成大在线免费视频,亚洲精品免费一级视频,日韩亚洲欧美大陆,又黄又爽免费国产视频

<style id="t465f"></style>
<legend id="t465f"><u id="t465f"><thead id="t465f"></thead></u></legend>

<acronym id="t465f"></acronym>

<sub id="t465f"><ol id="t465f"><nobr id="t465f"></nobr></ol></sub>
<sub id="t465f"></sub>

初中數學知識點總結

時間:2025-07-14 17:57:02 總結 投訴 投稿

初中數學知識點總結【必備20篇】

  總結是在一段時間內對學習和工作生活等表現(xiàn)加以總結和概括的一種書面材料,它可以給我們下一階段的學習和工作生活做指導,讓我們好好寫一份總結吧。那么總結要注意有什么內容呢?以下是小編為大家收集的初中數學知識點總結【必備20篇】,僅供參考,歡迎大家閱讀。

初中數學知識點總結【必備20篇】

  初中數學知識點總結1

  第一章有理數

  一、正數和負數

 、闭龜岛拓摂档母拍

  負數:比0小的數正數:比0大的數0既不是正數,也不是負數

  注意:①字母a可以表示任意數,當a表示正數時,—a是負數;當a表示負數時,—a是正數;當a表示0時,—a仍是0。(如果出判斷題為:帶正號的數是正數,帶負號的數是負數,這種說法是錯誤的,例如+a,—a就不能做出簡單判斷)

 、谡龜涤袝r也可以在前面加“+”,有時“+”省略不寫。所以省略“+”的正數的符號是正號。

  2、具有相反意義的量

  若正數表示某種意義的量,則負數可以表示具有與該正數相反意義的量,比如:

  零上8℃表示為:+8℃;零下8℃表示為:—8℃

  支出與收入;增加與減少;盈利與虧損;北與南;東與西;漲與跌;增長與降低等等是相對相反量,它們計數:比原先多了的數,增加增長了的數一般記為正數;相反,比原先少了的數,減少降低了的數一般記為負數。 3.0表示的意義

 、0表示“沒有”,如教室里有0個人,就是說教室里沒有人;

 、0是正數和負數的分界線,0既不是正數,也不是負數。

  二、有理數

  1、有理數的概念

 、耪麛、0、負整數統(tǒng)稱為整數(0和正整數統(tǒng)稱為自然數)

 、普謹岛拓摲謹到y(tǒng)稱為分數

  ⑶正整數,0,負整數,正分數,負分數都可以寫成分數的形式,這樣的數稱為有理數。

  理解:只有能化成分數的數才是有理數。①π是無限不循環(huán)小數,不能寫成分數形式,不是有理數。②有限小數和無限循環(huán)小數都可化成分數,都是有理數。

  注意:引入負數以后,奇數和偶數的范圍也擴大了,像—2,—4,—6,—8?也是偶數,—1,—3,—5?也是奇數。

  2、(1)凡能寫成q(p,q為整數且p?0)形式的數,都是有理數。正整數、0、負整數統(tǒng)稱整數;正分數、負p

  分數統(tǒng)稱分數;整數和分數統(tǒng)稱有理數。注意:0即不是正數,也不是負數;—a不一定是負數,+a也不一定是正數;?不是有理數;

  學霸分享的數學復習技巧

  1、把答案蓋住看例題

  例題不能帶著答案去看,不然會認為自己就是這么,其實自己并沒有理解透徹。

  所以,在看例題時,把解答蓋住,自己去做,做完或做不出時再去看。這時要想一想,自己做的哪里與解答不同,哪里沒想到,該注意什么,哪一種方法更好,還有沒有另外的解法。

  經過上面的訓練,自己的思維空間擴展了,看問題也全面了。如果把題目徹底搞清了,在題后精煉幾個批注,說明此題的“題眼”及巧妙之處,收獲會更大。

  2、研究每題都考什么

  數學能力的提高離不開做題,“熟能生巧”這個簡單的道理大家都懂。但做題不是搞題海戰(zhàn)術,而是要通過一題聯(lián)想到很多題。

  3、錯一次反思一次

  每次業(yè)及考試或多或少會發(fā)生些錯誤,這并不可怕,要緊的是避免類似的錯誤再次重現(xiàn)。因此平時注意把錯題記下來。

  學生若能將每次考試或練習中出現(xiàn)的錯誤記錄下來分析,并盡力保證在下次考試時不發(fā)生同樣錯誤,那么以后人生中最重要的高考也就能避免犯錯了。

  4、分析試卷總結經驗

  每次考試結束試卷發(fā)下來,要認真分析得失,總結經驗教訓。特別是將試卷中出現(xiàn)的錯誤進行分類。

  數學解題方法分別有哪些

  1、配方法

  所謂的公式是使用變換解析方程的同構方法,并將其中的一些分配給一個或多個多項式正整數冪的和形式。通過配方解決數學問題的公式。其中,用的最多的是配成完全平方式。匹配方法是數學中不斷變形的重要方法,其應用非常廣泛,在分解,簡化根,它通常用于求解方程,證明方程和不等式,找到函數的極值和解析表達式。

