- 相關(guān)推薦
老人與海讀后感1000字【通用15篇】
當細細品完一本名著后,相信你一定有很多值得分享的收獲,需要回過頭來寫一寫讀后感了。千萬不能認為讀后感隨便應(yīng)付就可以,以下是小編為大家整理的老人與海讀后感1000字,僅供參考,大家一起來看看吧。
老人與海讀后感1000字1
一、目標與要求
1.了解一元二次方程及有關(guān)概念,一般式ax2+bx+c=0(a≠0)及其派生的概念,應(yīng)用一元二次方程概念解決一些簡單題目。
2.掌握通過配方法、公式法、因式分解法降次──解一元二次方程,掌握依據(jù)實際問題建立一元二次方程的數(shù)學(xué)模型的方法,應(yīng)用熟練掌握以上知識解決問題。
二、重點
1.一元二次方程及其它有關(guān)的概念及其一般形式和一元二次方程的.有關(guān)概念并用這些概念解決問題。
2.判定一個數(shù)是否是方程的根;
3.用配方法、公式法、因式分解法降次──解一元二次方程。
4.運用開平方法解形如(x+m)2=n(n≥0)的方程,領(lǐng)會降次──轉(zhuǎn)化的數(shù)學(xué)思想。
5.利用實際問題建立一元二次方程的數(shù)學(xué)模型,并解決這個問題.
三、難點
1.一元二次方程配方法解題。
2.通過提出問題,建立一元二次方程的數(shù)學(xué)模型,再由一元一次方程的概念遷移到一元二次方程的概念。
3.用公式法解一元二次方程時的討論。
4.通過根據(jù)平方根的意義解形如x2=n,知識遷移到根據(jù)平方根的意義解形如(x+m)2=n(n≥0)的方程。
5.建立一元二次方程實際問題的數(shù)學(xué)模型,方程解與實際問題解的區(qū)別。
6.由實際問題列出的一元二次方程解出根后還要考慮這些根是否確定是實際問題的根。
7.知識框架
四、知識點、概念總結(jié)
1.一元二次方程:方程兩邊都是整式,只含有一個未知數(shù)(一元),并且未知數(shù)的最高次數(shù)是2(二次)的方程,叫做一元二次方程。
2.一元二次方程有四個特點:
(1)含有一個未知數(shù);
(2)且未知數(shù)次數(shù)最高次數(shù)是2;
(3)是整式方程。要判斷一個方程是否為一元二次方程,先看它是否為整式方程,若是,再對它進行整理。如果能整理為 ax2+bx+c=0(a≠0)的形式,則這個方程就為一元二次方程。
(4)將方程化為一般形式:ax2+bx+c=0時,應(yīng)滿足(a≠0)
3. 一元二次方程的一般形式:一般地,任何一個關(guān)于x的一元二次方程,經(jīng)過整理,都能化成如下形式ax2+bx+c=0(a≠0)。
一個一元二次方程經(jīng)過整理化成ax2+bx+c=0(a≠0)后,其中ax2是二次項,a是二次項系數(shù);bx是一次項,b是一次項系數(shù);c是常數(shù)項。
老人與海讀后感1000字2
一、 重要概念
1。數(shù)的分類及概念
數(shù)系表:
說明:“分類”的原則:1)相稱(不重、不漏)
2)有標準
2。非負數(shù):正實數(shù)與零的統(tǒng)稱。(表為:x≥0)
常見的非負數(shù)有:
性質(zhì):若干個非負數(shù)的和為0,則每個非負擔數(shù)均為0。
3。倒數(shù): ①定義及表示法
、谛再|(zhì):A.a≠1/a(a≠±1);B.1/a中,a≠0;C.01;a1時,1/a1;D。積為1。
4。相反數(shù): ①定義及表示法
、谛再|(zhì):A.a≠0時,a≠-a;B.a與-a在數(shù)軸上的位置;C。和為0,商為-1。
5。數(shù)軸:①定義(“三要素”)
、谧饔茫篈。直觀地比較實數(shù)的大小;B。明確體現(xiàn)絕對值意義;C。建立點與實數(shù)的一一對應(yīng)關(guān)系。
6。奇數(shù)、偶數(shù)、質(zhì)數(shù)、合數(shù)(正整數(shù)—自然數(shù))
定義及表示:
奇數(shù):2n-1
偶數(shù):2n(n為自然數(shù))
7。絕對值:①定義(兩種):
代數(shù)定義:
幾何定義:數(shù)a的絕對值頂?shù)腵幾何意義是實數(shù)a在數(shù)軸上所對應(yīng)的點到原點的距離。
、讴│≥0,符號“││”是“非負數(shù)”的標志;③數(shù)a的絕對值只有一個;④處理任何類型的題目,只要其中有“││”出現(xiàn),其關(guān)鍵一步是去掉“││”符號。
老人與海讀后感1000字3
1.如果把解題比做打仗,那么解題者的“兵器”就是數(shù)學(xué)基礎(chǔ)知識,“兵力”就是數(shù)學(xué)基本方法,而調(diào)動數(shù)學(xué)基礎(chǔ)知識、運用數(shù)學(xué)思想方法的數(shù)學(xué)解題思想則正是“兵法”。
2.數(shù)學(xué)家存在的主要理由就是解決問題。因此,數(shù)學(xué)的真正的組成部分是問題和解答!皢栴}是數(shù)學(xué)的心臟”。
3.問題反映了現(xiàn)有水平與客觀需要的矛盾,對學(xué)生來說,就是已知和未知的矛盾。問題就是矛盾。對于學(xué)生而言,問題有三個特征:
。1)接受性:學(xué)生愿意解決并且具有解決它的知識基礎(chǔ)和能力基礎(chǔ)。
(2)障礙性:學(xué)生不能直接看出它的解法和答案,而必須經(jīng)過思考才能解決。
。3)探究性:學(xué)生不能按照現(xiàn)成的的套路去解,需要進行探索,尋找新的處理方法。
4.練習(xí)型的問題具有教學(xué)性,它的結(jié)論為數(shù)學(xué)家或教師所已知,其之成為問題僅相對于教學(xué)或?qū)W生而言,包括一個待計算的答案、一個待證明的結(jié)論、一個待作出的圖形、一個待判斷的命題、一個待解決的實際問題。
5.“問題解決”有不同的解釋,比較典型的觀點可歸納為4種:
。1)問題解決是心理活動。面臨新情境、新課題,發(fā)現(xiàn)它與主客觀需要的矛盾而自己卻沒有現(xiàn)成對策時,所引起的尋求處理辦法的一種活動。
。2)問題解決是一個探究過程。把“問題解決”定義為“將先前已獲得的`知識用于新的、不熟悉的情境的過程”。這就是說,問題解決是一個發(fā)現(xiàn)的過程、探索的過程、創(chuàng)新的過程。
(3)問題解決是一個學(xué)習(xí)目的。“學(xué)習(xí)數(shù)學(xué)的主要目的在于問題解決”。因而,學(xué)習(xí)怎樣解決問題就成為學(xué)習(xí)數(shù)學(xué)的根本原因。此時,問題解決就獨立于特殊的問題,獨立于一般過程或方法,也獨立于數(shù)學(xué)的具體內(nèi)容。
。4)問題解決是一種生存能力。重視問題解決能力的培養(yǎng)、發(fā)展問題解決的能力,其目的之一是,在這個充滿疑問、有時連問題和答案都是不確定的世界里,學(xué)習(xí)生存的本領(lǐng)。
6.解題研究存在一些誤區(qū),首先一個表現(xiàn)是,用現(xiàn)成的例子說明現(xiàn)成的觀點,或用現(xiàn)成的觀點解釋現(xiàn)成的例子。其次一個表現(xiàn)是,長期徘徊在一招一式的歸類上,缺少觀點上的提高或?qū)嵸|(zhì)性的突破。第三個表現(xiàn)是,多研究“怎樣解”,較少問“為什么這樣解”。在這些誤區(qū)里,“解題而不立法、作答而不立論”。
7.人的思維依賴于必要的知識和經(jīng)驗,數(shù)學(xué)知識正是數(shù)學(xué)解題思維活動的出發(fā)點與憑借。豐富的知識并加以優(yōu)化的結(jié)構(gòu)能為題意的本質(zhì)理解與思路的迅速尋找創(chuàng)造成功的條件。解題研究的一代宗師波利亞說過:“貨源充足和組織良好的知識倉庫是一個解題者的重要資本”。
8.熟練掌握數(shù)學(xué)基礎(chǔ)知識的體系。對于中學(xué)數(shù)學(xué)解題來說,應(yīng)如數(shù)學(xué)家珍說出教材的概念系統(tǒng)、定理系統(tǒng)、符號系統(tǒng)。還應(yīng)掌握中學(xué)數(shù)學(xué)競賽涉及的基礎(chǔ)理論。深刻理解數(shù)學(xué)概念、準確掌握數(shù)學(xué)定理、公式和法則。熟悉基本規(guī)則和常用的方法,不斷積累數(shù)學(xué)技巧。
