成大在线免费视频,亚洲精品免费一级视频,日韩亚洲欧美大陆,又黄又爽免费国产视频

<style id="t465f"></style>
<legend id="t465f"><u id="t465f"><thead id="t465f"></thead></u></legend>

<acronym id="t465f"></acronym>

<sub id="t465f"><ol id="t465f"><nobr id="t465f"></nobr></ol></sub>
<sub id="t465f"></sub>

因式分解教案

時間:2023-03-07 16:41:24 教案 投訴 投稿

因式分解教案模板7篇

  作為一位兢兢業(yè)業(yè)的人民教師,時常要開展教案準備工作,借助教案可以更好地組織教學活動。教案應(yīng)該怎么寫呢?以下是小編整理的因式分解教案7篇,僅供參考,歡迎大家閱讀。

因式分解教案模板7篇

因式分解教案1

  第十五章 整式的乘除與因式分解

  根據(jù)定義,我們不難得出a+b+c、t-5、3x+5+2z、 ab-3.12r2、x2+2x+18都是多項式.請分別指出它們的項和次數(shù).

  15.1.2 整式的加減

  (3)x-(1-2x+x2)+(-1-x2) (4)(8x-3x2)-5x-2(3x-2x2)

  四、提高練習:

  1、已知A=a2+b2-c2,B=-4a2+2b2+3c2,并且A+B+C=0,問C是什么樣的.多項式?

  2、設(shè)A=2x2-3x+2-x+2,B=4x2-6x+22-3x-,若│x-2a│+(+3)2=0,且B-2A=a,求A的值。

  3、已知有理數(shù)a、b、c在數(shù)軸上(0為數(shù)軸原點)的對應(yīng)點如圖:

  試化簡:│a│-│a+b│+│c-a│+│b+c│

  小 結(jié):要善于在圖形變化中發(fā)現(xiàn)規(guī)律,能熟練的對整式加減進行運算。

  作 業(yè):課本P14習題1.3:1(2)、(3)、(6),2。

  《課堂感悟與探究》

因式分解教案2

  學習目標

  1、 學會用公式法因式法分解

  2、綜合運用提取公式法、公式法分解因式

  學習重難點 重點:

  完全平方公式分解因式.

  難點:綜合運用兩種公式法因式分解

  自學過程設(shè)計

  完全平方公式:

  完全平方公式的逆運用:

  做一做:

  1.(1)16x2-8x+_______=(4x-1)2;

  (2)_______+6x+9=(x+3)2;

  (3)16x2+_______+9y2=(4x+3y)2;

  (4)(a-b)2-2(a-b)+1=(______-1)2.

  2.在代數(shù)式(1)a2+ab+b2;(2)4a2+4a+1;(3)a2-b2+2ab;(4)-4a2+12ab-9b2中,可用完全平方公式因式分解的是_________(填序號)

  3.下列因式分解正確的是( )

  A.x2+y2=(x+y)2 B.x2-xy+x2=(x-y)2

  C.1+4x-4x2=(1-2x)2 D.4-4x+x2=(x-2)2

  4.分解因式:(1)x2-22x+121 (2)-y2-14y-49 (3)(a+b)2+2(a+b)+1

  5.計算:20062-40102006+20052=___________________.

  6.若x+y=1,則 x2+xy+ y2的值是_________________.

  想一想

  你還有哪些地方不是很懂?請寫出來。

  ____________________________________________________________________________________ 預習展示一:

  1.判別下列各式是不是完全平方式.

  2、把下列各式因式分解:

  (1)-x2+4xy-4y2

  (2)3ax2+6axy+3ay2

  (3)(2x+y)2-6(2x+y)+9

  應(yīng)用探究:

  1、用簡便方法計算

  49.92+9.98 +0.12

  拓展提高:

  (1)( a2+b2)( a2+b2 10)+25=0 求a2+b2

  (2)4x2+y2-4xy-12x+6y+9=0

  求x、y關(guān)系

  (3)分解因式:m4+4

  教后反思 考察利用公式法因式分解的題目不會很難,但是需要學生記住公式的形式,之后利用公式把式子進行變形,從而達到進行因式分解的目的`,但是這里有用到實際中去的例子,對學生來說會難一些。

因式分解教案3

  第6.4因式分解的簡單應(yīng)用

  背景材料:

  因式分解是初中數(shù)學中的一個重點內(nèi)容,也是一項重要的基本技能和基礎(chǔ)知識,更是一種數(shù)學的變形方法,在今后的學習中有著重要的作用。因此,除了單純的因式分解問題外,因式分解在解某些數(shù)學問題中有著廣泛的作用,因式分解在三角形中的應(yīng)用,因式分解可以用來證明代數(shù)問題,用于代數(shù)式的求值,用于求不定方程,用于解應(yīng)用題解決有關(guān)復雜數(shù)值的計算,本節(jié)課的例題因式分解在數(shù)學題中的簡單應(yīng)用。

  教材分析:

  本節(jié)課是本章的最后一節(jié),是學生學習因式分解初步應(yīng)用,首先要使學生體會到因式分解在數(shù)學中應(yīng)用,其次給學生提供更多機會體驗主動學習和探索的“過程”與“經(jīng)歷”,使多數(shù)學里擁有一定問題解決的經(jīng)驗。

  教學目標:

  1、在整除的情況下,會應(yīng)用因式分解,進行多項式相除。

  2、會應(yīng)用因式分解解簡單的一元二次方程。

  3、體驗數(shù)學問題中的矛盾轉(zhuǎn)化思想。

  4、培養(yǎng)觀察和動手能力,自主探索與合作交流能力。

  教學重點:

  學會應(yīng)用因式分解進行多項式除法和解簡單一元二次方程。

  教學難點:

  應(yīng)用因式分解解簡單的一元二次方程。

  設(shè)計理念:

  根據(jù)本節(jié)課的內(nèi)容特點,主要采用師生合作控討式課堂教學方法,以教師為主導,學生為主體,動手實踐訓練為主線,創(chuàng)新思維為核心,態(tài)度情感能力為目標,引導學生自主探索,動手實踐,合作交流。注重使學生經(jīng)辦觀察、操作、推理等探索過程。這種教學理念,反映了時代精神,有利于提高學生的數(shù)學素養(yǎng),能有效地激發(fā)學生的思維積極性,學生在學習過程中調(diào)動各種感官,進行觀察與抽象、操作與思考、自主與交流等,進而改進學生的學習方法。

  教學過程:

  一、創(chuàng)設(shè)情境,復習提問

  1、將正式各式因式分解

 。1)(a+b)2-10(a+b)+25 (2)-xy+2x2y+x3y

  (3)2 a2b-8a2b (4)4x2-9

  [四位同學到黑板上演板,本課時用復習“練習引入”也不失為一種好方法,既先復習因式分解的提取分因式和公式法,又為下面解決多項式除法運算作鋪墊]

  教師訂正

  提出問題:怎樣計算(2 a2b-8a2b)÷(4a-b)

  二、導入新課,探索新知

  (先讓學生思考上面所提出的問題,教師從旁啟發(fā))

  師:如果出現(xiàn)豎式計算,教師可以給予肯定;可能出現(xiàn)(2 a2b-8a2b)÷(4a-b)= ab-8a2追問學生怎么得來的,運算的依據(jù)是什么?這樣暴露學生的思維,讓學生自己發(fā)現(xiàn)錯誤之處;觀察2 a2b-8a2b=2 ab(b-4a),其中一個因式正好是除式4a-b的'相反數(shù),如果用“換元”思想,我們就可以把問題轉(zhuǎn)化為單項式除以單項式。

  (2 a2b-8a2b)÷(4a-b)

  =-2ab(4a-b)÷(4a-b)

  =-2ab

 。ㄗ寣W生自己比較哪種方法好)

  利用上面的數(shù)學解題思路,同學們嘗試計算

 。4x2-9)÷(3-2x)

  學生總結(jié)解題步驟:1、因式分解;2、約去公因式)

  (全體學生動手動腦,然后叫學生回答,及時表揚,講練結(jié)合, [運用多項式的因式分解和換元的思想,可以把兩個多項式相除,轉(zhuǎn)化為單項式的除法]

  練習計算

 。1)(a2-4)÷(a+2)

  (2)(x2+2xy+y2)÷(x+y)

 。3)[(a-b)2+2(b-a)] ÷(a-b)

  三、合作學習

  1、以四人為一組討論下列問題

  若A?B=0,下面兩個結(jié)論對嗎?