  2、因式分解法

  因式分解是將多項式轉換為幾個積分產品的乘積。分解是恒定變形的基礎。除了引入中學教科書中介紹的公因子法,公式法,群體分解法,交叉乘法法等外,還有很多方法可以進行因式分解。還有一些項目,如拆除物品的使用,根分解,替換,未確定的系數等等。

  3、換元法

  替代方法是數學中一個非常重要和廣泛使用的解決問題的方法。我們通常稱未知或變元。用新的參數替換原始公式的一部分或重新構建原始公式可以更簡單,更容易解決。

  4、判別式法與韋達定理

  一元二次方程ax2+ bx+ c=0(a、 b、 c屬于R,a≠0)根的判別,= b2—4 ac,不僅用來確定根的性質,還作為一個問題解決方法,代數變形,求解方程(組),求解不等式,研究函數,甚至幾何以及三角函數都有非常廣泛的應用。

  韋達定理除了知道二次方程的根外,還找到另一根;考慮到兩個數的和和乘積的簡單應用并尋找這兩個數,也可以找到根的對稱函數并量化二次方程根的符號。求解對稱方程并解決一些與二次曲線有關的問題等,具有非常廣泛的應用。

  5、待定系數法

  在解決數學問題時,如果我們首先判斷我們所尋找的結果具有一定的形式,其中包含某些未決的系數,然后根據問題的條件列出未確定系數的方程,最后找到未確定系數的值或這些待定系數之間的關系。為了解決數學問題,這種問題解決方法被稱為待定系數法。它是中學數學中常用的方法之一。

  6、構造法

  在解決問題時,我們通常通過分析條件和結論來使用這些方法來構建輔助元素。它可以是一個圖表,一個方程(組),一個方程,一個函數,一個等價的命題等,架起連接條件和結論的橋梁。為了解決這個問題,這種解決問題的數學方法,我們稱之為構造方法。運用結構方法解決問題可以使代數,三角形,幾何等數學知識相互滲透,有助于解決問題。

  數學經常遇到的問題解答

  1、要提高數學成績首先要做什么?

  這一點,是很多學生所關注的,要提高數學成績,首先就應該從基礎知識學起。不少同學覺得基礎知識過于簡單,看兩遍基本上就都會了。這種“自我感覺良好”其實是一種錯覺,而真正考試時又覺得無從下手,這還是基礎不牢的表現(xiàn),因此要提高數學成績先要把基礎夯實。

  2、基礎不好怎么學好數學?

  對于基礎差的同學來說,課本是就是學好數學的秘籍,把課本上的定義、公式、定理全部弄懂,力爭在理解的'基礎上全部背熟,每一道例題、每一道課后題都要掌握。我們知道只有把公式、定理爛熟于心,才能舉一反三、活學活用,把課本的知識學透有兩個好處,第一,強化基礎;第二,提高得分能力。

  3、是否要采用題海戰(zhàn)術?

  方法君曾不止一次提到了“題海戰(zhàn)術”,題海戰(zhàn)術究竟可不可取呢?“題海戰(zhàn)術”其實也是一種學習方法,但很多學生只知道做題,不懂得總結,體現(xiàn)不出任何的學習效果。因此在做題后要總結至關重要,只有認真總結才能不斷積累做題經驗,這樣才能取得理想成績。

  4、做題總是粗心怎么辦?

