇y點
靈活運用代入法的技巧.
。ㄈ┮牲c
如何“消元”,把“二元”轉化為“一元”.
。ㄋ模┙鉀Q辦法
一方面復習用一個未知量表示另一個未知量的方法,另一方面學會選擇用一個系數較簡單的方程進行變形:
四、課時安排
一課時.
五、教具學具準備
電腦或投影儀、自制膠片.
六、師生互動活動設計
1.教師設問怎樣用一個未知量表示另一個未知量,并比較哪種表示形式更簡單,如 等.
2.通過課本中香蕉、蘋果的應用問題,引導學生列出一元一次方程或二元一次方程組,并通過比較、嘗試,探索出化二元為一元的解方程組的方法.
3.再通過比較、嘗試,探索出選一個系數較簡單的方程變形,通過代入法求方程組解的辦法更簡便,并尋找出求解的規(guī)律.
七、教學步驟
。ǎ┟鞔_目標
本節(jié)課我們將學習用代入法求二元一次方程組的解.
(二)整體感知
從復習用一個未知量表達另一個未知量的方法,從而導入運用代入法化二元為一元方程的求解過程,即利用代入消元法求二元一次方程組的解的辦法.
。ㄈ┙虒W步驟
1.創(chuàng)設情境,復習導入
。1)已知方程 ,先用含 的代數式表示 ,再用含 的代數式表示 .并比較哪一種形式比較簡單.
(2)選擇題:
二元一次方程組 的解是
A. B. C. D.
第(1)題為用代入法解二元一次方程組打下基礎;第(2)題既復習了上節(jié)課的重點,又成為導入新課的材料.
通過上節(jié)課的學習,我們會檢驗一對數值是否為某個二元一次方程組的解.那么,已知一個二元一次方程組,應該怎樣求出它的解呢?這節(jié)課我們就來學習.
這樣導入,可以激發(fā)學生的求知欲.
2.探索新知,講授新課
香蕉的售價為5元/千克,蘋果的售價為3元/千克,小華共買了香蕉和蘋果9千克,付款33元,香蕉和蘋果各買了多少千克?
學生活動:分別列出一元一次方程和二元一次方程組,兩個學生板演.
設買了香蕉 千克,那么蘋果買了 千克,根據題意,得
設買了香蕉 千克,買了蘋果 千克,得
上面的一元一次方程我們會解,能否把二元一次方程組轉化為一元一次方程呢,由方程①可以得到 ③,把方程②中的 轉換成 ,也就是把方程③代入方程②,就可以得到 .這樣,我們就把二元一次方程組轉化成了一元一次方程,由這個方程就可以求出 了.
解:由①得: ③
把③代入②,得:
∴
把 代入③,得:
∴
解二元一次方程組與解一元一次方程相比較,向學生展示了知識的發(fā)生過程,這對于學生知識的形成十分重要.
上面解二元一次方程組的方法,就是代入消元法.你能簡單說說用代入法解二元一次方程組的基本思路嗎?
學生活動:小組討論,選代表發(fā)言,教師進行指導.糾正后歸納:設法消去一個未知數,把二元一次方程組轉化為一元一次方程.
例1 解方程組
。1)觀察上面的方程組,應該如何消元?(把①代入②)
(2)把①代入②后可消掉 ,得到關于 的一元一次方程,求出 .
(3)求出 后代入哪個方程中求 比較簡單?(①)
學生活動:依次回答問題后,教師板書
解:把①代入②,得
∴
把 代入①,得
∴
如何檢驗得到的結果是否正確?
學生活動:口答檢驗.
教師:要把所得結果分別代入原方程組的每一個方程中.
給出例1后提出的三個問題,恰好是學生的思維過程,明確了解題思路;教師板演例1,規(guī)范了解二元一次方程組的解題格式;通過檢驗,可使學生養(yǎng)成嚴謹認真的學習習慣.
例2 解方程組
要把某個方程化成如例1中方程①的形式后,代入另一個方程中才能消元.方程②中 的系數是1,比較簡單.因此,可以先將方程②變形,用含 的代數式表示 ,再代入方程①求解.
學生活動:嘗試完成例2.
教師巡視指導,發(fā)現并糾正學生的問題,把書寫過程規(guī)范化.
解:由②,得 ③
把③代入①,得
∴
∴
把 代入③,得
∴
∴
檢驗后,師生共同討論:
(1)由②得到③后,再代入②可以嗎?(不可以)為什么?(得到的是恒等式,不能求解)
(2)把 代入①或②可以求出 嗎?(可以)代入③有什么好處?(運算簡便)
學生活動:根據例1、例2的解題過程,嘗試總結用代入法解二元一次方程組的一般步驟,討論后選代表發(fā)言.之后,看課本第12頁,用幾個字概括每個步驟.
教師板書:
。1)變形( )
(2)代入消元( )
。3)解一元一次方程得( )
。4)把 代入 求解
練習:P13 1.(1)(2);P14 2.(1)(2).
3.變式訓練,培養(yǎng)能力
、儆 可以得到用 表示 .
②在 中,當 時, ;當 時, ,則 ; .
③選擇:若 是方程組 的解,則( )
A. B. C. D.
(四)總結、擴展
1.解二元一次方程組的思想:
2.用代入法解二元一次方程組的步驟.
3.用代入法解二元一次方程組的技巧:①變形的技巧②代入的技巧.
通過這節(jié)課的學習,我們要熟練運用代入法解二元一次方程組,并能檢驗結果是否正確.
八、布置作業(yè)
。ㄒ唬┍刈鲱}:P15 1.(2)(4),2.(1)(2)(3)(4).
(二)選做題:P15 B組1.
【二元一次方程公開課教案】相關文章:
二元一次方程公開課教案04-24
二元一次方程教案03-27
二元一次方程教案15篇04-01
二元一次方程教學設計04-06
代入法解二元一次方程組教案04-04
二元一次方程與一次函數教案04-01
《實際問題與二元一次方程組》教案03-11
解二元一次方程組教學反思04-07
二元一次方程組教后反思04-07