 。1)A和B同時都為零,即A=0且B=0

 。2)A和B至少有一個為零即A=0或B=0

  [合作學習,四個小組討論,教師逐步引導,讓學生講自己的想法,及解題步驟,培養(yǎng)語言表達能力,體會運用因式分解的實際運用作用,增加學習興趣]

  2、你能用上面的結(jié)論解方程

 。1)(2x+3)(2x-3)=0 (2)2x2+x=0

  解:

  ∵(2x+3)(2x-3)=0

  ∴2x+3=0或2x-3=0

  ∴方程的解為x=-3/2或x=3/2

  解:x(2x+1)=0

  則x=0或2x+1=0

  ∴原方程的解是x1=0,x2=-1/2

  [讓學生先獨立完成,再組織交流,最后教師針對性地講解,讓學生總結(jié)步驟:1、移項,使方程一邊變形為零;2、等式左邊因式分解;3、轉(zhuǎn)化為解一元一次方程]

  3、練習,解下列方程

  (1)x2-2x=0 4x2=(x-1)2

  四、小結(jié)

 。1)應(yīng)用因式分解和換元思想可以把某些多項式除法轉(zhuǎn)化為單項式除法。

  (2)如果方程的等號一邊是零,另一邊含有未知數(shù)x的多項式可以分解成若干個x的一次式的積,那么就可以應(yīng)用因式分解把原方程轉(zhuǎn)化成幾個一元一次方程來解。

  設(shè)計理念:

  根據(jù)本節(jié)課的內(nèi)容特點,主要采用師生合作討論式課堂教學方法,以教師為主導,學生為主體,動手實踐訓練為主線,創(chuàng)新思維為核心,態(tài)度情感能力為目標,引導學生自主探索,動手實踐,合作交流。注重使學生經(jīng)辦觀察、操作、推理等探索過程。這種教學理念,反映了時代精神,有利于提高學生的數(shù)學素養(yǎng),能有效地激發(fā)學生的思維積極性,學生在學習過程中調(diào)動各種感官,進行觀察與抽象、操作與思考、自主與交流等,進而改進學生的學習方法。

因式分解教案4

  教學設(shè)計思想:

  本小節(jié)依次介紹了平方差公式和完全平方公式,并結(jié)合公式講授如何運用公式進行多項式的因式分解。第一課時的內(nèi)容是用平方差公式對多項式進行因式分解,首先提出新問題:x2-4與y2-25怎樣進行因式分解,讓學生自主探索,通過整式乘法的平方差公式,逆向得出用公式法分解因式的方法,發(fā)展學生的逆向思維和推理能力,然后讓學生獨立去做例題、練習中的題目,并對結(jié)果通過展示、解釋、相互點評,達到能較好的運用平方差公式進行因式分解的目的。第二課時利用完全平方公式進行多項式的`因式分解是在學生已經(jīng)學習了提取公因式法及利用平方差公式分解因式的基礎(chǔ)上進行的,因此在教學設(shè)計中,重點放在判斷一個多項式是否為完全平方式上,采取啟發(fā)式的教學方法,引導學生積極思考問題,從中培養(yǎng)學生的思維品質(zhì)。

  教學目標

  知識與技能:

  會用平方差公式對多項式進行因式分解;

  會用完全平方公式對多項式進行因式分解;

  能夠綜合運用提公因式法、平方差公式、完全平方公式對多項式進行因式分解;

  提高全面地觀察問題、分析問題和逆向思維的能力。

  過程與方法:

  經(jīng)歷用公式法分解因式的探索過程,進一步體會這兩個公式在因式分解和整式乘法中的不同方向,加深對整式乘法和因式分解這兩個相反變形的認識,體會從正逆兩方面認識和研究事物的方法。

  情感態(tài)度價值觀:

  通過學習進一步理解數(shù)學知識間有著密切的聯(lián)系。

  教學重點和難點

  重點:①運用平方差公式分解因式;②運用完全平方式分解因式。

  難點:①靈活運用平方差公式分解因式,正確判斷因式分解的徹底性;②靈活運用完全平方公式分解因式

  關(guān)鍵:把握住因式分解的基本思路,觀察多項式的特征,靈活地運用換元和劃歸思想。

因式分解教案5

  教學目標:

  1.知識與技能:掌握運用提公因式法、公式法分解因式,培養(yǎng)學生應(yīng)用因式分解解決問題的能力.

  2.過程與方法:經(jīng)歷探索因式分解方法的過程,培養(yǎng)學生研討問題的方法,通過猜測、推理、驗證、歸納等步驟,得出因式分解的方法.

  3.情感態(tài)度與價值觀:通過因式分解的學習,使學生體會數(shù)學美,體會成功的自信和團結(jié)合作精神,并體會整體數(shù)學思想和轉(zhuǎn)化的數(shù)學思想.

  教學重、難點:用提公因式法和公式法分解因式.

  教具準備:多媒體課件(小黑板)

  教學方法:活動探究法

  教學過程:

  引入:在整式的變形中,有時需要將一個多項式寫成幾個整式的乘積的形式,這種變形就是因式分解.什么叫因式分解?

  知識詳解

  知識點1 因式分解的定義

  把一個多項式化成幾個整式的積的形式,這種變形叫做把這個多項式因式分解,也叫做把這個多項式分解因式.

  【說明】 (1)因式分解與整式乘法是相反方向的變形.

  例如:

  (2)因式分解是恒等變形,因此可以用整式乘法來檢驗.

  怎樣把一個多項式分解因式?

  知識點2 提公因式法

  多項式ma+mb+mc中的各項都有一個公共的因式m,我們把因式m叫做這個多項式的公因式.ma+mb+mc=m(a+b+c)就是把ma+mb+mc分解成兩個因式乘積的形式,其中一個因式是各項的公因式m,另一個因式(a+b+c)是ma+mb+mc除以m所得的`商,像這種分解因式的方法叫做提公因式法.例如:x2-x=x(x-1),8a2b-4ab+2a=2a(4ab-2b+1).

  探究交流

  下列變形是否是因式分解?為什么?

  (1)3x2y-xy+y=y(3x2-x); (2)x2-2x+3=(x-1)2+2;

  (3)x2y2+2xy-1=(xy+1)(xy-1); (4)xn(x2-x+1)=xn+2-xn+1+xn.

  典例剖析 師生互動

  例1 用提公因式法將下列各式因式分解.

  (1) -x3z+x4y; (2) 3x(a-b)+2y(b-a);

  分析:(1)題直接提取公因式分解即可,(2)題首先要適當?shù)淖冃? 再把b-a化成-(a-b),然后再提取公因式.

  小結(jié) 運用提公因式法分解因式時,要注意下列問題:

  (1)因式分解的結(jié)果每個括號內(nèi)如有同類項要合并,而且每個括號內(nèi)不能再分解.

  (2)如果出現(xiàn)像(2)小題需統(tǒng)一時,首先統(tǒng)一,盡可能使統(tǒng)一的個數(shù)少。這時注意到(a-b)n=(b-a)n(n為偶數(shù)).

  (3)因式分解最后如果有同底數(shù)冪,要寫成冪的形式.

  學生做一做 把下列各式分解因式.

  (1) (2a+b)(2a-3b)+(2a+5b)(2a+b) ;(2) 4p(1-q)3+2(q-1)2

  知識點3 公式法

  (1)平方差公式:a2-b2=(a+b)(a-b).即兩個數(shù)的平方差,等于這兩個數(shù)的和與這個數(shù)的差的積.例如:4x2-9=(2x)2-32=(2x+3)(2x-3).

  (2)完全平方公式:a2±2ab+b2=(a±b)2.其中,a2±2ab+b2叫做完全平方式.即兩個數(shù)的平方和加上(或減去)這兩個數(shù)的積的2倍,等于這兩個數(shù)的和(或差)的平方.例如:4x2-12xy+9y2=(2x)2-2·2x·3y+(3y)2=(2x-3y)2.

  探究交流

  下列變形是否正確?為什么?

  (1)x2-3y2=(x+3y)(x-3y);(2)4x2-6xy+9y2=(2x-3y)2;(3)x2-2x-1=(x-1)2.

  例2 把下列各式分解因式.

  (1) (a+b)2-4a2;(2)1-10x+25x2;(3)(m+n)2-6(m+n)+9.

  分析:本題旨在考查用完全平方公式分解因式.

  學生做一做 把下列各式分解因式.

  (1)(x2+4)2-2(x2+4)+1; (2)(x+y)2-4(x+y-1).

  綜合運用

  例3 分解因式.

  (1)x3-2x2+x; (2) x2(x-y)+y2(y-x);

  分析:本題旨在考查綜合運用提公因式法和公式法分解因式.

  小結(jié) 解因式分解題時,首先考慮是否有公因式,如果有,先提公因式;如果沒有公因式是兩項,則考慮能否用平方差公式分解因式. 是三項式考慮用完全平方式,最后,直到每一個因式都不能再分解為止.

  探索與創(chuàng)新題

  例4 若9x2+kxy+36y2是完全平方式,則k= .

  分析:完全平方式是形如:a2±2ab+b2即兩數(shù)的平方和與這兩個數(shù)乘積的2倍的和(或差).

  學生做一做 若x2+(k+3)x+9是完全平方式,則k= .

  課堂小結(jié)

  用提公因式法和公式法分解因式,會運用因式分解解決計算問題.

  各項有"公"先提"公",首項有負常提負,某項提出莫漏"1",括號里面分到"底"。

  自我評價 知識鞏固

  1.若x2+2(m-3)x+16是完全平方式,則m的值等于( )

  A.3 B.-5 C.7. D.7或-1

  2.若(2x)n-81=(4x2+9)(2x+3)(2x-3),則n的值是( )

  A.2 B.4 C.6 D.8

  3.分解因式:4x2-9y2= .