  很多學生成績不好,會說自己是因為粗心導致的,其實“粗心”只是借口,真正的原因就是題做得少、基礎知識不牢、沒有清晰的解題思路、計算能力不強。因此在平時的學習中,一定要注重熟練度和精準度的練習。如果總是給自己找“粗心”的借口,也就變相否定了自己的學習弱點,所以,要告訴自己,高中數學沒有“粗心”只有“不用心”。

  為什么要學習數學

  作為一門普及度極廣的學科,數學在人類文明的發(fā)展史上一直占據著重要的地位。雖然很多人可能會對數學產生排斥,認為它枯燥無味,但事實上,數學是所有學科的基石之一,對我們日常生活以及未來的職業(yè)發(fā)展有著重大影響。下面我將詳細闡述學習數學的重要性。

  首先,數學可以幫助我們提高邏輯思維能力。數學的學科性質使我們在學習的過程中時時刻刻面臨著思考、推理、證明等諸多問題,而這些問題正是鍛煉我們邏輯思維的好機會。通過長期的學習和練習,我們的思維能力得到提升,可以更加清晰地分析問題,更快速地找到正確的答案。這對我們在工作和生活中都非常有幫助,尤其是在解決復雜問題時更能得心應手。

  其次,數學在現(xiàn)代科技中起著至關重要的作用。在計算機科學、物理學、經濟學、工程學等領域,數學可以幫助我們建立模型、分析數據、預測趨勢,并且可以在實際應用中優(yōu)化和改進。例如,在人工智能領域,深度學習技術所涉及的數學概念包括線性代數、微積分和概率論等,如果沒有深厚的數學基礎,很難理解和應用這些技術。同時,在工程學領域,許多機械、電子、化工等產品的設計和制造過程,也需要運用到數學知識,因此學習數學可以使我們更好地參與到現(xiàn)代科技的發(fā)展中。

  除此之外,數學也是一種普遍使用的語言,許多學科和領域都使用數學語言進行表達和交流。例如,在自然科學領域,生物學、化學、物理學等學科都使用數學語言來描述自然世界的規(guī)律和現(xiàn)象。在社會科學和商科領域,經濟學和金融學運用的數學概念,如微積分、線性代數和統(tǒng)計學等,使得我們能夠更好地理解經濟和財務數據,并進行決策。因此,學習數學可以讓我們更好地理解、溝通和交流各個領域的知識。

  最后,學習數學也可以為我們的職業(yè)發(fā)展帶來廣泛的機遇和發(fā)展空間。在許多領域,數學專業(yè)的畢業(yè)生都有很廣泛的就業(yè)機會,如金融界、數據科學、研究機構、教育等。數學專業(yè)的人才,不只會提供理論支持,同時也能夠解決現(xiàn)實中具體的問題,使其在各自領域脫穎而出。

  初中數學知識點總結2

  初中數學例題的知識點梳理

  有理數的加法運算:同號相加一邊倒;異號相加“大”減“小”,符號跟著大的跑;絕對值相等“零”正好!咀ⅰ俊按蟆睖p“小”是指絕對值的大小。

  合并同類項:合并同類項,法則不能忘,只求系數和,字母、指數不變樣。

  去、添括號法則:去括號、添括號,關鍵看符號,括號前面是正號,去、添括號不變號,括號前面是負號,去、添括號都變號。

  恒等變換:兩個數字來相減,互換位置最常見,正負只看其指數,奇數變號偶不變。(a—b)2n+1=—(b—a)2n+1(a—b)2n=(b—a)2n

  平方差公式:平方差公式有兩項,符號相反切記牢,首加尾乘首減尾,莫與完全公式相混淆。

  完全平方:完全平方有三項,首尾符號是同鄉(xiāng),首平方、尾平方,首尾二倍放中央;首±尾括號帶平方,尾項符號隨中央。

  因式分解:一提(公因式)二套(公式)三分組,細看幾項不離譜,兩項只用平方差,三項十字相乘法,陣法熟練不馬虎,四項仔細看清楚,若有三個平方數(項),就用一三來分組,否則二二去分組,五項、六項更多項,二三、三三試分組,以上若都行不通,拆項、添項看清楚。

  “代入”口決:挖去字母換上數(式),數字、字母都保留;換上分數或負數,給它帶上小括弧,原括弧內出(現(xiàn))括弧,逐級向下變括弧(小—中—大)

  單項式運算:加、減、乘、除、乘(開)方,三級運算分得清,系數進行同級(運)算,指數運算降級(進)行。

  一元一次不等式解題的一般步驟:去分母、去括號,移項時候要變號,同類項、合并好,再把系數來除掉,兩邊除(以)負數時,不等號改向別忘了。

  一元一次不等式組的解集:大大取較大,小小取較小,小大,大小取中間,大小,小大無處找。

  一元二次不等式、一元一次絕對值不等式的解集:大(魚)于(吃)取兩邊,。~)于(吃)取中間。

  分式混合運算法則:分式四則運算,順序乘除加減,乘除同級運算,除法符號須變(乘);乘法進行化簡,因式分解在先,分子分母相約,然后再行運算;加減分母需同,分母化積關鍵;找出最簡公分母,通分不是很難;變號必須兩處,結果要求最簡。