9.數(shù)學(xué)的本質(zhì)活動是思維。思維的對象是概念,思維的方式是邏輯。當這種思維與新事物接觸時,將出現(xiàn)“相容”和“不容”的兩種可能。出現(xiàn)“相容”時,產(chǎn)生新結(jié)果,且被原概念吸收,并發(fā)展成新概念;當出現(xiàn)“不容”時,則產(chǎn)生了所謂的問題。這時,思維出現(xiàn)迂回,甚至?xí)簳r退回原地,將原概念擴大或?qū)⒃壿嬜兪剑钡叫滤季S與事物相容為止。至此,也產(chǎn)生新的結(jié)果,也被原思維吸收。這就是一個思維活動的全過程。
10.解題能力,表現(xiàn)于發(fā)現(xiàn)問題、分析問題、解決問題的敏銳、洞察力與整體把握。其主要成分是3種基本的數(shù)學(xué)能力(運算能力、邏輯思維能力、空間想象能力),核心是能否掌握正確的思維方法,包括邏輯思維與非邏輯思維。其基本要求包括:
。1)掌握解題的科學(xué)程序;
。2)掌握數(shù)學(xué)中各種常用的思維方法,如觀察、試驗、歸納、演繹、類比、分析、綜合、抽象、概括等;
。3)掌握解題的基本策略,能“因題制宜”地選擇對口的解題思路,使用有效的解題方法、調(diào)動精明的解題技巧;
。4)具有敏銳的直覺。應(yīng)該明白,我們的數(shù)學(xué)解題活動是在縱橫交錯的數(shù)學(xué)關(guān)系中進行的,在這個過程中,我們從一種可能性過渡到另一種可能性時,并非對每一個數(shù)學(xué)細節(jié)都洞察無遺,并非總能借助于“三段論”的橋梁,而是在短時間內(nèi)朦朧地插上幻想的翅膀,直接飛翔到最近的可能性上,從而達到對某種數(shù)學(xué)對象的本質(zhì)領(lǐng)悟:
11.解題具有實踐性與探索性的特征,“就像游泳,滑雪或彈鋼琴一樣,只能通過模仿和實踐來學(xué)到它……你想學(xué)會游泳,你就必須下水,你想成為解題的能手,你就必須去解題”,“尋找題解,不能教會,而只能靠自己學(xué)會”。
12.所謂解題經(jīng)驗,就是某些數(shù)學(xué)知識、某些解題方法與某些條件的有序組合。成功是一種有效的有序組合,失敗是一種無效的無序組合(它從反面向我們提供有效的有序組合)。成功經(jīng)驗所獲得的有序組合,就好像建筑上的預(yù)制構(gòu)件(或稱為思維組塊),遇到合適的場合,可以原封不動地把它搬上去。
13.認為解題純粹是一種智能活動顯然是錯誤的;決心與情緒所起的作用非常重要。教育學(xué)生解題是一種意志教育。當學(xué)生求解那些對他來說并不太容易的題目時,他學(xué)會了敗而不餒,學(xué)會了贊賞微小的進展,學(xué)會了等待主要念頭的萌動,學(xué)會了當主要念頭出現(xiàn)后如何全力以赴,直撲問題的核心或主干;當一旦突破關(guān)卡,如何去占領(lǐng)問題的至高點,并冷靜地府視全局,從而得到問題的完善解決。如果學(xué)生在解題過程中沒有機會嘗盡為求解而奮斗的喜怒哀樂,那么他的數(shù)學(xué)解題訓(xùn)練就在最重要的地方失敗了。
14.教師的例題教學(xué)要暴露自己思維的真實過程,老師備課時,遇上的曲折和錯誤不能隨草紙扔到廢紙堆。如果教師掩瞞了解題中的曲折,自己在講臺裝神弄巧,得心應(yīng)手,左右逢源,把自己打扮成超人,將給學(xué)生的學(xué)習(xí)產(chǎn)生誤導(dǎo)。這樣的教師越高明,學(xué)生越自卑。
老人與海讀后感1000字4
一、三角形的有關(guān)概念
1.三角形:由不在同一直線上的三條線段首尾順次相接組成的圖形叫三角形。
三角形的特征:①不在同一直線上;②三條線段;③首尾順次相接;④三角形具有穩(wěn)定性。
2.三角形中的三條重要線段:角平分線、中線、高
(1)角平分線:三角形的一個內(nèi)角的平分線與這個角的對邊相交,這個角的頂點和交點之間的線段叫做三角形的角平分線。
(2)中線:在三角形中,連接一個頂點和它的對邊中點的線段叫做三角形的中線。
(3)高:從三角形的一個頂點向它的對邊所在直線作垂線,頂點和垂足間的線段叫做三角形的高。
說明:①三角形的角平分線、中線、高都是線段;②三角形的角平分線、中線都在三角形內(nèi)部且都交于一點;三角形的高可能在三角形的內(nèi)部(銳角三角形)、外部(鈍角三角形),也可能在邊上(直角三角形),它們(或延長線)相交于一點。
二、等腰三角形的性質(zhì)和判定
(1)性質(zhì)
1.等腰三角形的兩個底角相等(簡寫成"等邊對等角")。
2.等腰三角形的頂角的平分線,底邊上的中線,底邊上的高重合(簡寫成"等腰三角形的三線合一")。
3.等腰三角形的兩底角的平分線相等(兩條腰上的中線相等,兩條腰上的高相等)。
4.等腰三角形底邊上的垂直平分線到兩條腰的距離相等。
5.等腰三角形的一腰上的高與底邊的夾角等于頂角的一半。
6.等腰三角形底邊上任意一點到兩腰距離之和等于一腰上的高(需用等面積法證明)。
7.等腰三角形是軸對稱圖形,只有一條對稱軸,頂角平分線所在的直線是它的對稱軸,等邊三角形有三條對稱軸。
(2)判定
在同一三角形中,有兩條邊相等的三角形是等腰三角形(定義)。
在同一三角形中,有兩個角相等的三角形是等腰三角形(簡稱:等角對等邊)。
三、直角三角形和勾股定理
有一個角是直角的三角形是直角三角形,在直角三角形中,斜邊中線等于斜邊的一半;30度所對的直角邊等于斜邊的一半;直角三角形常用面積法求斜邊上的高。
勾股定理:直角三角形兩直角邊a,b的平方和等于斜邊c的平方,即a2+b2=c2。
勾股數(shù)一定是正整數(shù),常見勾股數(shù):3,4,5;5,12,13;6,8,10,;7,24,25;8,15,17;9,12,15。
方法總結(jié):
當不明確直角三角形的斜邊長,應(yīng)把已知最長邊分為直角邊和斜邊兩種情況討論。無理數(shù)在數(shù)軸上的表示和線段長表示通常用到勾股定理。翻折題型常用勾股定理(口訣:翻折求邊找直角,勾股定理設(shè)未知量)
如果三角形的三邊長a,b,c有關(guān)系a2+b2=c2,那么這個三角形是直角三角形。勾股定理的逆定理,常用于判斷三角形的形狀,先確定最大邊(可以設(shè)為c)。
四、初中三角形中線定理
中線定理又稱阿波羅尼奧斯定理,是歐氏幾何的定理,表述三角形三邊和中線長度關(guān)系。
定理內(nèi)容:三角形一條中線兩側(cè)所對邊平方和等于底邊的一半平方與該邊中線平方和的2倍。
中線的定義:任何三角形都有三條中線,而且這三條中線都在三角形的內(nèi)部,并交于一點。
由定義可知,三角形的'中線是一條線段。
由于三角形有三條邊,所以一個三角形有三條中線。
且三條中線交于一點。這點稱為三角形的重心。
每條三角形中線分得的兩個三角形面積相等。
五、直角三角形的判定
判定1:有一個角為90°的三角形是直角三角形。
判定2:若a的平方+b的平方=c的平方,則以a、b、c為邊的三角形是以c為斜邊的直角三角形(勾股定理的逆定理)。
判定3:若一個三角形30°內(nèi)角所對的邊是某一邊的一半,那么這個三角形是以這條長邊為斜邊的直角三角形。
判定4:兩個銳角互余的三角形是直角三角形。
判定5:證明直角三角形全等時可以利用HL,兩個三角形的斜邊長對應(yīng)相等,以及一個直角邊對應(yīng)相等,則兩直角三角形全等。[定理:斜邊和一條直角對應(yīng)相等的兩個直角三角形全等。簡稱為HL]
判定6:若兩直線相交且它們的斜率之積互為負倒數(shù),則這兩直線垂直。
判定7:在一個三角形中若它一邊上的中線等于這條中線所在邊的一半,那么這個三角形為直角三角形。
六、勾股定理的逆定理
如果三角形三邊長a,b,c滿足,那么這個三角形是直角三角形,其中c為斜邊。
①勾股定理的逆定理是判定一個三角形是否是直角三角形的一種重要方法,它通過“數(shù)轉(zhuǎn)化為形”來確定三角形的可能形狀,在運用這一定理時,可用兩小邊的平方和與較長邊的平方作比較,若它們相等時,以a,b,c為三邊的三角形是直角三角形;若時,以a,b,c為三邊的三角形是鈍角三角形;若時,以a,b,c為三邊的三角形是銳角三角形;
、诙ɡ碇衋,b,c及只是一種表現(xiàn)形式,不可認為是唯一的,如若三角形三邊長a,b,c滿足,那么以a,b,c為三邊的三角形是直角三角形,但是b為斜邊.