  4.已知x-y=1,xy=2,求x3y-2x2y2+xy3的值.

  5.把多項式1-x2+2xy-y2分解因式

  思考題 分解因式(x4+x2-4)(x4+x2+3)+10.

因式分解教案6

  一、教材分析

  1、教材的地位與作用

  “整式的乘法”是整式的加減的后續(xù)學習從冪的運算到各種整式的乘法,整章教材都突出了學生的自主探索過程,依據(jù)原有的知識基礎(chǔ),或運用乘法的各種運算規(guī)律,或借助直觀而又形象的圖形面積,得到各種運算的基本法則、兩個主要的.乘法公式及因式分解的基本方法學生自己對知識內(nèi)容的探索、認識與體驗,完全有利于學生形成合理的知識結(jié)構(gòu),提高數(shù)學思維能力.利用公式法進行因式分解時,注意把握多項式的特點,對比乘法公式乘積結(jié)果的形式,選擇正確的分解方法。

  因式分解是一種常用的代數(shù)式的恒等變形,因式分解是多項式乘法公式的逆向變形,它是將一個多項式變形為多項式與多項式的乘積。

  2、教學目標

  (1)會推導乘法公式

 。2)在應(yīng)用乘法公式進行計算的基礎(chǔ)上,感受乘法公式的作用和價值。

 。3)會用提公因式法、公式法進行因式分解。

 。4)了解因式分解的一般步驟。

  (5)在因式分解中,經(jīng)歷觀察、探索和做出推斷的過程,提高分析問題和解決問題的能力。

  3、重點、難點和關(guān)鍵

  重點:乘法公式的意義、分式的由來和正確運用;用提公因式法和公式法進行因式分解。

  難點:正確運用乘法公式;正確分解因式。

  關(guān)鍵:正確理解乘法公式和因式分解的意義。

  二、本單元教學的方法和策略:

  1.注重知識形成的探索過程,讓學生在探索過程中領(lǐng)悟知識,在領(lǐng)悟過程中建構(gòu)體系,從而更好地實現(xiàn)知識體系的更新和知識的正向遷移.

  2.知識內(nèi)容的呈現(xiàn)方式力求與學生已有的知識結(jié)構(gòu)相聯(lián)系,同時兼顧學生的思維水平和心理特征.

  3.讓學生掌握基本的數(shù)學事實與數(shù)學活動經(jīng)驗,減輕不必要的記憶負擔.

  4.注意從生活中選取素材,給學生提供一些交流、討論的空間,讓學生從中體會數(shù)學的應(yīng)用價值,逐步養(yǎng)成談數(shù)學、想數(shù)學、做數(shù)學的良好習慣.

  三、課時安排:

  2.1平方差公式 1課時

  2.2完全平方公式 2課時

  2.3用提公因式法進行因式分解 1課時

  2.4用公式法進行因式分解 2課時

因式分解教案7

  一、教學目標

  【知識與技能】

  了解運用公式法分解因式的意義,會用平方差分解因式;知道提公因式法分解因式是首先考慮的方法,再考慮用平方差分解因式。

  【過程與方法】

  通過對平方差特點的辨析,培養(yǎng)觀察、分析能力,訓練對平方差公式的應(yīng)用能力。

  【情感態(tài)度價值觀】

  在逆用乘法公式的過程中,培養(yǎng)逆向思維能力,在分解因式時了解換元的思想方法。

  二、教學重難點

  【教學重點】

  運用平方差公式分解因式。

  【教學難點】

  靈活運用公式法或已經(jīng)學過的提公因式法分解因式;正確判斷因式分解的徹底性。

  三、教學過程

  (一)引入新課

  我們學習了因式分解的定義,還學習了提公因式法分解因式。如果一個多項式的各項,不具備相同的因式,是否就不能分解因式了呢?當然不是,大家知道因式分解與多項式乘法是互逆關(guān)系,能否利用這種關(guān)系找到新的.因式分解的方法呢?

  大家先觀察下列式子:

  (1)(x+5)(x-5)=,(2)(3x+y)(3x-y)=,(3)(1+3a)(1-13a)=

  他們有什么共同的特點?你可以得出什么結(jié)論?

  (二)探索新知

  學生獨立思考或者與同桌討論。

  引導學生得出:①有兩項組成,②兩項的符號相反,③兩項都可以寫成數(shù)或式的平方的形式。

  提問1:能否用語言以及數(shù)學公式將其特征表述出來?

因式分解教案8

  【教學目標】

  1、了解因式分解的概念和意義;

  2、認識因式分解與整式乘法的相互關(guān)系——相反變形,并會運用它們之間的相互關(guān)系尋求因式分解的方法。

  【教學重點、難點】

  重點是因式分解的概念,難點是理解因式分解與整式乘法的相互關(guān)系,并運用它們之間的相互關(guān)系尋求因式分解的方法。

  【教學過程】

  ㈠、情境導入

  看誰算得快:(搶答)

  (1)若a=101,b=99,則a2-b2=___________;

  (2)若a=99,b=-1,則a2-2ab+b2=____________;

  (3)若x=-3,則20x2+60x=____________。

 、、探究新知

  1、請每題答得最快的同學談思路,得出最佳解題方法。(多媒體出示答案)(1)a2-b2=(a+b)(a-b)=(101+99)(101-99)=400;

  (2)a2-2ab+b2=(a-b) 2=(99+1)2 =10000;

  (3)20x2+60x=20x(x+3)=20x(-3)(-3+3)=0。

  2、觀察:a2-b2=(a+b)(a-b),a2-2ab+b2 = (a-b)2, 20x2+60x=20x(x+3),找出它們的特點。(等式的左邊是一個什么式子,右邊又是什么形式?)

  3、類比小學學過的因數(shù)分解概念,得出因式分解概念。(學生概括,老師補充。)

  板書課題:§6.1 因式分解

  因式分解概念:把一個多項式化成幾個整式的積的'形式叫做因式分解,也叫分解因式。

 、、前進一步

  1、讓學生繼續(xù)觀察:(a+b)(a-b)= a2-b2, (a-b)2= a2-2ab+b2, 20x(x+3)= 20x2+60x,它們是什么運算?與因式分解有何關(guān)系?它們有何聯(lián)系與區(qū)別?

  2、因式分解與整式乘法的關(guān)系:

  因式分解

  結(jié)合:a2-b2 (a+b)(a-b)

  整式乘法

  說明:從左到右是因式分解其特點是:由和差形式(多項式)轉(zhuǎn)化成整式的積的形式;從右到左是整式乘法其特點是:由整式積的形式轉(zhuǎn)化成和差形式(多項式)。

  結(jié)論:因式分解與整式乘法的相互關(guān)系——相反變形。

 、、鞏固新知

  1、 下列代數(shù)式變形中,哪些是因式分解?哪些不是?為什么?

  (1)x2-3x+1=x(x-3)+1 ;(2)(m+n)(a+b)+(m+n)(x+y)=(m+n)(a+b+x+y);

  (3)2m(m-n)=2m2-2mn; (4)4x2-4x+1=(2x-1)2;(5)3a2+6a=3a(a+2);

  (6)x2-4+3x=(x-2)(x+2)+3x; (7)k2++2=(k+)2;(8)18a3bc=3a2b·6ac。

  2、你能寫出整式相乘(其中至少一個是多項式)的兩個例子,并由此得到相應(yīng)的兩個多項式的因式分解嗎?把結(jié)果與你的同伴交流。

 、、應(yīng)用解釋

  例 檢驗下列因式分解是否正確:

  (1)x2y-xy2=xy(x-y);(2)2x2-1=(2x+1)(2x-1);(3)x2+3x+2=(x+1)(x+2).

  分析:檢驗因式分解是否正確,只要看等式右邊幾個整式相乘的積與右邊的多項式是否相等。

  練習 計算下列各題,并說明你的算法:(請學生板演)

  (1)872+87×13

  (2)1012-992

  ㈥、思維拓展

  1.若 x2+mx-n能分解成(x-2)(x-5),則m= ,n=

  2.機動題:(填空)x2-8x+m=(x-4)( ),且m=

  ㈦、課堂回顧

  今天這節(jié)課,你學到了哪些知識?有哪些收獲與感受?說出來大家分享。

 、、布置作業(yè)

  作業(yè)本(1) ,一課一練

 。ň牛┙虒W反思:

因式分解教案9

  (一)學習目標

  1、會用因式分解進行簡單的多項式除法

  2、會用因式分解解簡單的方程

  (二)學習重難點重點:因式分解在多項式除法和解方程中兩方面的應(yīng)用。

  難點:應(yīng)用因式分解解方程涉及到的.較多的推理過程是本節(jié)課的難點。

 。ㄈ教學過程設(shè)計

  看一看

  1.應(yīng)用因式分解進行多項式除法.多項式除以多項式的一般步驟:

 、賍_______________②__________

  2.應(yīng)用因式分解解簡單的一元二次方程.