  分式方程的解法步驟:同乘最簡公分母,化成整式寫清楚,求得解后須驗根,原(根)留、增(根)舍別含糊。

  最簡根式的條件:最簡根式三條件,號內不把分母含,冪指(數)根指(數)要互質,冪指比根指小一點。

  特殊點坐標特征:坐標平面點(x,y),橫在前來縱在后;(+,+),(—,+),(—,—)和(+,—),四個象限分前后;X軸上y為0,x為0在Y軸。

  象限角的平分線:象限角的平分線,坐標特征有特點,一、三橫縱都相等,二、四橫縱確相反。

  平行某軸的直線:平行某軸的直線,點的坐標有講究,直線平行X軸,縱坐標相等橫不同;直線平行于Y軸,點的橫坐標仍照舊。

  對稱點坐標:對稱點坐標要記牢,相反數位置莫混淆,X軸對稱y相反,Y軸對稱,x前面添負號;原點對稱最好記,橫縱坐標變符號。

  自變量的取值范圍:分式分母不為零,偶次根下負不行;零次冪底數不為零,整式、奇次根全能行。

  函數圖像的移動規(guī)律:若把一次函數解析式寫成y=k(x+0)+b、二次函數的解析式寫成y=a(x+h)2+k的形式,則用下面后的口訣“左右平移在括號,上下平移在末稍,左正右負須牢記,上正下負錯不了”。

  一次函數圖像與性質口訣:一次函數是直線,圖像經過仨象限;正比例函數更簡單,經過原點一直線;兩個系數k與b,作用之大莫小看,k是斜率定夾角,b與Y軸來相見,k為正來右上斜,x增減y增減;k為負來左下展,變化規(guī)律正相反;k的絕對值越大,線離橫軸就越遠。

  二次函數圖像與性質口訣:二次函數拋物線,圖象對稱是關鍵;開口、頂點和交點,它們確定圖象現(xiàn);開口、大小由a斷,c與Y軸來相見,b的符號較特別,符號與a相關聯(lián);頂點位置先找見,Y軸作為參考線,左同右異中為0,牢記心中莫混亂;頂點坐標最重要,一般式配方它就現(xiàn),橫標即為對稱軸,縱標函數最值見。若求對稱軸位置,符號反,一般、頂點、交點式,不同表達能互換。

  反比例函數圖像與性質口訣:反比例函數有特點,雙曲線相背離的遠;k為正,圖在一、三(象)限,k為負,圖在二、四(象)限;圖在一、三函數減,兩個分支分別減。圖在二、四正相反,兩個分支分別添;線越長越近軸,永遠與軸不沾邊。

  巧記三角函數定義:初中所學的三角函數有正弦、余弦、正切、余切,它們實際是三角形邊的比值,可以把兩個字用/隔開,再用下面的一句話記定義:一位不高明的廚子教徒弟殺魚,說了這么一句話:正對魚磷(余鄰)直刀切。正:

  正弦或正切,對:對邊即正是對;余:余弦或余弦,鄰:鄰邊即余是鄰;切是直角邊。

  三角函數的增減性:正增余減。

  特殊三角函數值記憶:首先記住30度、45度、60度的正弦值、余弦值的分母都是2、正切、余切的分母都是3,分子記口訣“123,321,三九二十七”既可。

  數字巧記:=1.414(意思意思而已)=1.7321(三人一起商量)=2.236(吾量量山路)=2.449(糧食是酒)=2.645(二流是我)=2.828(二爸二爸)=3.16(山藥,六兩)

  平行四邊形的判定:要證平行四邊形,兩個條件才能行,一證對邊都相等,或證對邊都平行,一組對邊也可以,必須相等且平行。對角線,是個寶,互相平分“跑不了”,對角相等也有用,“兩組對角”才能成。

  梯形問題的輔助線:移動梯形對角線,兩腰之和成一線;平行移動一條腰,兩腰同在“△”現(xiàn);延長兩腰交一點,“△”中有平行線;作出梯形兩高線,矩形顯示在眼前;已知腰上一中線,莫忘作出中位線。

  添加輔助線歌:輔助線,怎么添?找出規(guī)律是關鍵,題中若有角(平)分線,可向兩邊作垂線;線段垂直平分線,引向兩端把線連,三角形邊兩中點,連接則成中位線;三角形中有中線,延長中線翻一番。