、酃垂啥ɡ淼哪娑ɡ碓谟脝栴}描述時,不能說成:當斜邊的平方等于兩條直角邊的平方和時,這個三角形是直角三角形。
七、三角形定理公式
三角形的三邊關(guān)系定理及推論:三角形的兩邊之和大于第三邊,兩邊之差小于第三邊。
三角形的內(nèi)角和定理:三角形的三個內(nèi)角的和等于180度。
三角形的外角和定理:三角形的一個外角等于和它不相鄰的兩個的和。
三角形的外角和定理推理:三角形的一個外角大于任何一個和它不相鄰的內(nèi)角。
三角形的三條角平分線交于一點(內(nèi)心)。
三角形的三邊的垂直平分線交于一點(外心)。
三角形中位線定理:三角形兩邊中點的連線平行于第三邊,并且等于第三邊的一半。
老人與海讀后感1000字5
考點1
相似三角形的概念、相似比的意義、畫圖形的放大和縮小。
考核要求:
(1)理解相似形的概念;
。2)掌握相似圖形的特點以及相似比的意義,能將已知圖形按照要求放大和縮小。
考點2
平行線分線段成比例定理、三角形一邊的平行線的有關(guān)定理
考核要求:理解并利用平行線分線段成比例定理解決一些幾何證明和幾何計算。
注意:被判定平行的一邊不可以作為條件中的對應(yīng)線段成比例使用。
考點3
相似三角形的概念
考核要求:以相似三角形的概念為基礎(chǔ),抓住相似三角形的特征,理解相似三角形的定義。
考點4
相似三角形的判定和性質(zhì)及其應(yīng)用
考核要求:熟練掌握相似三角形的判定定理(包括預(yù)備定理、三個判定定理、直角三角形相似的判定定理)和性質(zhì),并能較好地應(yīng)用。
考點5
三角形的重心
考核要求:知道重心的定義并初步應(yīng)用。
考點6
向量的有關(guān)概念
考點7
向量的加法、減法、實數(shù)與向量相乘、向量的線性運算
考核要求:掌握實數(shù)與向量相乘、向量的線性運算
考點8
銳角三角比(銳角的正弦、余弦、正切、余切)的概念,30度、45度、60度角的三角比值。
考點9
解直角三角形及其應(yīng)用
考核要求:
。1)理解解直角三角形的意義;
。2)會用銳角互余、銳角三角比和勾股定理等解直角三角形和解決一些簡單的實際問題,尤其應(yīng)當熟練運用特殊銳角的三角比的值解直角三角形。
考點10
函數(shù)以及函數(shù)的定義域、函數(shù)值等有關(guān)概念,函數(shù)的表示法,常值函數(shù)
考核要求:
。1)通過實例認識變量、自變量、因變量,知道函數(shù)以及函數(shù)的定義域、函數(shù)值等概念;
(2)知道常值函數(shù);
(3)知道函數(shù)的表示方法,知道符號的意義。
考點11
用待定系數(shù)法求二次函數(shù)的解析式
考核要求:
。1)掌握求函數(shù)解析式的方法;
(2)在求函數(shù)解析式中熟練運用待定系數(shù)法。
注意求函數(shù)解析式的步驟:一設(shè)、二代、三列、四還原。
考點12
畫二次函數(shù)的圖像
考核要求:
。1)知道函數(shù)圖像的意義,會在平面直角坐標系中用描點法畫函數(shù)圖像
(2)理解二次函數(shù)的圖像,體會數(shù)形結(jié)合思想;
。3)會畫二次函數(shù)的大致圖像。
考點13
二次函數(shù)的圖像及其基本性質(zhì)
考核要求:
。1)借助圖像的直觀、認識和掌握一次函數(shù)的性質(zhì),建立一次函數(shù)、二元一次方程、直線之間的聯(lián)系;
(2)會用配方法求二次函數(shù)的頂點坐標,并說出二次函數(shù)的有關(guān)性質(zhì)。
注意:
(1)解題時要數(shù)形結(jié)合;
。2)二次函數(shù)的平移要化成頂點式。
考點14
圓心角、弦、弦心距的概念
考核要求:清楚地認識圓心角、弦、弦心距的概念,并會用這些概念作出正確的判斷。
考點15
圓心角、弧、弦、弦心距之間的關(guān)系
考核要求:認清圓心角、弧、弦、弦心距之間的關(guān)系,在理解有關(guān)圓心角、弧、弦、弦心距之間的關(guān)系的定理及其推論的基礎(chǔ)上,運用定理進行初步的幾何計算和幾何證明。
考點16
垂徑定理及其推論
垂徑定理及其推論是圓這一板塊中最重要的知識點之一。
考點17
直線與圓、圓與圓的位置關(guān)系及其相應(yīng)的數(shù)量關(guān)系
直線與圓的位置關(guān)系可從與之間的關(guān)系和交點的個數(shù)這兩個側(cè)面來反映。在圓與圓的位置關(guān)系中,常需要分類討論求解。
考點18
正多邊形的有關(guān)概念和基本性質(zhì)
考核要求:熟悉正多邊形的有關(guān)概念(如半徑、邊心距、中心角、外角和),并能熟練地運用正多邊形的基本性質(zhì)進行推理和計算,在正多邊形的計算中,常常利用正多邊形的`半徑、邊心距和邊長的一半構(gòu)成的直角三角形,將正多邊形的計算問題轉(zhuǎn)化為直角三角形的計算問題。
考點19
畫正三、四、六邊形。
考核要求:能用基本作圖工具,正確作出正三、四、六邊形。
考點20
確定事件和隨機事件
考核要求:
。1)理解必然事件、不可能事件、隨機事件的概念,知道確定事件與必然事件、不可能事件的關(guān)系;
。2)能區(qū)分簡單生活事件中的必然事件、不可能事件、隨機事件。
考點21
事件發(fā)生的可能性大小,事件的概率
考核要求:
。1)知道各種事件發(fā)生的可能性大小不同,能判斷一些隨機事件發(fā)生的可能事件的大小并排出大小順序;
(2)知道概率的含義和表示符號,了解必然事件、不可能事件的概率和隨機事件概率的取值范圍;
(3)理解隨機事件發(fā)生的頻率之間的區(qū)別和聯(lián)系,會根據(jù)大數(shù)次試驗所得頻率估計事件的概率。
注意:
。1)在給可能性的大小排序前可先用“一定發(fā)生”、“很有可能發(fā)生”、“可能發(fā)生”、“不太可能發(fā)生”、“一定不會發(fā)生”等詞語來表述事件發(fā)生的可能性的大。
。2)事件的概率是確定的常數(shù),而概率是不確定的,可是近似值,與試驗的次數(shù)的多少有關(guān),只有當試驗次數(shù)足夠大時才能更精確。
考點22
等可能試驗中事件的概率問題及概率計算
考核要求:
(1)理解等可能試驗的概念,會用等可能試驗中事件概率計算公式來計算簡單事件的概率;
。2)會用枚舉法或畫“樹形圖”方法求等可能事件的概率,會用區(qū)域面積之比解決簡單的概率問題;
。3)形成對概率的初步認識,了解機會與風(fēng)險、規(guī)則公平性與決策合理性等簡單概率問題。
注意:
。1)計算前要先確定是否為可能事件;
。2)用枚舉法或畫“樹形圖”方法求等可能事件的概率過程中要將所有等可能情況考慮完整。
考點23
數(shù)據(jù)整理與統(tǒng)計圖表
考核要求:
。1)知道數(shù)據(jù)整理分析的意義,知道普查和抽樣調(diào)查這兩種收集數(shù)據(jù)的方法及其區(qū)別;
。2)結(jié)合有關(guān)代數(shù)、幾何的內(nèi)容,掌握用折線圖、扇形圖、條形圖等整理數(shù)據(jù)的方法,并能通過圖表獲取有關(guān)信息。
考點24
統(tǒng)計的含義
考核要求:
。1)知道統(tǒng)計的意義和一般研究過程;
。2)認識個體、總體和樣本的區(qū)別,了解樣本估計總體的思想方法。
考點25
平均數(shù)、加權(quán)平均數(shù)的概念和計算
考核要求:
(1)理解平均數(shù)、加權(quán)平均數(shù)的概念;
。2)掌握平均數(shù)、加權(quán)平均數(shù)的計算公式。注意:在計算平均數(shù)、加權(quán)平均數(shù)時要防止數(shù)據(jù)漏抄、重抄、錯抄等錯誤現(xiàn)象,提高運算準確率。
考點26
中位數(shù)、眾數(shù)、方差、標準差的概念和計算
考核要求:
(1)知道中位數(shù)、眾數(shù)、方差、標準差的概念;
(2)會求一組數(shù)據(jù)的中位數(shù)、眾數(shù)、方差、標準差,并能用于解決簡單的統(tǒng)計問題。
注意:
。1)當一組數(shù)據(jù)中出現(xiàn)極值時,中位數(shù)比平均數(shù)更能反映這組數(shù)據(jù)的平均水平;
。2)求中位數(shù)之前必須先將數(shù)據(jù)排序。
考點27
頻數(shù)、頻率的意義,畫頻數(shù)分布直方圖和頻率分布直方圖
考核要求:
。1)理解頻數(shù)、頻率的概念,掌握頻數(shù)、頻率和總量三者之間的關(guān)系式;
。2)會畫頻數(shù)分布直方圖和頻率分布直方圖,并能用于解決有關(guān)的實際問題。解題時要注意:頻數(shù)、頻率能反映每個對象出現(xiàn)的頻繁程度,但也存在差別:在同一個問題中,頻數(shù)反映的是對象出現(xiàn)頻繁程度的絕對數(shù)據(jù),所有頻數(shù)之和是試驗的總次數(shù);頻率反映的是對象頻繁出現(xiàn)的相對數(shù)據(jù),所有的頻率之和是1。
考點28
中位數(shù)、眾數(shù)、方差、標準差、頻數(shù)、頻率的應(yīng)用
考核要求:
(1)了解基本統(tǒng)計量(平均數(shù)、眾數(shù)、中位數(shù)、方差、標準差、頻數(shù)、頻率)的意計算及其應(yīng)用,并掌握其概念和計算方法;
。2)正確理解樣本數(shù)據(jù)的特征和數(shù)據(jù)的代表,能根據(jù)計算結(jié)果作出判斷和預(yù)測;
(3)能將多個圖表結(jié)合起來,綜合處理圖表提供的數(shù)據(jù),會利用各種統(tǒng)計量來進行推理和分析,研究解決有關(guān)的實際生活中問題,然后作出合理的解決。
如何整理數(shù)學(xué)學(xué)科課堂筆記?