  依據(jù)__________,一般步驟:__________

  做一做

  1.計算:

  (1)(-a2b2+16)÷(4-ab);

  (2)(18x2-12xy+2y2)÷(3x-y).

  2.解下列方程:

  (1)3x2+5x=0;

  (2)9x2=(x-2)2;

  (3)x2-x+=0.

  3.完成課后練習題

  想一想

  你還有哪些地方不是很懂?請寫出來。

  ____________________________________

  (四)預習檢測

  1.計算:

  2.先請同學們思考、討論以下問題:

  (1)如果A×5=0,那么A的值

  (2)如果A×0=0,那么A的值

  (3)如果AB=0,下列結(jié)論中哪個正確( )

  ①A、B同時都為零,即A=0,

  且B=0;

  ②A、B中至少有一個為零,即A=0,或B=0;

  (五)應(yīng)用探究

  1.解下列方程

  2.化簡求值:已知x-y=-3,-x+3y=2,求代數(shù)式x2-4xy+3y2的值

  (六)拓展提高:

  解方程:

  1、(x2+4)2-16x2=0

  2、已知a、b、c為三角形的三邊,試判斷a2-2ab+b2-c2大于零?小于零?等于零?

  (七)堂堂清練習

  1.計算

  2.解下列方程

 、7x2+2x=0

 、趚2+2x+1=0

  ③x2=(2x-5)2

 、躼2+3x=4x

因式分解教案10

  教學目標

  1、 會運用因式分解進行簡單的多項式除法。

  2、 會運用因式分解解簡單的方程。

  二、教學重點與難點教學重點:

  教學重點

  因式分解在多項式除法和解方程兩方面的應(yīng)用。

  教學難點:

  應(yīng)用因式分解解方程涉及較多的推理過程。

  三、教學過程

  (一)引入新課

  1、 知識回顧(1) 因式分解的幾種方法: ①提取公因式法: ma+mb=m(a+b) ②應(yīng)用平方差公式: = (a+b) (a—b)③應(yīng)用完全平方公式:a 2ab+b =(ab) (2) 課前熱身: ①分解因式:(x +4) y — 16x y

  (二)師生互動,講授新課

  1、運用因式分解進行多項式除法例1 計算: (1) (2ab —8a b) (4a—b)(2)(4x —9) (3—2x)解:(1) (2ab —8a b)(4a—b) =—2ab(4a—b) (4a—b) =—2ab (2) (4x —9) (3—2x) =(2x+3)(2x—3) [—(2x—3)] =—(2x+3) =—2x—3

  一個小問題 :這里的x能等于3/2嗎 ?為什么?

  想一想:那么(4x —9) (3—2x) 呢?練習:課本P162課內(nèi)練習

  合作學習

  想一想:如果已知 ( )( )=0 ,那么這兩個括號內(nèi)應(yīng)填入怎樣的數(shù)或代數(shù)式子才能夠滿足條件呢? (讓學生自己思考、相互之間討論!)事實上,若AB=0 ,則有下面的結(jié)論:(1)A和B同時都為零,即A=0,且B=0(2)A和B中有一個為零,即A=0,或B=0

  試一試:你能運用上面的結(jié)論解方程(2x+1)(3x—2)=0 嗎?3、 運用因式分解解簡單的方程例2 解下列方程: (1) 2x +x=0 (2) (2x—1) =(x+2) 解:x(x+1)=0 解:(2x—1) —(x+2) =0則x=0,或2x+1=0 (3x+1)(x—3)=0原方程的根是x1=0,x2= 則3x+1=0,或x—3=0 原方程的根是x1= ,x2=3注:只含有一個未知數(shù)的方程的`解也叫做根,當方程的根多于一個時,常用帶足標的字母表示,比如:x1 ,x2

  等練習:課本P162課內(nèi)練習2

  做一做!對于方程:x+2=(x+2) ,你是如何解該方程的,方程左右兩邊能同時除以(x+2)嗎?為什么?

  教師總結(jié):運用因式分解解方程的基本步驟(1)如果方程的右邊是零,那么把左邊分解因式,轉(zhuǎn)化為解若干個一元一次方程;(2)如果方程的兩邊都不是零,那么應(yīng)該先移項,把方程的右邊化為零以后再進行解方程;遇到方程兩邊有公因式,同樣需要先進行移項使右邊化為零,切忌兩邊同時除以公因式!4、知識延伸解方程:(x +4) —16x =0解:將原方程左邊分解因式,得 (x +4) —(4x) =0(x +4+4x)(x +4—4x)=0(x +4x+4)(x —4x+4)=0 (x+2) (x—2) =0接著繼續(xù)解方程,5、 練一練 ①已知 a、b、c為三角形的三邊,試判斷 a —2ab+b —c 大于零?小于零?等于零?解: a —2ab+b —c =(a—b) —c =(a—b+c)(a—b—c)∵ a、b、c為三角形的三邊 a+c ﹥b a﹤b+c a—b+c﹥0 a—b—c ﹤0即:(a—b+c)(a—b—c) ﹤0 ,因此 a —2ab+b —c 小于零。6、 挑戰(zhàn)極限①已知:x=20xx,求∣4x —4x+3 ∣ —4 ∣ x +2x+2 ∣ +13x+6的值。解: ∵4x — 4x+3= (4x —4x+1)+2 = (2x—1) +2 0x +2x+2 = (x +2x+1)+1 = (x+1) +10 ∣4x —4x+3 ∣ —4 ∣ x +2x+2 ∣ +13x+6= 4x — 4x+3 —4(x +2x+2 ) +13x+6= 4x — 4x+3 —4x —8x —8+13x+6= x+1即:原式= x+1=20xx+1=20xx

  (三)梳理知識,總結(jié)收獲因式分解的兩種應(yīng)用:

 。1)運用因式分解進行多項式除法

  (2)運用因式分解解簡單的方程

  (四)布置課后作業(yè)

  作業(yè)本6、42、課本P163作業(yè)題(選做)

因式分解教案11

  整式乘除與因式分解

  一.回顧知識點

  1、主要知識回顧:

  冪的運算性質(zhì):

  aman=am+n(m、n為正整數(shù))

  同底數(shù)冪相乘,底數(shù)不變,指數(shù)相加.

  =amn(m、n為正整數(shù))

  冪的乘方,底數(shù)不變,指數(shù)相乘.

  (n為正整數(shù))

  積的乘方等于各因式乘方的積.

  =am-n(a≠0,m、n都是正整數(shù),且m>n)

  同底數(shù)冪相除,底數(shù)不變,指數(shù)相減.

  零指數(shù)冪的概念:

  a0=1(a≠0)

  任何一個不等于零的數(shù)的零指數(shù)冪都等于l.

  負指數(shù)冪的概念:

  a-p=(a≠0,p是正整數(shù))

  任何一個不等于零的數(shù)的-p(p是正整數(shù))指數(shù)冪,等于這個數(shù)的p指數(shù)冪的倒數(shù).

  也可表示為:(m≠0,n≠0,p為正整數(shù))

  單項式的乘法法則:

  單項式相乘,把系數(shù)、同底數(shù)冪分別相乘,作為積的因式;對于只在一個單項式里含有的字母,則連同它的指數(shù)作為積的一個因式.

  單項式與多項式的乘法法則:

  單項式與多項式相乘,用單項式和多項式的每一項分別相乘,再把所得的積相加.

  多項式與多項式的乘法法則:

  多項式與多項式相乘,先用一個多項式的每一項與另一個多項式的每一項相乘,再把所得的積相加.

  單項式的除法法則:

  單項式相除,把系數(shù)、同底數(shù)冪分別相除,作為商的因式:對于只在被除式里含有的字母,則連同它的指數(shù)作為商的一個因式.

  多項式除以單項式的法則:

  多項式除以單項式,先把這個多項式的每一項除以這個單項式,再把所得的商相加.

  2、乘法公式:

 、倨椒讲罟剑(a+b)(a-b)=a2-b2

  文字語言敘述:兩個數(shù)的和與這兩個數(shù)的差相乘,等于這兩個數(shù)的平方差.

  ②完全平方公式:(a+b)2=a2+2ab+b2

  (a-b)2=a2-2ab+b2

  文字語言敘述:兩個數(shù)的和(或差)的平方等于這兩個數(shù)的平方和加上(或減去)這兩個數(shù)的積的2倍.

  3、因式分解:

  因式分解的定義.

  把一個多項式化成幾個整式的乘積的形式,這種變形叫做把這個多項式因式分解.

  掌握其定義應(yīng)注意以下幾點:

  (1)分解對象是多項式,分解結(jié)果必須是積的形式,且積的因式必須是整式,這三個要素缺一不可;

  (2)因式分解必須是恒等變形;

  (3)因式分解必須分解到每個因式都不能分解為止.

  弄清因式分解與整式乘法的內(nèi)在的關(guān)系.

  因式分解與整式乘法是互逆變形,因式分解是把和差化為積的形式,而整式乘法是把積化為和差的形式.

  二、熟練掌握因式分解的常用方法.