  圓的證明歌:圓的證明不算難,常把半徑直徑連;有弦可作弦心距,它定垂直平分弦;直徑是圓最大弦,直圓周角立上邊,它若垂直平分弦,垂徑、射影響耳邊;還有與圓有關角,勿忘相互有關聯(lián),圓周、圓心、弦切角,細找關系把線連。同弧圓周角相等,證題用它最多見,圓中若有弦切角,夾弧找到就好辦;圓有內接四邊形,對角互補記心間,外角等于內對角,四邊形定內接圓;直角相對或共弦,試試加個輔助圓;若是證題打轉轉,四點共圓可解難;要想證明圓切線,垂直半徑過外端,直線與圓有共點,證垂直來半徑連,直線與圓未給點,需證半徑作垂線;四邊形有內切圓,對邊和等是條件;如果遇到圓與圓,弄清位置很關鍵,兩圓相切作公切,兩圓相交連公弦。

  學霸分享的數學復習技巧

  1、把答案蓋住看例題

  例題不能帶著答案去看,不然會認為自己就是這么,其實自己并沒有理解透徹。

  所以,在看例題時,把解答蓋住,自己去做,做完或做不出時再去看。這時要想一想,自己做的哪里與解答不同,哪里沒想到,該注意什么,哪一種方法更好,還有沒有另外的解法。

  經過上面的訓練,自己的思維空間擴展了,看問題也全面了。如果把題目徹底搞清了,在題后精煉幾個批注,說明此題的“題眼”及巧妙之處,收獲會更大。

  2、研究每題都考什么

  數學能力的提高離不開做題,“熟能生巧”這個簡單的道理大家都懂。但做題不是搞題海戰(zhàn)術,而是要通過一題聯(lián)想到很多題。

  3、錯一次反思一次

  每次業(yè)及考試或多或少會發(fā)生些錯誤,這并不可怕,要緊的是避免類似的錯誤再次重現(xiàn)。因此平時注意把錯題記下來。

  學生若能將每次考試或練習中出現(xiàn)的錯誤記錄下來分析,并盡力保證在下次考試時不發(fā)生同樣錯誤,那么以后人生中最重要的高考也就能避免犯錯了。

  4、分析試卷總結經驗

  每次考試結束試卷發(fā)下來,要認真分析得失,總結經驗教訓。特別是將試卷中出現(xiàn)的錯誤進行分類。

  數學解題方法分別有哪些

  1、配方法

  所謂的公式是使用變換解析方程的同構方法,并將其中的一些分配給一個或多個多項式正整數冪的和形式。通過配方解決數學問題的公式。其中,用的最多的是配成完全平方式。匹配方法是數學中不斷變形的重要方法,其應用非常廣泛,在分解,簡化根,它通常用于求解方程,證明方程和不等式,找到函數的極值和解析表達式。

  2、因式分解法

  因式分解是將多項式轉換為幾個積分產品的乘積。分解是恒定變形的基礎。除了引入中學教科書中介紹的公因子法,公式法,群體分解法,交叉乘法法等外,還有很多方法可以進行因式分解。還有一些項目,如拆除物品的使用,根分解,替換,未確定的系數等等。

  3、換元法

  替代方法是數學中一個非常重要和廣泛使用的解決問題的方法。我們通常稱未知或變元。用新的參數替換原始公式的一部分或重新構建原始公式可以更簡單,更容易解決。

  4、判別式法與韋達定理

  一元二次方程ax2+ bx+ c=0(a、 b、 c屬于R,a≠0)根的判別,= b2—4 ac,不僅用來確定根的性質,還作為一個問題解決方法,代數變形,求解方程(組),求解不等式,研究函數,甚至幾何以及三角函數都有非常廣泛的應用。

  韋達定理除了知道二次方程的根外,還找到另一根;考慮到兩個數的和和乘積的簡單應用并尋找這兩個數,也可以找到根的對稱函數并量化二次方程根的符號。求解對稱方程并解決一些與二次曲線有關的問題等,具有非常廣泛的應用。

  5、待定系數法

  在解決數學問題時,如果我們首先判斷我們所尋找的`結果具有一定的形式,其中包含某些未決的系數,然后根據問題的條件列出未確定系數的方程,最后找到未確定系數的值或這些待定系數之間的關系。為了解決數學問題,這種問題解決方法被稱為待定系數法。它是中學數學中常用的方法之一。

  6、構造法

  在解決問題時,我們通常通過分析條件和結論來使用這些方法來構建輔助元素。它可以是一個圖表,一個方程(組),一個方程,一個函數,一個等價的命題等,架起連接條件和結論的橋梁。為了解決這個問題,這種解決問題的數學方法,我們稱之為構造方法。運用結構方法解決問題可以使代數,三角形,幾何等數學知識相互滲透,有助于解決問題。

  數學經常遇到的問題解答

  1、要提高數學成績首先要做什么?