一、內(nèi)容提綱。
老師講課大多有提綱,并且講課時老師會將一堂課的線索脈絡(luò)、重點難點等,簡明清晰地呈現(xiàn)在黑板上。同時,教師會使之富有條理性和直觀性。記下這些內(nèi)容提綱,便于課后復(fù)習(xí)回顧,整體把握知識框架,對所學(xué)知識做到胸有成竹、清晰完整。
二、疑難問題。
將課堂上未聽懂的問題及時記下來,便于課后請教同學(xué)或老師,把問題弄懂弄通。教師在組織課堂教學(xué)時,受到時空的限制,不可能做到顧及每一位同學(xué)。相應(yīng)的,一些問題對部分學(xué)生來說,是屬于疑難問題,由于課堂上來不及思考成熟,記下疑難問題,可在課后繼續(xù)加以思考和探究,加以理解和掌握,不致出現(xiàn)知識的斷層、方法的缺陷。
三、思路方法。
對老師在課堂上介紹的解題方法和分析思路也應(yīng)及時記下,課后加以消化,若有疑惑,先作獨立分析,因為有可能是自己理解錯誤造成的,也有可能是老師講課疏忽造成的,記下來后,便于課后及時與老師商榷和探討。勤記老師講的解題技巧、思路及方法,這對于啟迪思維,開闊視野,開發(fā)智力,培養(yǎng)能力,并對提高解題水平大有益處。在這基礎(chǔ)上,若能主動鉆研,另辟蹊徑,則更難能可貴。
四、歸納總結(jié)。注意記下老師的課后總結(jié),這對于濃縮一堂課的內(nèi)容,找出重點及各部分之間的聯(lián)系,掌握基本概念、公式、定理,尋找規(guī)律,融會貫通課堂內(nèi)容都很有作用。同時,很多有經(jīng)驗的老師在課后小結(jié)時,一方面是承上歸納所學(xué)內(nèi)容,另一方面又是啟下布置預(yù)習(xí)任務(wù)或點明后面所要學(xué)的內(nèi)容,做好筆記可以把握學(xué)習(xí)的主動權(quán),提前作準備,做到目標任務(wù)明確。
五、錯誤反思。
學(xué)習(xí)過程中不可避免地會犯這樣或那樣的錯誤,記下自己所犯的錯誤,并用紅筆醒目地加以標注,以警示自己,同時也應(yīng)注明錯誤成因,正確思路及方法,在反思中成熟,在反思中提高。
數(shù)學(xué)常用解題技巧有哪些?
第一,應(yīng)堅持由易到難的做題順序。
近年來高考數(shù)學(xué)試題的設(shè)置是8道選擇題、6道填空題、6到大題,通常稱為866結(jié)構(gòu)。在實體設(shè)置的結(jié)構(gòu)中有三個小高峰,選擇題是由易到難,最難的題是第8題。填空題同樣是這樣設(shè)置的。也是第9題容易到第14題最難,大題從第15題到第20題,它們的設(shè)置也是這樣的。根據(jù)這樣的試題結(jié)構(gòu),應(yīng)先做前面容易的,基礎(chǔ)好一點的考生就先做前7個選擇,前5個填空、前5個大題,稱為是755結(jié)構(gòu);A(chǔ)差的就是644,先把自己能做的、會做的拿到手。這是第一點。
第二,審題是關(guān)鍵。
把題給看清楚了再動筆答題,看清楚題以后問什么、已知什么、讓你做什么,把這些問題搞清楚了,自己制訂了一個完整的解題策略,在開始寫的時候,這個時候是很快就可以完成的。
第三,屬于非智力因素導(dǎo)致想不起來。
本來是很簡單的題比如說是做到第三題、第四題的時候不是難題,但想不起來了,卡住了,這時候怎么辦?雖然是簡單題卻不會做怎么辦?應(yīng)先跳過去,不是這道題不會做嗎?后面還有很多的簡單題呢,把后面的題做一做,不要在考場上愣神,先跳過去做其他的題,等穩(wěn)定下來以后再回過頭來看會頓悟,豁然開朗。
第四,做選擇題的時候應(yīng)運用最好的解題方法。
因為選擇題和填空題都是看結(jié)果不看過程,因此在這個過程中都應(yīng)不擇手段,只要是能把正確的結(jié)論找到就行。考生常用的方法是直接法,從已知的開始也不看它的四個選項,從頭到尾寫完了之后一看答案就寫上去了。另外就是特質(zhì)法(音),一些出現(xiàn)字母、特別是不等式,這時候給它賦一個值,代進去這時候速度會比較快,正確地找出結(jié)果來。再就是數(shù)形結(jié)合法。最后實在不行了,就將四個選項代入驗證,看看哪個符合就是哪個了。填空題用上述的直接法、特質(zhì)法、數(shù)形結(jié)合法三種方法都適合。做大題的時候要特別注意解題步驟,規(guī)范答題可以減少失分。簡單地說,規(guī)范答題就是從上一步的原因到下一步的結(jié)論,這是一個必然的過程,讓誰寫、誰看都是這樣的。因為什么所以什么是一個必然的過程,這是規(guī)范答題。
學(xué)霸分享的數(shù)學(xué)復(fù)習(xí)技巧
1、把答案蓋住看例題
例題不能帶著答案去看,不然會認為自己就是這么,其實自己并沒有理解透徹。
所以,在看例題時,把解答蓋住,自己去做,做完或做不出時再去看。這時要想一想,自己做的哪里與解答不同,哪里沒想到,該注意什么,哪一種方法更好,還有沒有另外的解法。
經(jīng)過上面的訓(xùn)練,自己的思維空間擴展了,看問題也全面了。如果把題目徹底搞清了,在題后精煉幾個批注,說明此題的“題眼”及巧妙之處,收獲會更大。
2、研究每題都考什么
數(shù)學(xué)能力的提高離不開做題,“熟能生巧”這個簡單的道理大家都懂。但做題不是搞題海戰(zhàn)術(shù),而是要通過一題聯(lián)想到很多題。
3、錯一次反思一次
每次業(yè)及考試或多或少會發(fā)生些錯誤,這并不可怕,要緊的是避免類似的錯誤再次重現(xiàn)。因此平時注意把錯題記下來。
學(xué)生若能將每次考試或練習(xí)中出現(xiàn)的錯誤記錄下來分析,并盡力保證在下次考試時不發(fā)生同樣錯誤,那么以后人生中最重要的高考也就能避免犯錯了。
4、分析試卷總結(jié)經(jīng)驗
每次考試結(jié)束試卷發(fā)下來,要認真分析得失,總結(jié)經(jīng)驗教訓(xùn)。特別是將試卷中出現(xiàn)的錯誤進行分類。
老人與海讀后感1000字6
1、垂徑定理:垂直于弦的直徑平分這條弦,并且平分弦所對的2條弧。
2、逆定理:平分弦不是直徑的直徑垂直于弦,并且平分弦所對的2條弧。
3、有關(guān)圓周角和圓心角的性質(zhì)和定理
、僭谕瑘A或等圓中,如果兩個圓心角,兩個圓周角,兩組弧,兩條弦,兩條弦心距中有一組量相等,那么他們所對應(yīng)的其余各組量都分別相等。
②一條弧所對的圓周角等于它所對的圓心角的一半。
直徑所對的圓周角是直角。90度的圓周角所對的弦是直徑。
圓心角計算公式:θ=L/2πr×360°=180°L/πr=L/r弧度
即圓心角的度數(shù)等于它所對的弧的度數(shù);圓周角的度數(shù)等于它所對的弧的度數(shù)的一半。
、廴绻粭l弧的長是另一條弧的2倍,那么其所對的圓周角和圓心角是另一條弧的2倍。
4、有關(guān)外接圓和內(nèi)切圓的性質(zhì)和定理
①一個三角形有唯一確定的外接圓和內(nèi)切圓。外接圓圓心是三角形各邊垂直平分線的交點,到三角形三個頂點距離相等;
、趦(nèi)切圓的圓心是三角形各內(nèi)角平分線的交點,到三角形三邊距離相等。
、跼=2S△÷LR:內(nèi)切圓半徑,S:三角形面積,L:三角形周長。
④兩相切圓的連心線過切點連心線:兩個圓心相連的直線。
⑤圓O中的弦PQ的中點M,過點M任作兩弦AB,CD,弦AD與BC分別交PQ于X,Y,則M為XY之中點。
5、如果兩圓相交,那么連接兩圓圓心的線段直線也可垂直平分公共弦。
6、弦切角的度數(shù)等于它所夾的弧的度數(shù)的一半。
7、圓內(nèi)角的度數(shù)等于這個角所對的弧的度數(shù)之和的一半。
8、圓外角的度數(shù)等于這個角所截兩段弧的度數(shù)之差的一半。
9、周長相等,圓面積比長方形、正方形、三角形的面積大。
10、形如y=k/x(k≠0)或y=kx^—1的函數(shù)叫做反比例函數(shù),k叫做反比例系數(shù)。它的圖像是雙曲線。^—1表示負一次。
11、在函數(shù)y=k/x(k≠0),當k>0時,表達式中的想x、y符號相同,點(x,y)在第一、三象限,所以函數(shù)y=k/x(k≠0)的圖像位于第一、三象限;當k<0時,表達式中的'想x、y符號相反,點(x,y)在第二、四象限,所以函數(shù)y=k/x(k≠0)的圖像位于第二、四象限。
12、在y=k/x(k≠0)中,當k>0時,在第一象限內(nèi),y隨著x的增大而減小;若y的值隨著x的值的增大而增大,則k的取值范圍是k<0。
13、設(shè)P(a,b)是反比例函數(shù)y=k/x(k≠0)上任意一點,則ab的值等于k。經(jīng)過反比例函數(shù)上的任意一點P,分別向x軸、y軸作垂線段,則所成的矩形面積為k;過P點向x軸或y軸作垂線段,連接OP,則所成的三角形面積為k/2。
14、如果兩個數(shù)的比值與另兩個數(shù)的比值相等,就說這四個數(shù)成比例。