  1、提公因式法

  (1)掌握提公因式法的概念;

  (2)提公因式法的關(guān)鍵是找出公因式,公因式的.構(gòu)成一般情況下有三部分:①系數(shù)一各項系數(shù)的最大公約數(shù);②字母——各項含有的相同字母;③指數(shù)——相同字母的最低次數(shù);

  (3)提公因式法的步驟:第一步是找出公因式;第二步是提取公因式并確定另一因式.需注意的是,提取完公因式后,另一個因式的項數(shù)與原多項式的項數(shù)一致,這一點可用來檢驗是否漏項.

  (4)注意點:①提取公因式后各因式應(yīng)該是最簡形式,即分解到“底”;②如果多項式的第一項的系數(shù)是負的,一般要提出“-”號,使括號內(nèi)的第一項的系數(shù)是正的.

  2、公式法

  運用公式法分解因式的實質(zhì)是把整式中的乘法公式反過來使用;

  常用的公式:

 、倨椒讲罟剑篴2-b2=(a+b)(a-b)

 、谕耆椒焦剑篴2+2ab+b2=(a+b)2

  a2-2ab+b2=(a-b)2

因式分解教案12

  教學目標:運用平方差公式和完全平方公式分解因式,能說出平方差公式和完全平方公式的特點,會用提公因式法與公式法分解因式.培養(yǎng)學生的觀察、聯(lián)想能力,進一步了解換元的思想方法.并能說出提公因式在這類因式分解中的作用,能靈活應(yīng)用提公因式法、公式法分解因式以及因式分解的.標準.

  教學重點和難點:1.平方差公式;2.完全平方公式;3.靈活運用3種方法.

  教學過程:

  一、提出問題,得到新知

  觀察下列多項式:x24和y225

  學生思考,教師總結(jié):

  (1)它們有兩項,且都是兩個數(shù)的平方差;(2)會聯(lián)想到平方差公式.

  公式逆向:a2b2=(a+b)(ab)

  如果多項式是兩數(shù)差的形式,并且這兩個數(shù)又都可以寫成平方的形式,那么這個多項式可以運用平方差公式分解因式.

  二、運用公式

  例1:填空

 、4a2=()2②b2=()2③0.16a4=()2

  ④1.21a2b2=()2⑤2x4=()2⑥5x4y2=()2

  解答:①4a2=(2a)2;②b2=(b)2③0.16a4=(0.4a2)2

 、1.21a2b2=(1.1ab)2⑤2x4=(x2)2⑥5x4y2=(x2y)2

  例2:下列多項式能否用平方差公式進行因式分解

  ①1.21a2+0.01b2②4a2+625b2③16x549y4④4x236y2

  解答:①1.21a2+0.01b2能用

 、4a2+625b2不能用

  ③16x549y4不能用

 、4x236y2不能用

因式分解教案13

  學習目標

  1、學會用平方差公式進行因式法分解

  2、學會因式分解的而基本步驟.

  學習重難點重點

  用平方差公式進行因式法分解.

  難點

  因式分解化簡的過程

  自學過程設(shè)計教學過程設(shè)計

 看一看

 平方差公式:

  平方差公式的逆運用:

  做一做:

 1.填空題.

  (1)25a2-_______=(5a+2b)(5a-2b);(2)x2-=(x-)(________).

  (3)-a2+b2=(b+a)(________);(4)36x2-81y2=9(_______)(_______).

  2.把下列各式分解因式結(jié)果為-(x-2y)(x+2y)的多項式是()

  A.x2-4yB.x2+4y2C.-x2+4y2D.-x2-4y2

  3.多項式-1+0.04a2分解因式的結(jié)果是()

  A.(-1+0.2a)2B.(1+0.2a)(1-0.2a)

  C.(0.2a+1)(0.2a-1)D.(0.04a+1)(0.04a-1)

  4.把下列各式分解因式:

  (1)4x2-25y2;(2)0.81m2-n2;

  (3)a3-9a;(4)8x3y3-2xy.

  5.把下列各式分解因式:

  (1)(3a+2b)2-(a-b)2;(2)4(x+2y)2-25(x-y)2.

  6.用簡便方法計算:3492-2512.

  想一想

 你還有哪些地方不是很懂?請寫出來。

  ____________________________________________________________________________________

  Xkb1.com預習展示一:

  1、下列多項式能否用平方差公式分解因式?

  說說你的'理由。

  4x2+y2

  4x2-(-y)2

  -4x2-y2-4x2+y2

  a2-4a2+3

  2.把下列各式分解因式:

  (1)16-a2

  (2)0.01s2-t2

  (4)-1+9x2

  (5)(a-b)2-(c-b)2

  (6)-(x+y)2+(x-2y)2

  應(yīng)用探究:

 1、分解因式

  4x3y-9xy3

  變式:把下列各式分解因式

 、賦4-81y4

 、2a-8a

  2、從前有一位張老漢向地主租了一塊“十字型”土地(尺寸如圖)。為便于種植,他想換一塊相同面積的長方形土地。同學們,你能幫助張老漢算出這塊長方形土地的長和寬嗎?w

  3、在日常生活中如上網(wǎng)等都需要密碼.有一種因式分解法產(chǎn)生的密碼方便記憶又不易破譯.

  例如用多項式x4-y4因式分解的結(jié)果來設(shè)置密碼,當取x=9,y=9時,可得一個六位數(shù)的密碼“018162”.你想知道這是怎么來的嗎?

  小明選用多項式4x3-xy2,取x=10,y=10時。用上述方法產(chǎn)生的密碼是什么?(寫出一個即可)

  拓展提高:

若n為整數(shù),則(2n+1)2-(2n-1)2能被8整除嗎?請說明理由.

  教后反思考察利用公式法因式分解的題目不會很難,但是需要學生記住公式的形式,之后利用公式把式子進行變形,從而達到進行因式分解的目的。

因式分解教案14

  一、背景介紹

  因式分解是代數(shù)式中的重要內(nèi)容,它與前一章整式和后一章分式聯(lián)系極為密切。因式分解的教學是在整式四則運算的基礎(chǔ)上進行的,因式分解方法的理論依據(jù)就是多項式乘法的逆變形。它不僅在多項式的除法、簡便運算中有直接的應(yīng)用,也為以后學習分式的約分與通分、解方程(組)及三角函數(shù)式的恒等變形提供了必要的基礎(chǔ)。因此,學好因式分解對于代數(shù)知識的后續(xù)學習,具有相當重要的意義。

  二、教學設(shè)計

  【教學內(nèi)容分析】

  因式分解的概念是把一個多項式化成幾個整式的積的形式,它是因式分解方法的理論基礎(chǔ),也是本章中一個重要概念。教材在引入中是結(jié)合剪紙拼圖來闡述這一概念的,也可以與小學數(shù)學里因數(shù)分解的概念類比予以說明。在教學時對因式分解這一概念不宜要求學生一次徹底了解,應(yīng)該在講授因式分解的三種基本方法時,結(jié)合具體例題的分解過程和分解結(jié)果,說明這一概念的意義,以達到逐步了解這一概念的教學目的。

  【教學目標】

  1、認知目標:(1)理解因式分解的概念和意義

 。2)認識因式分解與整式乘法的相互關(guān)系——相反變形,并會運用它們之間的相互關(guān)系尋求因式分解的方法。

  2、能力目標:由學生自行探求解題途徑,培養(yǎng)學生觀察、分析、判斷能力和創(chuàng)新能力,發(fā)展學生智能,深化學生逆向思維能力和綜合運用能力。

  3、情感目標:培養(yǎng)學生接受矛盾的對立統(tǒng)一觀點,獨立思考,勇于探索的精神和實事求是的科學態(tài)度。

  【教學重點、難點】

  重點是因式分解的概念,難點是理解因式分解與整式乘法的相互關(guān)系,并運用它們之間的相互關(guān)系尋求因式分解的方法。

  【教學準備】

  實物投影儀、多媒體輔助教學。

  【教學過程】

 、、情境導入

  看誰算得快:(搶答)

  (1)若a=101,b=99,則a2-b2=___________;

  (2)若a=99,b=-1,則a2-2ab+b2=____________;

  (3)若x=-3,則20x2+60x=____________。

  【初一年級學生活波好動,好表現(xiàn),爭強好勝。情境導入借助搶答的方式進行,引進競爭機制,可以使學生在參與的過程中提高興趣,并增強競爭意識和探究欲望。】

 、妗⑻骄啃轮

  1、請每題答得最快的同學談思路,得出最佳解題方法。(多媒體出示答案)(1)a2-b2=(a+b)(a-b)=(101+99)(101-99)=400;

  (2)a2-2ab+b2=(a-b) 2=(99+1)2 =10000;

  (3)20x2+60x=20x(x+3)=20x(-3)(-3+3)=0。

  【“與其拉馬喝水,不如讓它口渴”。探索最佳解題方法的過程,就是學生“口渴”的地方。由此引起學生的求知欲!

  2、觀察:a2-b2=(a+b)(a-b) ,

  a2-2ab+b2 = (a-b)2 ,

  20x2+60x=20x(x+3),找出它們的特點。(等式的左邊是一個什么式子,右邊又是什么形式?)