  這一點,是很多學生所關注的,要提高數學成績,首先就應該從基礎知識學起。不少同學覺得基礎知識過于簡單,看兩遍基本上就都會了。這種“自我感覺良好”其實是一種錯覺,而真正考試時又覺得無從下手,這還是基礎不牢的表現(xiàn),因此要提高數學成績先要把基礎夯實。

  2、基礎不好怎么學好數學?

  對于基礎差的同學來說,課本是就是學好數學的秘籍,把課本上的定義、公式、定理全部弄懂,力爭在理解的基礎上全部背熟,每一道例題、每一道課后題都要掌握。我們知道只有把公式、定理爛熟于心,才能舉一反三、活學活用,把課本的知識學透有兩個好處,第一,強化基礎;第二,提高得分能力。

  3、是否要采用題海戰(zhàn)術?

  方法君曾不止一次提到了“題海戰(zhàn)術”,題海戰(zhàn)術究竟可不可取呢?“題海戰(zhàn)術”其實也是一種學習方法,但很多學生只知道做題,不懂得總結,體現(xiàn)不出任何的學習效果。因此在做題后要總結至關重要,只有認真總結才能不斷積累做題經驗,這樣才能取得理想成績。

  4、做題總是粗心怎么辦?

  很多學生成績不好,會說自己是因為粗心導致的,其實“粗心”只是借口,真正的原因就是題做得少、基礎知識不牢、沒有清晰的解題思路、計算能力不強。因此在平時的學習中,一定要注重熟練度和精準度的練習。如果總是給自己找“粗心”的借口,也就變相否定了自己的學習弱點,所以,要告訴自己,高中數學沒有“粗心”只有“不用心”。

  初中數學知識點總結3

  1、重心的定義:

  平面圖形中,幾何圖形的重心是當支撐或懸掛時圖形能在水平面處于平衡狀態(tài),此時的支撐點或者懸掛點叫做平衡點,也叫做重心。

  2、幾種幾何圖形的重心:

  ⑴線段的重心就是線段的中點;

  ⑵平行四邊形及特殊平行四邊形的重心是它的兩條對角線的交點;

 、侨切蔚娜龡l中線交于一點,這一點就是三角形的重心;

 、热我舛噙呅味加兄匦模远噙呅蔚娜我鈨蓚頂點作為懸掛點,把多邊形懸掛時,過這兩點鉛垂線的交點就是這個多邊形的重心。

  提示:⑴無論幾何圖形的形狀如何,重心都有且只有一個;

  ⑵從物理學角度看,幾何圖形在懸掛或支撐時,位于重心兩邊的力矩相同。

  3、常見圖形重心的性質:

 、啪段的重心把線段分為兩等份;

 、破叫兴倪呅蔚'重心把對角線分為兩等份;

 、侨切蔚闹匦陌阎芯分為1:2兩部分(重心到頂點距離占2份,重心到對邊中點距離占1份)。

  上面對重心知識點的鞏固學習,同學們都能熟練的掌握了吧,希望同學們很好的復習學習數學知識。

 、僦本和圓無公共點,稱相離。 AB與圓O相離,d>r。

 、谥本和圓有兩個公共點,稱相交,這條直線叫做圓的割線。AB與⊙O相交,d

  ③直線和圓有且只有一公共點,稱相切,這條直線叫做圓的切線,這個唯一的公共點叫做切點。AB與⊙O相切,d=r。(d為圓心到直線的距離)

  平面內,直線Ax+By+C=0與圓x^2+y^2+Dx+Ey+F=0的位置關系判斷一般方法是:

  1.由Ax+By+C=0,可得y=(-C-Ax)/B,(其中B不等于0),代入x^2+y^2+Dx+Ey+F=0,即成為一個關于x的方程

  如果b^2-4ac>0,則圓與直線有2交點,即圓與直線相交。

  如果b^2-4ac=0,則圓與直線有1交點,即圓與直線相切。

  如果b^2-4ac<0,則圓與直線有0交點,即圓與直線相離。

  2.如果B=0即直線為Ax+C=0,即x=-C/A,它平行于y軸(或垂直于x軸),將x^2+y^2+Dx+Ey+F=0化為(x-a)^2+(y-b)^2=r^2。令y=b,求出此時的兩個x值x1、x2,并且規(guī)定x1