15、如果a/b=c/d,那么ad=bc;如果ad=bc,且bd≠0,那么a/b=c/d;如果a/b=c/d,那么(a+b)/b=(c+d)/d。誰都不能為0。為0無意義。
16、一般的,如果三個數(shù)a,b,c滿足比例式a:b=b:c,則b就叫做a,c的比例中項。(如果是線段的話,只能取正的,如果是數(shù),正負都可以)
17、黃金分割:把一條線段分割為兩部分,使其中一部分與全長之比等于另一部分與這部分之比。其比值是(√5—1)/2,取其前三位數(shù)字的近似值是0.618。
18、證明三角形相似的方法:
(1)平行于三角形一邊的直線和其他兩邊(或兩邊的延長線)相交,所構(gòu)成的三角形與原三角形相似。照我們老師的方法來說就是A字型和8字型。
(2)如果一個三角形的兩個角與另一個三角形的兩個角對應(yīng)相等,那么這兩個三角形相似。
(3)如果兩個三角形的兩組對應(yīng)邊的比相等,并且相應(yīng)的夾角相等,那么這兩個三角形相似。
(4)如果兩個三角形的三組對應(yīng)邊的比相等,那么這兩個三角形相似。
(5)對應(yīng)角相等,對應(yīng)邊成比例的兩個三角形叫做相似。
19、積的算術(shù)平方根:積的算術(shù)平方根等于積中各因式的算術(shù)平方根的積。
20、二次根式比較大小的方法:
(1)利用近似值比大小。
(2)把二次根式的系數(shù)移入二次根號內(nèi),然后比大小。
(3)分別平方,然后比大小。
21、商的算術(shù)平方根:商的算術(shù)平方根等于被除式的算術(shù)平方根除以除式的算術(shù)平方根。
22、分母有理化的方法是:分式的分子與分母同乘分母的有理化因式,使分母變?yōu)檎健?/p>
23、最簡二次根式:
(1)滿足下列兩個條件的二次根式,叫做最簡二次根式。
、俦婚_方數(shù)的因數(shù)是整數(shù),因式是整式。
②被開方數(shù)中不含能開的盡的因數(shù)或因式。
(2)最簡二次根式中,被開方數(shù)不能含有小數(shù)、分數(shù),字母因式次數(shù)低于2,且不含分母。
(3)化簡二次根式時,往往需要把被開方數(shù)先分解因數(shù)或分解因式。
(4)二次根式計算的最后結(jié)果必須化為最簡二次根式。
老人與海讀后感1000字7
有理數(shù):
(1)凡能寫成形式的數(shù),都是有理數(shù),整數(shù)和分數(shù)統(tǒng)稱有理數(shù).
注意:0即不是正數(shù),也不是負數(shù);-a不一定是負數(shù),+a也不一定是正數(shù);不是有理數(shù);
(2)有理數(shù)的.分類:①②
(3)注意:有理數(shù)中,1、0、-1是三個特殊的數(shù),它們有自己的特性;這三個數(shù)把數(shù)軸上的數(shù)分成四個區(qū)域,這四個區(qū)域的數(shù)也有自己的特性;
(4)自然數(shù)0和正整數(shù);a>0a是正數(shù);a<0a是負數(shù);
a≥0a是正數(shù)或0a是非負數(shù);a≤0a是負數(shù)或0a是非正數(shù).
老人與海讀后感1000字8
數(shù)學(xué)是研究數(shù)量結(jié)構(gòu)、變化、以及空間模型等概念的科學(xué)。它是物理、化學(xué)等學(xué)科的基礎(chǔ),而且與我們的生活息息相關(guān)。所以說,學(xué)好數(shù)學(xué)對于我們每個同學(xué)來說都是非常重要的。下面我向大家介紹一下初中數(shù)學(xué)的學(xué)習(xí)方法與技巧:
一、平時的數(shù)學(xué)學(xué)習(xí):
1、課前認真預(yù)習(xí)。預(yù)習(xí)的目的是為了能更好得聽老師講課,通過預(yù)習(xí),掌握度要達到百分之八十。帶著預(yù)習(xí)中不明白的問題去聽老師講課,來解答這類的問題。預(yù)習(xí)還可以使聽課的`整體效率提高。具體的預(yù)習(xí)方法:將書上的題目做完,畫出知識點,整個過程大約持續(xù)15-20分鐘。在時間允許的情況下,還可以將練習(xí)冊做完。
2、讓數(shù)學(xué)課學(xué)與練結(jié)合。在數(shù)學(xué)課上,光聽是沒用的。當老師讓同學(xué)去黑板上演算時,自己也要在草稿紙上練。如果遇到不懂的難題,一定要提出來,不能不求甚解。否則考試遇到類似的題目就可能不會做。聽老師講課時一定要全神貫注,要注意細節(jié)問題,否則“千里之堤,毀于蟻穴”。
3、課后及時復(fù)習(xí)。寫完作業(yè)后對當天老師講的內(nèi)容進行梳理,可以適當?shù)刈觯玻捣昼娮笥业恼n外題?梢愿鶕(jù)自己的需要選擇適合自己的課外書。其課外題內(nèi)容大概就是今天上的課。
4、單元測驗是為了檢測近期的學(xué)習(xí)情況。其實分數(shù)代表的是你的過去,關(guān)鍵的是對于每次考試的總結(jié)和吸取教訓(xùn),是為了讓你在期中、期末考得更好。老師經(jīng)常會在沒通知的情況下進行考試,所以要及時做到“課后復(fù)習(xí)”。
二、期中期末數(shù)學(xué)復(fù)習(xí):
要將平時的單元檢測卷訂成冊,并且將錯題再做一遍。如果整張試卷考得都不好,那么可以復(fù)印將試卷重做一遍。除試卷外,還可以將作業(yè)上的錯題、難題、易錯題重做一遍。另外,自己還可以做2——3張期末模擬卷。
三、數(shù)學(xué)考試技巧:
如果想得高分,在選擇、填空、計算題上是不能丟分的。在考數(shù)學(xué)的時候思想不能開小差,而且遇到難題時不能想“沒考好怎么辦啊”等內(nèi)容。在通常情況下,期末考試的難題都是不知道怎么做,但有可能突然明白的那種。遇到這種題目要沉著冷靜,利用題目給你的一切條件進行分析,如這次考試有兩個空白的鐘,還有去年七年級期末的幾題填空。這些條件都對你的解題有很大幫助。在期中、期末考試中有充足的時間,將自己的速度壓下來,不是越快越好,爭取一次做成功。大概留35分鐘的時間檢查。
最終提醒大家:多做題有一定作用,但上課聽講、認真答題及提高準確率、總結(jié)經(jīng)驗才是最重要的。還要將所學(xué)的知識用到生活中去,做到學(xué)以致用。當你運用數(shù)學(xué)知識解決了生活中實際問題的時候,你就會感受到學(xué)習(xí)數(shù)學(xué)的快樂。
老人與海讀后感1000字9
(1)凡能寫成形式的數(shù),都是有理數(shù).正整數(shù)、0、負整數(shù)統(tǒng)稱整數(shù);正分數(shù)、負分數(shù)統(tǒng)稱分數(shù);整數(shù)和分數(shù)統(tǒng)稱有理數(shù).注意:0即不是正數(shù),也不是負數(shù);-a不一定是負數(shù),+a也不一定是正數(shù);p不是有理數(shù);
(2)有理數(shù)的分類:①整數(shù)②分數(shù)
(3)注意:有理數(shù)中,1、0、-1是三個特殊的數(shù),它們有自己的特性;這三個數(shù)把數(shù)軸上的數(shù)分成四個區(qū)域,這四個區(qū)域的數(shù)也有自己的特性;
(4)自然數(shù)0和正整數(shù);a>0a是正數(shù);a<0a是負數(shù);
a≥0a是正數(shù)或0a是非負數(shù);a≤0?a是負數(shù)或0a是非正數(shù).
有理數(shù)比大小:
(1)正數(shù)的絕對值越大,這個數(shù)越大;
(2)正數(shù)永遠比0大,負數(shù)永遠比0小;
(3)正數(shù)大于一切負數(shù);
(4)兩個負數(shù)比大小,絕對值大的反而小;
(5)數(shù)軸上的.兩個數(shù),右邊的數(shù)總比左邊的數(shù)大;
(6)大數(shù)-小數(shù)>0,小數(shù)-大數(shù)<0.
老人與海讀后感1000字10
把一個數(shù)寫做的形式,其中,n是整數(shù),這種記數(shù)法叫做科學(xué)記數(shù)法。
(1)確定:是只有一位整數(shù)數(shù)位的數(shù).
(2)確定n:當原數(shù)≥1時,等于原數(shù)的'整數(shù)位數(shù)減1;;當原數(shù)<1時,是負整數(shù),它的絕對值等于原數(shù)中左起第一個非零數(shù)字前零的個數(shù)(含整數(shù)位上的零)。
例如:-40700=-4.07×105,0.000043=4.3×10ˉ5.
(3).近似值的精確度:一般地,一個近似數(shù),四舍五入到哪一位,就說這個近似數(shù)精確到哪一位
(4)按精確度或有效數(shù)字取近似值,一定要與科學(xué)計數(shù)法有機結(jié)合起來.