  【利用教師的主導作用,把學生的無意識的觀察轉(zhuǎn)變?yōu)橛幸庾R的觀察,同時教師應(yīng)鼓勵學生大膽描述自己的觀察結(jié)果,并及時予以肯定!

  3、類比小學學過的因數(shù)分解概念,得出因式分解概念。(學生概括,老師補充。)

  【讓學生自己概括出所感知的知識內(nèi)容,有利于學生在實踐中感悟知識的生成過程,培養(yǎng)學生的語言表達能力!

  板書課題:§6.1因式分解

  因式分解概念:把一個多項式化成幾個整式的積的形式叫做因式分解,也叫分解因式。

  ㈢、前進一步

  1、讓學生繼續(xù)觀察:(a+b)(a-b)= a2-b2 ,

  (a-b)2= a2-2ab+b2,

  20x(x+3)= 20x2+60x,它們是什么運算?與因式分解有何關(guān)系?它們有何聯(lián)系與區(qū)別?

 。ㄒ⒁庾寣W生區(qū)分因式分解與整式乘法的區(qū)別,防止學生出現(xiàn)在進行因式分解當中,半路又做乘法的錯誤。)

  【注重數(shù)學知識間的聯(lián)系,給學生提供探索與交流的空間,讓學生經(jīng)歷數(shù)學知識的生成過程,由學生發(fā)現(xiàn)整式乘法與因式分解的相互關(guān)系,培養(yǎng)學生觀察、分析問題的能力和逆向思維能力及創(chuàng)新能力!

  2、因式分解與整式乘法的關(guān)系:

  因式分解

  結(jié)合:a2-b2=========(a+b)(a-b)

  整式乘法

  說明:從左到右是因式分解其特點是:由和差形式(多項式)轉(zhuǎn)化成整式的積的形式;從右到左是整式乘法其特點是:由整式積的形式轉(zhuǎn)化成和差形式(多項式)。

  結(jié)論:因式分解與整式乘法的相互關(guān)系——相反變形。(多媒體展示學生得出的成果)

 、、鞏固新知

  1、 下列代數(shù)式變形中,哪些是因式分解?哪些不是?為什么?

  (1)x2-3x+1=x(x-3)+1 ;

  (2)(m+n)(a+b)+(m+n)(x+y)=(m+n)(a+b+x+y);

  (3)2m(m-n)=2m2-2mn;

  (4)4x2-4x+1=(2x-1)2;

  (5)3a2+6a=3a(a+2);

  (6)x2-4+3x=(x-2)(x+2)+3x;

  (7)k2+ +2=(k+ )2;

  (8)18a3bc=3a2b?6ac。

  【針對學生易犯的錯誤,制造認知沖突,讓學生充分暴露錯誤,然后通過分析、討論,達到理解的效果!

  2、你能寫出整式相乘(其中至少一個是多項式)的兩個例子,并由此得到相應(yīng)的兩個多項式的因式分解嗎?把結(jié)果與你的同伴交流。

  【學生出題熱情、積極性高,因初一學生好表現(xiàn),因而能激發(fā)學生學習興趣,激活學生的.思維!

  ㈤、應(yīng)用解釋

  例 檢驗下列因式分解是否正確:

  (1)x2y-xy2=xy(x-y);

  (2)2x2-1=(2x+1)(2x-1);

  (3)x2+3x+2=(x+1)(x+2).

  分析:檢驗因式分解是否正確,只要看等式右邊幾個整式相乘的積與右邊的多項式是否相等。

  練習 計算下列各題,并說明你的算法:(請學生板演)

  (1)872+87×13

  (2)1012-992

 、、思維拓展

  1.若 x2+mx-n能分解成(x-2)(x-5),則m= ,n=

  2.機動題:(填空)x2-8x+m=(x-4)( ),且m=

  【進一步拓展學生在數(shù)學領(lǐng)域內(nèi)的視野,增強學生對數(shù)學的興趣,使學生從小熱衷于數(shù)學的學習和探索。通過機動題,了解學生對概念的熟練程度和思維的靈敏性、深刻性、廣闊性及探研創(chuàng)造能力,及時評價,及時矯正。】

 、搿⒄n堂回顧

  今天這節(jié)課,你學到了哪些知識?有哪些收獲與感受?說出來大家分享。

  【課堂小結(jié)交給學生, 讓學生總結(jié)本節(jié)課中概念的發(fā)現(xiàn)過程,運用概念分析問題的過程,養(yǎng)成學生學習——總結(jié)——學習的良好習慣。唯有總結(jié)反思,才能控制思維操作,才能促進理解,提高認知水平,從而促進數(shù)學觀點的形成和發(fā)展,更好地進行知識建構(gòu),實現(xiàn)良性循環(huán)!

 、、布置作業(yè)

  教科書第153的作業(yè)題。

  【設(shè)計思想】

  葉圣陶先生曾說過課堂教學的最高藝術(shù)是看學生,而不是看教師,看學生能否在課堂中煥發(fā)生命的活力。因此本教學是按“投疑——感知——概括——鞏固、應(yīng)用和拓展”的敘述模式呈現(xiàn)教學內(nèi)容的,這種呈現(xiàn)方式符合七年級學生的認知規(guī)律和學習規(guī)律,使學生從被動的學習到主動探索和發(fā)現(xiàn)的轉(zhuǎn)化中感受到學習與探索的樂趣。本堂課先采用以設(shè)疑探究的引課方式,激發(fā)學生的求知欲望,提高學生的學習興趣和學習積極性,再把因式分解概念及其與整式乘法的關(guān)系作為主線,訓練學生思維,使學生能順利地掌握重點,突破難點,提高能力。并在課堂教學中,引導學生體會知識的發(fā)生發(fā)展過程,堅持啟發(fā)式的教學方法,鼓勵學生充分地動腦、動口、動手,積極參與到教學中來,充分體現(xiàn)了學生的主動性原則。并改變了傳統(tǒng)的言傳身教的方式,恰當?shù)剡\用了現(xiàn)代教育技術(shù),展現(xiàn)了一個平等、互動的民主課堂。

因式分解教案15

  教材分析

  因式分解是代數(shù)式的一種重要恒等變形。《數(shù)學課程標準》雖然降低了因式分解的特殊技巧的要求,也對因式分解常用的四種方法減少為兩種,且公式法的應(yīng)用中,也減少為兩個公式,但絲毫沒有否定因式分解的教育價值及其在代數(shù)運算中的重要作用。本章教材是在學生學習了整式運算的基礎(chǔ)上提出來的,事實上,它是整式乘法的逆向運用,與整式乘法運算有密切的聯(lián)系。分解因式的變形不僅體現(xiàn)了一種“化歸”的思想,而且也是解決后續(xù)—分式的化簡、解方程等—恒等變形的基礎(chǔ),為數(shù)學交流提供了有效的途徑。分解因式這一章在整個教材中起到了承上啟下的作用。本章的教育價值還體現(xiàn)在使學生接受對立統(tǒng)一的.觀點,培養(yǎng)學生善于觀察、善于分析、正確預見、解決問題的能力。

  學情分析

  通過探究平方差公式和運用平方差公式分解因式的活動中,讓學生發(fā)表自己的觀點,從交流中獲益,讓學生獲得成功的體驗,鍛煉克服困難的意志建立自信心。

  教學目標

  1、在分解因式的過程中體會整式乘法與因式分解之間的聯(lián)系。

  2、通過公式a -b =(a+b)(a-b)的逆向變形,進一步發(fā)展觀察、歸納、類比、等能力,發(fā)展有條理地思考及語言表達能力。

  3、能運用提公因式法、公式法進行綜合運用。

  4、通過活動4,能將高偶指數(shù)冪轉(zhuǎn)化為2次指數(shù)冪,培養(yǎng)學生的化歸思想。

  教學重點和難點

  重點: 靈活運用平方差公式進行分解因式。

  難點:平方差公式的推導及其運用,兩種因式分解方法(提公因式法、平方差公式)的綜合運用。

因式分解教案16

  知識點:

  因式分解定義,提取公因式、應(yīng)用公式法、分組分解法、二次三項式的因式(十字相乘法、求根)、因式分解一般步驟。

  教學目標:

  理解因式分解的概念,掌握提取公因式法、公式法、分組分解法等因式分解方法,掌握利用二次方程求根公式分解二次二項式的方法,能把簡單多項式分解因式。

  考查重難點與常見題型:

  考查因式分解能力,在中考試題中,因式分解出現(xiàn)的頻率很高。重點考查的分式提取公因式、應(yīng)用公式法、分組分解法及它們的綜合運用。習題類型以填空題為多,也有選擇題和解答題。

  教學過程:

  因式分解知識點

  多項式的因式分解,就是把一個多項式化為幾個整式的積。分解因式要進行到每一個因式都不能再分解為止。分解因式的常用方法有:

 。1)提公因式法

  如多項式

  其中m叫做這個多項式各項的`公因式, m既可以是一個單項式,也可以是一個多項式。

 。2)運用公式法,即用

  寫出結(jié)果。

 。3)十字相乘法

  對于二次項系數(shù)為l的二次三項式 尋找滿足ab=q,a+b=p的a,b,如有,則對于一般的二次三項式尋找滿足

  a1a2=a,c1c2=c,a1c2+a2c1=b的a1,a2,c1,c2,如有,則

  (4)分組分解法:把各項適當分組,先使分解因式能分組進行,再使分解因式在各組之間進行。

  分組時要用到添括號:括號前面是“+”號,括到括號里的各項都不變符號;括號前面是“-”號,括到括號里的各項都改變符號。

  (5)求根公式法:如果有兩個根X1,X2,那么

  2、教學實例:學案示例

  3、課堂練習:學案作業(yè)

  4、課堂:

  5、板書:

  6、課堂作業(yè):學案作業(yè)

  7、教學反思:

因式分解教案17

  教學目標

 、僭谡莆樟私庖蚴椒纸庖饬x的基礎(chǔ)上,會運用平方差公式和完全平方公式對比較簡單的多項式進行因式分解.