  當x=-C/Ax2時,直線與圓相離;

  初中數學知識點總結4

  一、投影

  1、投影:一般地,用光線照射物體,在某個平面(地面、墻壁等)上得到的影子叫做物體的投影,照射光線叫做投影線,投影所在的平面叫做投影面。

  2、平行投影:由平行光線形成的投影是平行投影。(光源特別遠)

  3、中心投影:由同一點(點光源發(fā)出的光線)形成的投影叫做中心投影

  4、正投影:投影線垂直于投影面產生的投影叫做正投影。物體正投影的形狀、大小與它相對于投影面的位置有關。

  5、當物體的某個面平行于投影面時,這個面的正投影與這個面的形狀、大小完全相同。當物體的某個面頂斜于投影面時,這個面的正投影變小。當物體的某個面垂直于投影面時,這個面的正投影成為一條直線。

  二、三視圖

  1、三視圖:是觀測者從三個不同位置(正面、水平面、側面)觀察同一個空間幾何體而畫出的圖形。三視圖就是主視圖、俯視圖、左視圖的總稱。另外還有如剖面圖、半剖面圖等做為輔助,基本能完整的表達物體的結構。

  2、主視圖:在正面內得到的由前向后觀察物體的視圖。

  3、俯視圖:在水平面內得到的由上向下觀察物體的視圖。

  4、左視圖:在側面內得到的由左向右觀察物體的視圖。

  5、三個視圖的位置關系:

 、僦饕晥D在上、俯視圖在下、左視圖在右;

 、谥饕、俯視表示物體的長,主視、左視表示物體的'高,左視、俯視表示物體的寬。

 、壑饕、俯視長對正,主視、左視高平齊,左視、俯視寬相等。

  6、畫法:看得見的部分的輪廓線畫成實線,因被其它部分遮檔而看不見的部分的輪廓線畫成虛線。

  鄰補角:兩條直線相交所構成的四個角中,有公共頂點且有一條公共邊的兩個角是鄰補角。

  對頂角:一個角的兩邊分別是另一個叫的兩邊的反向延長線,像這樣的兩個角互為對頂角。

  垂線:兩條直線相交成直角時,叫做互相垂直,其中一條叫做另一條的垂線。

  平行線:在同一平面內,不相交的兩條直線叫做平行線。

  同位角、內錯角、同旁內角:

  同位角:∠1與∠5像這樣具有相同位置關系的一對角叫做同位角。

  內錯角:∠2與∠6像這樣的一對角叫做內錯角。

  同旁內角:∠2與∠5像這樣的一對角叫做同旁內角。

  命題:判斷一件事情的語句叫命題。

  平移:在平面內,將一個圖形沿某個方向移動一定的距離,圖形的這種移動叫做平移平移變換,簡稱平移。

  對應點:平移后得到的新圖形中每一點,都是由原圖形中的某一點移動后得到的,這樣的兩個點叫做對應點。

  初中數學知識點總結5

  一、在創(chuàng)新中培養(yǎng)學生的歸納意?R

  在初中數學教學中,重點是對學生的創(chuàng)新精神和實踐能力的培養(yǎng),體現(xiàn)出現(xiàn)代素質教育。學生創(chuàng)新能力的培養(yǎng)在學習中占據非常重要的作用,在創(chuàng)新中學生可以鞏固自身所學的知識,使數學知識在自己的頭腦中根深蒂固,各類知識點在學生的頭腦中形成清晰的框架,有助于學生歸納意識的培養(yǎng)。歸納意識的培養(yǎng),可以減輕學生的學習負擔,提升學生對知識的理解能力。

  初中生在學習數學的'環(huán)節(jié)中,常常會接觸到大量的圖像,在數學學習中,老師應該鼓勵學生大膽創(chuàng)新,在創(chuàng)新環(huán)節(jié)中完成對知識點的歸納。數學學習并不死板,不僅僅學習教科書上的知識,還應該學習書本以外的知識,從而創(chuàng)新自己的思維。例如在進行函數的學習中,老師可以讓學生繪制函數圖像,對函數進行分類討論,從而掌握遞增函數和遞減函數的定義,在分類討論后,學生結合圖像進行歸納。在數學教學中,老師不僅僅要重視書本上的邏輯內容,而且在把握邏輯內容的基礎上,將圖像和數學知識有機結合起來,使學生可以大膽創(chuàng)新。