老人與海讀后感1000字11
1、有理數(shù)的加法運算:
同號相加一邊倒;異號相加“大”減“小”,符號跟著大的'跑;絕對值相等“零”正好、
2、合并同類項:
合并同類項,法則不能忘,只求系數(shù)和,字母、指數(shù)不變樣、
3、去、添括號法則:
去括號、添括號,關(guān)鍵看符號,括號前面是正號,去、添括號不變號,括號前面是負號,去、添括號都變號、
4、一元一次方程:
已知未知要分離,分離方法就是移,加減移項要變號,乘除移了要顛倒、
5、平方差公式:
平方差公式有兩項,符號相反切記牢,首加尾乘首減尾,莫與完全公式相混淆、
1、完全平方公式:
完全平方有三項,首尾符號是同鄉(xiāng),首平方、尾平方,首尾二倍放中央;
首±尾括號帶平方,尾項符號隨中央、
2、因式分解:
一提(公因式)二套(公式)三分組,細看幾項不離譜,兩項只用平方差,三項十字相乘法,陣法熟練不馬虎,四項仔細看清楚,若有三個平方數(shù)(項),就用一三來分組,否則二二去分組,五項、六項更多項,二三、三三試分組,以上若都行不通,拆項、添項看清楚、
3、單項式運算:
加、減、乘、除、乘(開)方,三級運算分得清,系數(shù)進行同級(運)算,指數(shù)運算降級(進)行、
4、一元一次不等式解題的一般步驟:
去分母、去括號,移項時候要變號,同類項合并好,再把系數(shù)來除掉,兩邊除(以)負數(shù)時,不等號改向別忘了、
5、一元一次不等式組的解集:
大大取較大,小小取較小,小大、大小取中間,大小、小大無處找、
一元二次不等式、一元一次絕對值不等式的解集:
大(魚)于(吃)取兩邊,小(魚)于(吃)取中間。
老人與海讀后感1000字12
一、初中數(shù)學(xué)基本知識
、濉(shù)與代數(shù)
A、數(shù)與式:
1、有理數(shù)
有理數(shù):①整數(shù)→正整數(shù)/0/負整數(shù)
、诜謹(shù)→正分數(shù)/負分數(shù)
數(shù)軸:①畫一條水平直線,在直線上取一點表示0(原點),選取某一長度作為單位長度,規(guī)定直線上向右的方向為正方向,就得到數(shù)軸。②任何一個有理數(shù)都可以用數(shù)軸上的一個點來表示。③如果兩個數(shù)只有符號不同,那么我們稱其中一個數(shù)為另外一個數(shù)的相反數(shù),也稱這兩個數(shù)互為相反數(shù)。在數(shù)軸上,表示互為相反數(shù)的兩個點,位于原點的兩側(cè),并且與原點距離相等。④數(shù)軸上兩個點表示的數(shù),右邊的總比左邊的大。正數(shù)大于0,負數(shù)小于0,正數(shù)大于負數(shù)。
絕對值:①在數(shù)軸上,一個數(shù)所對應(yīng)的點與原點的距離叫做該數(shù)的絕對值。②正數(shù)的絕對值是他的本身、負數(shù)的絕對值是他的相反數(shù)、0的絕對值是0。兩個負數(shù)比較大小,絕對值大的反而小。
有理數(shù)的運算:
加法:①同號相加,取相同的符號,把絕對值相加。②異號相加,絕對值相等時和為0;絕對值不等時,取絕對值較大的數(shù)的符號,并用較大的絕對值減去較小的絕對值。③一個數(shù)與0相加不變。
減法:減去一個數(shù),等于加上這個數(shù)的相反數(shù)。
乘法:①兩數(shù)相乘,同號得正,異號得負,絕對值相乘。②任何數(shù)與0相乘得0。③乘積為1的兩個有理數(shù)互為倒數(shù)。
除法:①除以一個數(shù)等于乘以一個數(shù)的倒數(shù)。②0不能作除數(shù)。
乘方:求N個相同因數(shù)A的積的運算叫做乘方,乘方的結(jié)果叫冪,A叫底數(shù),N叫次數(shù)。
混合順序:先算乘法,再算乘除,最后算加減,有括號要先算括號里的。
2、實數(shù)
無理數(shù):無限不循環(huán)小數(shù)叫無理數(shù)
平方根:①如果一個正數(shù)X的平方等于A,那么這個正數(shù)X就叫做A的算術(shù)平方根。②如果一個數(shù)X的平方等于A,那么這個數(shù)X就叫做A的平方根。③一個正數(shù)有2個平方根/0的平方根為0/負數(shù)沒有平方根。④求一個數(shù)A的平方根運算,叫做開平方,其中A叫做被開方數(shù)。
立方根:①如果一個數(shù)X的立方等于A,那么這個數(shù)X就叫做A的立方根。②正數(shù)的立方根是正數(shù)、0的立方根是0、負數(shù)的立方根是負數(shù)。③求一個數(shù)A的立方根的運算叫開立方,其中A叫做被開方數(shù)。
實數(shù):①實數(shù)分有理數(shù)和無理數(shù)。②在實數(shù)范圍內(nèi),相反數(shù),倒數(shù),絕對值的意義和有理數(shù)范圍內(nèi)的相反數(shù),倒數(shù),絕對值的意義完全一樣。③每一個實數(shù)都可以在數(shù)軸上的一個點來表示。
3、代數(shù)式
代數(shù)式:單獨一個數(shù)或者一個字母也是代數(shù)式。
合并同類項:①所含字母相同,并且相同字母的指數(shù)也相同的項,叫做同類項。②把同類項合并成一項就叫做合并同類項。③在合并同類項時,我們把同類項的系數(shù)相加,字母和字母的指數(shù)不變。
4、整式與分式
整式:①數(shù)與字母的乘積的代數(shù)式叫單項式,幾個單項式的和叫多項式,單項式和多項式統(tǒng)稱整式。②一個單項式中,所有字母的指數(shù)和叫做這個單項式的次數(shù)。③一個多項式中,次數(shù)最高的項的次數(shù)叫做這個多項式的次數(shù)。
整式運算:加減運算時,如果遇到括號先去括號,再合并同類項。
冪的運算:AMAN=A(MN)
(AM)N=AMN
(A/B)N=AN/BN除法一樣。
整式的乘法:①單項式與單項式相乘,把他們的系數(shù),相同字母的冪分別相乘,其余字母連同他的指數(shù)不變,作為積的因式。②單項式與多項式相乘,就是根據(jù)分配律用單項式去乘多項式的每一項,再把所得的積相加。③多項式與多項式相乘,先用一個多項式的每一項乘另外一個多項式的每一項,再把所得的積相加。
公式兩條:平方差公式/完全平方公式
整式的除法:
、賳雾検较喑,把系數(shù),同底數(shù)冪分別相除后,作為商的因式;對于只在被除式里含有的字母,則連同他的指數(shù)一起作為商的一個因式。
、诙囗検匠詥雾検剑劝堰@個多項式的每一項分別除以單項式,再把所得的商相加。
分解因式:把一個多項式化成幾個整式的積的形式,這種變化叫做把這個多項式分解因式。
方法:提公因式法、運用公式法、分組分解法、十字相乘法。
分式:
①整式A除以整式B,如果除式B中含有分母,那么這個就是分式,對于任何一個分式,分母不為0。
②分式的分子與分母同乘以或除以同一個不等于0的整式,分式的值不變。
分式的運算:
乘法:把分子相乘的積作為積的分子,把分母相乘的積作為積的分母。
除法:除以一個分式等于乘以這個分式的倒數(shù)。
加減法:
①同分母的分式相加減,分母不變,把分子相加減。
、诋惙帜傅姆质较韧ǚ郑癁橥帜傅姆质,再加減。
分式方程:
、俜帜钢泻形粗獢(shù)的'方程叫分式方程。
、谑狗匠痰姆帜笧0的解稱為原方程的增根。
20xx年中考數(shù)學(xué)基礎(chǔ)知識總結(jié)20xx年中考數(shù)學(xué)基礎(chǔ)知識總結(jié)
B、方程與不等式
1、方程與方程組
一元一次方程:
、僭谝粋方程中,只含有一個未知數(shù),并且未知數(shù)的指數(shù)是1,這樣的方程叫一元一次方程。
、诘仁絻蛇呁瑫r加上或減去或乘以或除以(不為0)一個代數(shù)式,所得結(jié)果仍是等式。
解一元一次方程的步驟:去分母,移項,合并同類項,未知數(shù)系數(shù)化為1。
二元一次方程:含有兩個未知數(shù),并且所含未知數(shù)的項的次數(shù)都是1的方程叫做二元一次方程。
二元一次方程組:兩個二元一次方程組成的方程組叫做二元一次方程組。適合一個二元一次方程的一組未知數(shù)的值,叫做這個二元一次方程的一個解。二元一次方程組中各個方程的公共解,叫做這個二元一次方程的解。解二元一次方程組的方法:代入消元法/加減消元法。
一元二次方程:只有一個未知數(shù),并且未知數(shù)的項的最高系數(shù)為2的方程
1)一元二次方程的二次函數(shù)的關(guān)系
大家已經(jīng)學(xué)過二次函數(shù)(即拋物線)了,對他也有很深的了解,好像解法,在圖象中表示等等,其實一元二次方程也可以用二次函數(shù)來表示,其實一元二次方程也是二次函數(shù)的一個特殊情況,就是當?shù)?的時候就構(gòu)成了一元二次方程了。那如果在平面直角坐標系中表示出來,一元二次方程就是二次函數(shù)中,圖象與X軸的交點。也就是該方程的解了
2)一元二次方程的解法
大家知道,二次函數(shù)有頂點式(-b/2a,4ac-b2/4a),這大家要記住,很重要,因為在上面已經(jīng)說過了,一元二次方程也是二次函數(shù)的一部分,所以他也有自己的一個解法,利用他可以求出所有的一元一次方程的解
(1)配方法
利用配方,使方程變?yōu)橥耆椒焦,在用直接開平方法去求出解