 、谠谶\用公式法進行因式分解的同時培養(yǎng)學生的觀察、比較和判斷能力以及運算能力,用不同的方法分解因式可以提高綜合運用知識的能力.

 、圻M一步體驗“整體”的思想,培養(yǎng)“換元”的意識.

  教學重點與難點

  重點:運用完全平方公式法進行因式分解.

  難點:觀察多項式的特點,判斷是否符合公式的特征和綜合運用分解的方法,并完整地進行分解.

  教學準備

  要求學生對完全平方公式準確理解.

  教學設(shè)計

  問題:你能將多項式a2+2ab+b2和a2-2ab+b2因式分解嗎?這兩個多項式有什么特點?

  建議:由于受到前面用平方差公式分解因式的影響,學生對于這兩個多項式因式分解比較容易想到用完全平方公式,學生容易接受,教師要把重點放在研究公式的特征上來.

  注:可采用讓學生自主討論的'方式進行教學,引導學生從多項式的項數(shù)、每項的特點、整個多項式的特點等幾個方面進行研究.然后交流各自的體會.

  把多項式向公式的方向變形和轉(zhuǎn)化.

  例5分解因式

  (1)16x2+24x+9 (2)-x2+4x-42

  注:訓練學生運用完全平方公式分解因式,要盡可能地讓學生說和做,引導學生把多項式與公式進行比較找出不同點,把多項式向公式的方向轉(zhuǎn)化.

  例6分解因式

  (1)3ax2+6ax+3a2

  (2)(a+b)2-12(a+b)+36

  注:學生仔細觀察多項式的特點,教師適當提醒和指導,要從公式的形式和特點上進行比較.(可把a+b看作一個整體,設(shè)a+b=)

  第2小題注意滲透換整體和換元的思想.

  鞏固練習

  教科書第170頁的練習題.

  小結(jié)提高

  1.舉一個例子說說應(yīng)用完全平方公式分解因式的多項式應(yīng)具有怎樣的特征.

  2.談?wù)劧囗検揭蚴椒纸獾乃伎挤较蚝头纸獾牟襟E.

  3.談?wù)劧囗検揭蚴椒纸獾淖⒁恻c.

  注:對這些問題進行回顧和小結(jié)能從大的方面把握因式分解的方向和培養(yǎng)觀察能力.

  布置作業(yè)

  1.必做題:教科書第171頁習題15.4第4題,第5題;

  2.選做題:教科書第171頁第10題;

因式分解教案18

  教學目標:

  1、進一步鞏固因式分解的概念;

  2、鞏固因式分解常用的三種方法

  3、選擇恰當?shù)姆椒ㄟM行因式分解4、應(yīng)用因式分解來解決一些實際問題

  5、體驗應(yīng)用知識解決問題的樂趣

  教學重點:靈活運用因式分解解決問題

  教學難點:靈活運用恰當?shù)囊蚴椒纸獾姆椒,拓展練?、3

  教學過程:

  一、創(chuàng)設(shè)情景:若a=101,b=99,求a2—b2的值

  利用因式分解往往能將一些復雜的運算簡單化,那么我們先來回顧一下什么是因式分解和怎樣來因式分解。

  二、知識回顧

  1、因式分解定義:把一個多項式化成幾個整式積的形式,這種變形叫做把這個多項式分解因式。

  判斷下列各式哪些是因式分解?(讓學生先思考,教師提問講解,讓學生明確因式分解的概念以及與乘法的關(guān)系)

  (1)、x2—4y2=(x+2y)(x—2y)因式分解(2)。2x(x—3y)=2x2—6xy整式乘法

 。3)、(5a—1)2=25a2—10a+1整式乘法(4)。x2+4x+4=(x+2)2因式分解

  (5)、(a—3)(a+3)=a2—9整式乘法(6)。m2—4=(m+4)(m—4)因式分解

 。7)、2πR+2πr=2π(R+r)因式分解

  2、規(guī)律總結(jié)(教師講解):分解因式與整式乘法是互逆過程。

  分解因式要注意以下幾點:

 。1)。分解的對象必須是多項式。

 。2)。分解的結(jié)果一定是幾個整式的乘積的形式。

  (3)。要分解到不能分解為止。

  3、因式分解的方法

  提取公因式法:—6x2+6xy+3x=—3x(2x—2y—1)公因式的概念;公因式的求法

  公式法:平方差公式:a2—b2=(a+b)(a—b)完全平方公式:a2+2ab+b2=(a+b)2

  4、強化訓練

  教學引入

  師:教材在《四邊形》這一章《引言》里有這樣一句話:把一個長方形折疊就可以得到一個正方形,F(xiàn)在請同學們拿出一個長方形紙條,按動畫所示進行折疊處理。

  動畫演示:

  場景一:正方形折疊演示

  師:這就是我們得到的正方形。下面請同學們拿出三角板(刻度尺)和圓規(guī),我們來研究正方形的幾何性質(zhì)—邊、角以及對角線之間的關(guān)系。請大家測量各邊的長度、各角的大小、對角線的長度以及對角線交點到各頂點的長度。

  [學生活動:各自測量。]

  鼓勵學生將測量結(jié)果與鄰近同學進行比較,找出共同點。

  講授新課

  找一兩個學生表述其結(jié)論,表述是要注意糾正其語言的規(guī)范性。

  動畫演示:

  場景二:正方形的性質(zhì)

  師:這些性質(zhì)里那些是矩形的性質(zhì)?

  [學生活動:尋找矩形性質(zhì)。]

  動畫演示:

  場景三:矩形的性質(zhì)

  師:同樣在這些性質(zhì)里尋找屬于菱形的`性質(zhì)。

  [學生活動;尋找菱形性質(zhì)。]

  動畫演示:

  場景四:菱形的性質(zhì)

  師:這說明正方形具有矩形和菱形的全部性質(zhì)。

  及時提出問題,引導學生進行思考。

  師:根據(jù)這些性質(zhì),我們能不能給正方形下一個定義?怎么樣給正方形下一個準確的定義?

  [學生活動:積極思考,有同學做躍躍欲試狀。]

  師:請同學們回想矩形與菱形的定義,可以根據(jù)矩形與菱形的定義類似的給出正方形的定義。

  學生應(yīng)能夠向出十種左右的定義方式,其余作相應(yīng)鼓勵,把以下三種板書:

  “有一組鄰邊相等的矩形叫做正方形!

  “有一個角是直角的菱形叫做正方形。”

  “有一個角是直角且有一組鄰邊相等的平行四邊形叫做正方形。”

  [學生活動:討論這三個定義正確不正確?三個定義之間有什么共同和不同的地方?這出教材中采用的是第三種定義方式。]

  師:根據(jù)定義,我們把平行四邊形、矩形、菱形和正方形它們之間的關(guān)系梳理一下。

  試一試把下列各式因式分解:

 。1)。1—x2=(1+x)(1—x)(2)。4a2+4a+1=(2a+1)2

 。3)。4x2—8x=4x(x—2)(4)。2x2y—6xy2=2xy(x—3y)

  三、例題講解

  例1、分解因式

  (1)—x3y3+x2y+xy(2)6(x—2)+2x(2—x)

 。3)(4)y2+y+

  例2、分解因式

  1、a3—ab2=2、(a—b)(x—y)—(b—a)(x+y)=3、(a+b)2+2(a+b)—15=

  4、—1—2a—a2=5、x2—6x+9—y26、x2—4y2+x+2y=

  例3、分解因式

  1、72—2(13x—7)22、8a2b2—2a4b—8b3

  四、知識應(yīng)用

  1、(4x2—9y2)÷(2x+3y)2、(a2b—ab2)÷(b—a)

  3、解方程:(1)x2=5x(2)(x—2)2=(2x+1)2

  4、。若x=—3,求20x2—60x的值。5、1993—199能被200整除嗎?還能被哪些整數(shù)整除?

  五、拓展應(yīng)用

  1。計算:7652×17—2352×17解:7652×17—2352×17=17(7652—2352)=17(765+235)(765—235)

  2、20042+20xx被20xx整除嗎?