(2)分解因式法
提取公因式,套用公式法,和十字相乘法。在解一元二次方程的時候也一樣,利用這點,把方程化為幾個乘積的形式去解
(3)公式法
這方法也可以是在解一元二次方程的萬能方法了,方程的根X1={-b√[b2-4ac)]}/2a,X2={-b-√[b2-4ac)]}/2a
3)解一元二次方程的步驟:
(1)配方法的步驟:
先把常數(shù)項移到方程的右邊,再把二次項的系數(shù)化為1,再同時加上1次項的系數(shù)的一半的平方,最后配成完全平方公式
(2)分解因式法的步驟:
把方程右邊化為0,然后看看是否能用提取公因式,公式法(這里指的是分解因式中的公式法)或十字相乘,如果可以,就可以化為乘積的形式
(3)公式法
就把一元二次方程的各系數(shù)分別代入,這里二次項的系數(shù)為a,一次項的系數(shù)為b,常數(shù)項的系數(shù)為c
4)韋達定理
利用韋達定理去了解,韋達定理就是在一元二次方程中,二根之和=-b/a,二根之積=c/a
也可以表示為x1x2=-b/a,x1x2=c/a。利用韋達定理,可以求出一元二次方程中的各系數(shù),在題目中很常用
5)一元一次方程根的情況
利用根的判別式去了解,根的判別式可在書面上可以寫為“△”,讀作“diata”,而△=b2-4ac,這里可以分為3種情況:
I當△>0時,一元二次方程有2個不相等的實數(shù)根;
II當△=0時,一元二次方程有2個相同的實數(shù)根;
III當△<0時,一元二次方程沒有實數(shù)根(在這里,學(xué)到高中就會知道,這里有2個虛數(shù)根)
2、不等式與不等式組
不等式:
、儆梅枴,=,〈號連接的式子叫不等式。
、诓坏仁降膬蛇叾技由匣驕p去同一個整式,不等號的方向不變。
、鄄坏仁降膬蛇叾汲艘曰蛘叱砸粋正數(shù),不等號方向不變。
、懿坏仁降膬蛇叾汲艘曰虺酝粋負數(shù),不等號方向相反。
不等式的解集:
、倌苁共坏仁匠闪⒌奈粗獢(shù)的值,叫做不等式的解。
、谝粋含有未知數(shù)的不等式的所有解,組成這個不等式的解集。
、矍蟛坏仁浇饧倪^程叫做解不等式。
一元一次不等式:左右兩邊都是整式,只含有一個未知數(shù),且未知數(shù)的最高次數(shù)是1的不等式叫一元一次不等式。
一元一次不等式組:
①關(guān)于同一個未知數(shù)的幾個一元一次不等式合在一起,就組成了一元一次不等式組。
、谝辉淮尾坏仁浇M中各個不等式的解集的公共部分,叫做這個一元一次不等式組的解集。
、矍蟛坏仁浇M解集的過程,叫做解不等式組。
一元一次不等式的符號方向:
在一元一次不等式中,不像等式那樣,等號是不變的,他是隨著你加或乘的運算改變。
在不等式中,如果加上同一個數(shù)(或加上一個正數(shù)),不等式符號不改向;例如:A>B,AC>BC
在不等式中,如果減去同一個數(shù)(或加上一個負數(shù)),不等式符號不改向;例如:A>B,A-C>B-C
在不等式中,如果乘以同一個正數(shù),不等號不改向;例如:A>B,A*C>B*C(C>0)
在不等式中,如果乘以同一個負數(shù),不等號改向;例如:A>B,A*C
如果不等式乘以0,那么不等號改為等號
所以在題目中,要求出乘以的數(shù),那么就要看看題中是否出現(xiàn)一元一次不等式,如果出現(xiàn)了,那么不等式乘以的數(shù)就不等為0,否則不等式不成立;
二、函數(shù)
變量:因變量,自變量。
在用圖象表示變量之間的關(guān)系時,通常用水平方向的數(shù)軸上的點自變量,用豎直方向的數(shù)軸上的點表示因變量。
一次函數(shù):①若兩個變量X,間的關(guān)系式可以表示成=XB(B為常數(shù),不等于0)的形式,則稱是X的一次函數(shù)。②當B=0時,稱是X的正比例函數(shù)。
一次函數(shù)的圖象:①把一個函數(shù)的自變量X與對應(yīng)的因變量的值分別作為點的橫坐標與縱坐標,在直角坐標系內(nèi)描出它的對應(yīng)點,所有這些點組成的圖形叫做該函數(shù)的圖象。②正比例函數(shù)=X的圖象是經(jīng)過原點的一條直線。③在一次函數(shù)中,當〈0,B〈O,則經(jīng)234象限;當〈0,B〉0時,則經(jīng)124象限;當〉0,B〈0時,則經(jīng)134象限;當〉0,B〉0時,則經(jīng)123象限。④當〉0時,的值隨X值的增大而增大,當X〈0時,的值隨X值的增大而減少。
三、空間與圖形
A、圖形的認識
1、點,線,面
點,線,面:①圖形是由點,線,面構(gòu)成的。②面與面相交得線,線與線相交得點。③點動成線,線動成面,面動成體。
展開與折疊:①在棱柱中,任何相鄰的兩個面的交線叫做棱,側(cè)棱是相鄰兩個側(cè)面的交線,棱柱的所有側(cè)棱長相等,棱柱的上下底面的形狀相同,側(cè)面的形狀都是長方體。②N棱柱就是底面圖形有N條邊的棱柱。
截一個幾何體:用一個平面去截一個圖形,截出的面叫做截面。
視圖:主視圖,左視圖,俯視圖。
多邊形:他們是由一些不在同一條直線上的線段依次首尾相連組成的封閉圖形。
20xx年中考數(shù)學(xué)基礎(chǔ)知識總結(jié)建造師考試_建筑工程類工程師考試網(wǎng)
弧、扇形:①由一條弧和經(jīng)過這條弧的端點的兩條半徑所組成的圖形叫扇形。②圓可以分割成若干個扇形。
2、角
線:①線段有兩個端點。②將線段向一個方向無限延長就形成了射線。射線只有一個端點。③將線段的兩端無限延長就形成了直線。直線沒有端點。④經(jīng)過兩點有且只有一條直線。
比較長短:①兩點之間的所有連線中,線段最短。②兩點之間線段的長度,叫做這兩點之間的距離。
角的度量與表示:①角由兩條具有公共端點的射線組成,兩條射線的公共端點是這個角的頂點。②一度的1/60是一分,一分的1/60是一秒。
角的比較:①角也可以看成是由一條射線繞著他的端點旋轉(zhuǎn)而成的。②一條射線繞著他的端點旋轉(zhuǎn),當終邊和始邊成一條直線時,所成的角叫做平角。始邊繼續(xù)旋轉(zhuǎn),當他又和始邊重合時,所成的角叫做周角。③從一個角的頂點引出的一條射線,把這個角分成兩個相等的角,這條射線叫做這個角的平分線。
平行:①同一平面內(nèi),不相交的兩條直線叫做平行線。②經(jīng)過直線外一點,有且只有一條直線與這條直線平行。③如果兩條直線都與第3條直線平行,那么這兩條直線互相平行。
垂直:①如果兩條直線相交成直角,那么這兩條直線互相垂直。②互相垂直的兩條直線的交點叫做垂足。③平面內(nèi),過一點有且只有一條直線與已知直線垂直。
垂直平分線:垂直和平分一條線段的直線叫垂直平分線。
垂直平分線垂直平分的一定是線段,不能是射線或直線,這根據(jù)射線和直線可以無限延長有關(guān),再看后面的,垂直平分線是一條直線,所以在畫垂直平分線的時候,確定了2點后(關(guān)于畫法,后面會講)一定要把線段穿出2點。
垂直平分線定理:
性質(zhì)定理:在垂直平分線上的點到該線段兩端點的距離相等;
判定定理:到線段2端點距離相等的點在這線段的垂直平分線上
角平分線:把一個角平分的射線叫該角的角平分線。
定義中有幾個要點要注意一下的,就是角的角平分線是一條射線,不是線段也不是直線,很多時,在題目中會出現(xiàn)直線,這是角平分線的對稱軸才會用直線的,這也涉及到軌跡的問題,一個角個角平分線就是到角兩邊距離相等的點
性質(zhì)定理:角平分線上的點到該角兩邊的距離相等
判定定理:到角的兩邊距離相等的點在該角的角平分線上
正方形:一組鄰邊相等的矩形是正方形
性質(zhì):正方形具有平行四邊形、菱形、矩形的一切性質(zhì)
老人與海讀后感1000字13
1、變量與常量
在某一變化過程中,可以取不同數(shù)值的量叫做變量,數(shù)值保持不變的量叫做常量。
一般地,在某一變化過程中有兩個變量x與y,如果對于x的每一個值,y都有唯一確定的值與它對應(yīng),那么就說x是自變量,y是x的'函數(shù)。
2、函數(shù)解析式
用來表示函數(shù)關(guān)系的數(shù)學(xué)式子叫做函數(shù)解析式或函數(shù)關(guān)系式。
使函數(shù)有意義的自變量的取值的全體,叫做自變量的取值范圍。
3、函數(shù)的三種表示法及其優(yōu)缺點
(1)解析法
兩個變量間的函數(shù)關(guān)系,有時可以用一個含有這兩個變量及數(shù)字運算符號的等式表示,這種表示法叫做解析法。
。2)列表法
把自變量x的一系列值和函數(shù)y的對應(yīng)值列成一個表來表示函數(shù)關(guān)系,這種表示法叫做列表法。
。3)圖像法
用圖像表示函數(shù)關(guān)系的方法叫做圖像法。
4、由函數(shù)解析式畫其圖像的一般步驟
。1)列表:列表給出自變量與函數(shù)的一些對應(yīng)值。
(2)描點:以表中每對對應(yīng)值為坐標,在坐標平面內(nèi)描出相應(yīng)的點。
(3)連線:按照自變量由小到大的順序,把所描各點用平滑的曲線連接起來。
老人與海讀后感1000字14
1. 因式分把一個多項式化為幾個整式的積的形式,叫做把這個多項式因式分解;注意:因式分解與乘法是相反的兩個轉(zhuǎn)化.
2.因式分解的方法:常用“提取公因式法”、“公式法”、“分組分解法”、“十字相乘法”.
3.公因式的確定:系數(shù)的最大公約數(shù)?相同因式的最低次冪.
注意公式:a+b=b+a; a-b=-(b-a); (a-b)2=(b-a)2; (a-b)3=-(b-a)3.
4.因式分解的公式:
(1)平方差公式: a2-b2=(a+ b)(a- b);
(2)完全平方公式: a2+2ab+b2=(a+b)2, a2-2ab+b2=(a-b)2.
5.因式分解的注意事項:
(1)選擇因式分解方法的一般次序是:一 提取、二 公式、三 分組、四 十字;
(2)使用因式分解公式時要特別注意公式中的字母都具有整體性;
(3)因式分解的最后結(jié)果要求分解到每一個因式都不能分解為止;
(4)因式分解的最后結(jié)果要求每一個因式的首項符號為正;
(5)因式分解的最后結(jié)果要求加以整理;
(6)因式分解的.最后結(jié)果要求相同因式寫成乘方的形式.
6.因式分解的解題技巧:(1)換位整理,加括號或去括號整理;(2)提負號;(3)全變號;(4)換元;(5)配方;(6)把相同的式子看作整體;(7)靈活分組;(8)提取分數(shù)系數(shù);(9)展開部分括號或全部括號;(10)拆項或補項.
7.完全平方式:能化為(m+n)2的多項式叫完全平方式;對于二次三項式x2+px+q, 有“ x2+px+q是完全平方式 ? ”.
老人與海讀后感1000字15
第一章二次根式
1二次根式:形如()的式子為二次根式;
性質(zhì):()是一個非負數(shù);
2二次根式的乘除:;
3二次根式的加減:二次根式加減時,先將二次根式華為最簡二次根式,再將被開方數(shù)相同的二次根式進行合并。
4海倫—秦九韶公式:,S是三角形的面積,p為。
第二章一元二次方程
1一元二次方程:等號兩邊都是整式,且只有一個未知數(shù),未知數(shù)的最高次是2的方程。
2一元二次方程的解法
配方法:將方程的一邊配成完全平方式,然后兩邊開方;
公式法:
因式分解法:左邊是兩個因式的乘積,右邊為零。
3一元二次方程在實際問題中的應(yīng)用
4韋達定理:設(shè)是方程的兩個根,那么有
第三章旋轉(zhuǎn)
1圖形的旋轉(zhuǎn)
旋轉(zhuǎn):一個圖形繞某一點轉(zhuǎn)動一個角度的圖形變換
性質(zhì):對應(yīng)點到旋轉(zhuǎn)中心的距離相等;
對應(yīng)點與旋轉(zhuǎn)中心所連的線段的夾角等于旋轉(zhuǎn)角
旋轉(zhuǎn)前后的圖形全等。
2中心對稱:一個圖形繞一個點旋轉(zhuǎn)180度,和另一個圖形重合,則兩個圖形關(guān)于這個點中心對稱;
中心對稱圖形:一個圖形繞某一點旋轉(zhuǎn)180度后得到的圖形能夠和原來的圖形重合,則說這個圖形是中心對稱圖形;
3關(guān)于原點對稱的點的坐標
第四章圓
1圓、圓心、半徑、直徑、圓弧、弦、半圓的定義
2垂直于弦的直徑
圓是軸對稱圖形,任何一條直徑所在的直線都是它的對稱軸;
垂直于弦的直徑平分弦,并且平方弦所對的兩條;
平分弦的直徑垂直弦,并且平分弦所對的兩條弧。
3弧、弦、圓心角
在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦也相等。
4圓周角
在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半;
半圓(或直徑)所對的圓周角是直角,90度的圓周角所對的弦是直徑。
5點和圓的位置關(guān)系
點在圓外
點在圓上d=r
點在圓內(nèi)d
定理:不在同一條直線上的三個點確定一個圓。
三角形的外接圓:經(jīng)過三角形的三個頂點的圓,外接圓的圓心是三角形的三條邊的垂直平分線的交點,叫做三角形的外心。
6直線和圓的位置關(guān)系
相交d
相切d=r
相離d>r
切線的性質(zhì)定理:圓的切線垂直于過切點的半徑;
切線的判定定理:經(jīng)過圓的外端并且垂直于這條半徑的直線是圓的切線;
切線長定理:從圓外一點引圓的兩條切線,它們的切線長相等,這一點和圓心的連線平分兩條切線的夾角。
三角形的內(nèi)切圓:和三角形各邊都相切的圓為它的內(nèi)切圓,圓心是三角形的`三條角平分線的交點,為三角形的內(nèi)心。
7圓和圓的位置關(guān)系
外離d>R+r
外切d=R+r
相交R—r
內(nèi)切d=R—r
內(nèi)含d
8正多邊形和圓
正多邊形的中心:外接圓的圓心
正多邊形的半徑:外接圓的半徑
正多邊形的中心角:沒邊所對的圓心角
正多邊形的邊心距:中心到一邊的距離
9弧長和扇形面積
扇形面積:
10圓錐的側(cè)面積和全面積
側(cè)面積:
全面積
11(附加)相交弦定理、切割線定理
第五章概率初步
1概率意義:在大量重復(fù)試驗中,事件A發(fā)生的頻率穩(wěn)定在某個常數(shù)p附近,則常數(shù)p叫做事件A的概率。
2用列舉法求概率
一般的,在一次試驗中,有n中可能的結(jié)果,并且它們發(fā)生的概率相等,事件A包含其中的m中結(jié)果,那么事件A發(fā)生的概率就是p(A)=
3用頻率去估計概率
第六章二次函數(shù)
1二次函數(shù)=
a>0,開口向上;a<0,開口向下;
對稱軸:;
頂點坐標:;
圖像的平移可以參照頂點的平移。
2用函數(shù)觀點看一元二次方程
3二次函數(shù)與實際問題
第七章相似
1圖形的相似
相似多邊形的對應(yīng)邊的比值相等,對應(yīng)角相等;
兩個多邊形的對應(yīng)角相等,對應(yīng)邊的比值也相等,那么這兩個多邊形相似;
相似比:相似多邊形對應(yīng)邊的比值。
2相似三角形
判定:
平行于三角形一邊的直線和其它兩邊相交,所構(gòu)成的三角形和原三角形相似;
如果兩個三角形的三組對應(yīng)邊的比相等,那么這兩個三角形相似;
如果兩個三角形的兩組對應(yīng)邊的比相等,并且相應(yīng)的夾角相等,那么兩個三角形相似;
如果一個三角形的兩個角與另一個三角形的兩個角對應(yīng)相等,那么兩個三角形相似。
3相似三角形的周長和面積
相似三角形(多邊形)的周長的比等于相似比;
相似三角形(多邊形)的面積的比等于相似比的平方。
4位似
位似圖形:兩個多邊形相似,而且對應(yīng)頂點的連線相交于一點,對應(yīng)邊互相平行,這樣的兩個圖形叫位似圖形,相交的點叫位似中心。
第八章銳角三角函數(shù)
1銳角三角函數(shù):正弦、余弦、正切;
2解直角三角形
第九章投影和視圖
1投影:平行投影、中心投影、正投影
2三視圖:俯視圖、主視圖、左視圖。
3三視圖的畫法
初三數(shù)學(xué)知識點都知道,但題就做不出來?
壓軸題一定要做到每天一個,一開始可能會覺得很難,一個提一個小時也做不完,慢慢會好的。
去書店買一些全國各省市的中考卷來做。有一些簡單的題就可以直接過掉。注意要做選擇題和填空題的倒數(shù)兩個題,大題第一題,倒數(shù)第一、二題,對于書中的知識點不要死背,要注意每個定理的推導(dǎo)過程,推導(dǎo)思路。
其實所謂的難題壓軸題,就是在一個題中反映了多個知識點,在做自己買的套卷的壓軸題時對于一個問如果想了15分鐘還沒有答案就可以大略地看一下答案,想通后就就進下一題,明天再自己做這題。這樣會提高很快,做的題多了你對題目的熟練程度就提高了,做題的速度也會提高正確率也會提高,對于自己拿手的題就不必多費時間去做了,那是在浪費自己的時間,要把時間用在刀刃上,做自己錯的多的題!
【老人與海讀后感1000字】相關(guān)文章:
老人與海讀書心得 讀書心得《老人與海》09-20
《老人與海鷗》讀后感10-07
《老人與!返淖x后感10-06
老人與海讀后感09-28
老人與海讀后感07-28
《老人與海鷗》讀后感10-19
《老人與!纷x后感06-15
《老人與!返淖x后感02-11
[經(jīng)典]老人與海讀后感03-30
《老人與!纷x后感07-12