  3、若n是整數(shù),證明(2n+1)2—(2n—1)2是8的倍數(shù)。

  五、課堂小結(jié)

  今天你對因式分解又有哪些新的認識?

因式分解教案19

  課型 復習課 教法 講練結(jié)合

  教學目標(知識、能力、教育)

  1.了解分解因式的意義,會用提公因式法、 平方差公式和完全平方公式(直接用公式不超過兩次)分解因式(指數(shù)是正整數(shù)).

  2.通過乘法公式 , 的逆向變形,進一步發(fā)展學生觀察、歸納、類比、概括等能力,發(fā)展有條理的思考及語言表達能力

  教學重點 掌握用提取公因式法、公式法分解因式

  教學難點 根據(jù)題目的形式和特征 恰當選擇方法進行分解,以提高綜合解題能力。

  教學媒體 學案

  教學過程

  一:【 課前預習】

  (一):【知識梳理】

  1.分解因式:把一個多項式化成 的形式,這種變形叫做把這個多項式分解因式.

  2.分解困式的方法:

  ⑴提公團式法:如果一個多項式的各項含有公因式,那么就可以把這個公因式提出來,從而將多項式化成兩個因式乘積的形式,這種分解因式的方法叫做提公因式法.

 、七\用公式法:平方差公式: ;

  完全平方公式: ;

  3.分解因式的步驟:

  (1)分解 因式時,首先考慮是否有公因式,如果有公因式,一定先提取公團式,然后再考慮是否能用公式法 分解.

  (2)在用公式時,若是兩項,可考慮用平方差公式;若是三項,可考慮用完全平方公式;若是三項以上,可先進行適當?shù)姆纸M,然后分解因式。

  4.分解因式時常見的思維誤區(qū):

  提公因式時,其公因式應(yīng)找字母指數(shù)最低的,而不是以首項為準.若有一項被全部提出,括號內(nèi)的項 1易漏掉.分解不徹底,如保留中括號形式,還能繼續(xù)分解等

  (二):【課前練習】

  1.下列各組多項式中沒有公因式的是( )

  A.3x-2與 6x2-4x B.3(a-b)2與11(b-a)3

  C.mxmy與 nynx D.aba c與 abbc

  2. 下列各題中,分解因式錯誤的是( )

  3. 列多項式能用平方差公式分解因式的是()

  4. 分解因式:x2+2xy+y2-4 =_____

  5. 分解因式:(1) ;

  (2) ;(3) ;

  (4) ;(5)以上三題用了 公式

  二:【經(jīng)典考題剖析】

  1. 分解因式:

  (1) ;(2) ;(3) ;(4)

  分析:①因式分解時,無論有幾項,首先考慮提取公因式。提公因式時,不僅注意數(shù),也要 注意字母,字母可能是單項式也可能是多項式,一次提盡。

 、诋斈稠椡耆岢龊,該項應(yīng)為1

 、圩⒁ ,

 、芊纸饨Y(jié)果(1)不帶中括號;(2)數(shù)字因數(shù)在前,字母因數(shù)在后;單項式在前,多項式在后;(3)相同因式寫成冪的形式;(4 )分解結(jié)果應(yīng)在指定范圍內(nèi)不能再分解為止;若無指定范圍,一般在有理數(shù)范圍內(nèi)分解。

  2. 分解因式:(1) ;(2) ;(3)

  分析:對于二次三項齊次式,將其中一個字母看作末知數(shù),另一個字母視為常數(shù)。首先考慮提公因式后,由余下因式的項數(shù)為3項,可考慮完全平方式或十字相乘法繼續(xù)分解;如果項數(shù)為2,可考慮平方差、立方差、立方和公式。(3)題無公因式,項數(shù)為2項,可考慮平方差公式先分解開,再由項數(shù)考慮選擇方法繼續(xù)分解。

  3. 計算:(1)

  (2)

  分析:(1)此題先分解因式后約分,則余下首尾兩數(shù)。

  (2)分解后,便有規(guī)可循,再求1到20xx的和。

  4. 分解因式:(1) ;(2)

  分析:對于四項或四項以上的多項式的.因式分解,一般采用分組分解法,

  5. (1)在實數(shù)范圍內(nèi)分解因式: ;

  (2)已知 、 、 是△ABC的三邊,且滿足 ,

  求證:△ABC為等邊三角形。

  分析:此題給出的是三邊之間的關(guān)系,而要證等邊三角形,則須考慮證 ,

  從已知給出的等式結(jié)構(gòu)看出,應(yīng)構(gòu)造出三個完全平方式 ,

  即可得證,將原式兩邊同乘以2即可。略證:

  即△ABC為等邊三角形。

  三:【課后訓練】

  1. 若 是一個完全平方式,那么 的值是( )

  A.24 B.12 C.12 D.24

  2. 把多項式 因式分解的結(jié)果是( )

  A. B. C. D.

  3. 如果二次三項式 可分解為 ,則 的 值為( )

  A .-1 B.1 C. -2 D.2

  4. 已知 可以被在60~70之間的兩個整數(shù)整除,則這兩個數(shù)是( )

  A.61、63 B.61、65 C.61、67 D.63、65

  5. 計算:19982002= , = 。

  6. 若 ,那么 = 。

  7. 、 滿足 ,分解因式 = 。

  8. 因式分解:

  (1) ;(2)

  (3) ;(4)

  9. 觀察下列等式:

  想一想,等式左邊各項冪的底數(shù)與右邊冪的底數(shù)有何關(guān) 系?猜一猜可引出什么規(guī)律?用等式將其規(guī)律表示出來: 。

  10. 已知 是△ABC的三邊,且滿足 ,試判斷△ABC的形狀。閱讀下面解題過程:

  解:由 得:

 、

 、

  即 ③

  △ABC為Rt△。 ④

  試問:以上解題過程是否正確: ;若不正確,請指出錯在哪一步?(填代號) ;錯誤原因是 ;本題結(jié)論應(yīng)為 。

  四:【課后小結(jié)】

  布置作業(yè) 地綱

因式分解教案20

  教學目標:

  1、掌握用平方差公式分解因式的方法;掌握提公因式法,平方差公式法分解因式綜合應(yīng)用;能利用平方差公式法解決實際問題。

  2、經(jīng)歷探究分解因式方法的過程,體會整式乘法與分解因式之間的聯(lián)系。

  3、通過對公式的探究,深刻理解公式的應(yīng)用,并會熟練應(yīng)用公式解決問題。

  4、通過探究平方差公式特點,學生根據(jù)公式自己取值設(shè)計問題,并根據(jù)公式自己解決問題的過程,讓學生獲得成功的體驗,培養(yǎng)合作交流意識。

  教學重點:

  應(yīng)用平方差公式分解因式.

  教學難點:

  靈活應(yīng)用公式和提公因式法分解因式,并理解因式分解的要求.

  教學過程:

  一、復習準備 導入新課

  1、什么是因式分解?判斷下列變形過程,哪個是因式分解?

  ①(x+2)(x-2)= ②

 、

  2、我們已經(jīng)學過的因式分解的方法有什么?將下列多項式分解因式。

  x2+2x

  a2b-ab

  3、根據(jù)乘法公式進行計算:

  (1)(x+3)(x-3)= (2)(2y+1)(2y-1)= (3)(a+b)(a-b)=

  二、合作探究 學習新知

  (一) 猜一猜:你能將下面的多項式分解因式嗎?

  (1)= (2)= (3)=

  (二)想一想,議一議: 觀察下面的公式:

 。剑╝+b)(a—b)(

  這個公式左邊的多項式有什么特征:_____________________________________

  公式右邊是__________________________________________________________

  這個公式你能用語言來描述嗎? _______________________________________

  (三)練一練:

  1、下列多項式能否用平方差公式來分解因式?為什么?

 、 ② ③ ④

  2、你能把下列的'數(shù)或式寫成冪的形式嗎?

  (1)( ) (2)( ) (3)( ) (4)= ( ) (5) 36a4=( )2 (6) 0.49b2=( )2 (7) 81n6=( )2 (8) 100p4q2=( )2

  (四)做一做:

  例3 分解因式:

  (1) 4x2- 9 (2) (x+p)2- (x+q)2

 。ㄎ澹┰囈辉嚕

  例4 下面的式子你能用什么方法來分解因式呢?請你試一試。

  (1) x4- y4 (2) a3b- ab

 。┫胍幌耄

  某學校有一個邊長為85米的正方形場地,現(xiàn)在場地的四個角分別建一個邊長為5米的正方形花壇,問場地還剩余多大面積供學生課間活動使用?

【因式分解教案】相關(guān)文章:

因式分解教案04-02

因式分解復習教案08-25

人教版因式分解教案01-04

因式分解教案設(shè)計04-18

精選因式分解教案3篇03-13

【精華】因式分解教案三篇01-26

因式分解教案模板8篇01-31

實用的因式分解教案四篇08-02

【必備】因式分解教案4篇02-20

因式分解教案匯編5篇02-26