  很多學生在數學學習中存在困難,認為數學的學習就是解答大量的難題,他們在大量的題海戰(zhàn)術后不善于歸納,導致數學學習的效率不高。

  二、在交流中歸納知識點

  在數學學習中,如果學生只是自己探究,那么在學習中不會得到靈感。數學學習不僅僅要求學生具有認真的鉆研態(tài)度,而且也需要老師幫助學生養(yǎng)成歸納的意識。溝通和交流不僅僅在語言的學習中發(fā)揮非常重要的作用,而且在數學學習中同樣非常重要。學生在解答數學問題中,常常會遇到一些問題,學生自己探究會陷入到死胡同中,需要老師和同學的幫助才能進一步完成。

  為了切實在初中數學教學中培養(yǎng)學生的歸納意識,老師可以將班級內的學生分成幾個不同的小組,組內的同學可以通過合作的方式,對知識點進行歸納,在數學的學習中更加變通,將數學這門學科應用到生活中。

  例如,在進行二次函數的學習中,老師可以將學生分成不同的小組,留給學生充足的時間,讓他們互相幫助,在溝通中對知識點進行歸納。學生很快就能得到結論,如果函數有兩個解,那么函數與數軸會有兩個交點,如果方程只有一個解,那么函數與數軸只有一個交點,如果方程沒有解,那么函數與數軸沒有交點。學生通過分組討論的方式得到結論,通過歸納,學生對二次函數知識點的印象非常深刻。

  三、學會正確歸納

  在數學學習中,歸納思想非常重要,數學這門學科的知識非常細碎,是一門系統(tǒng)性很強的學科。數學知識錯綜復雜,很多學生在學習數學中力不從心,掌握合理的歸納方式,可以切實提升學生的數學成績。初中生的思維還不是特別完善,在進行數學學習環(huán)節(jié)中,對知識點進行合理的歸納,是每位老師應該采取的方法。如果學生不懂得歸納,那么在數學考試中,學生會將知識點混淆。為了提升學生的歸納能力,老師在課堂上應該將一些容易混淆和容易出現(xiàn)錯誤的習題讓學生總結。

  例如,在學習圓和直線這部分內容中,老師都會將重點內容,圓和圓的位置關系,直線和圓的位置關系進行重點分析。老師可以借助一些參考書目和資料,總結一些相似的題目,讓學生在課堂上解答這些題目,使學生對這部分知識點進行總結,從而加深對這部分知識的理解。歸納思想在數學學習中應用非常多,在進行初中數學教學環(huán)節(jié)中,學生應該花更多的時間進行歸納。

  在進行初中數學的學習中,學生歸納意識的養(yǎng)成可以完善學生的數學思維,學生學會歸納,在學習中就會如魚得水,在考試中取得好成績。

  四、在反思中完成知識點的歸納

  初中數學知識點總結6

  平面直角坐標系

  下面是對平面直角坐標系的內容學習,希望同學們很好的掌握下面的內容。

  平面直角坐標系:

  在平面內畫兩條互相垂直、原點重合的數軸,組成平面直角坐標系。

  水平的數軸稱為x軸或橫軸,豎直的數軸稱為y軸或縱軸,兩坐標軸的交點為平面直角坐標系的原點。

  平面直角坐標系的要素:①在同一平面②兩條數軸③互相垂直④原點重合

  三個規(guī)定:

 、僬较虻囊(guī)定橫軸取向右為正方向,縱軸取向上為正方向

  ②單位長度的規(guī)定;一般情況,橫軸、縱軸單位長度相同;實際有時也可不同,但同一數軸上必須相同。

 、巯笙薜囊(guī)定:右上為第一象限、左上為第二象限、左下為第三象限、右下為第四象限。

  相信上面對平面直角坐標系知識的講解學習,同學們已經能很好的掌握了吧,希望同學們都能考試成功。

  初中數學知識點:平面直角坐標系的構成

  對于平面直角坐標系的構成內容,下面我們一起來學習哦。

  平面直角坐標系的構成

  在同一個平面上互相垂直且有公共原點的兩條數軸構成平面直角坐標系,簡稱為直角坐標系。通常,兩條數軸分別置于水平位置與鉛直位置,取向右與向上的方向分別為兩條數軸的正方向。水平的數軸叫做X軸或橫軸,鉛直的數軸叫做Y軸或縱軸,X軸或Y軸統(tǒng)稱為坐標軸,它們的公共原點O稱為直角坐標系的原點。

  通過上面對平面直角坐標系的構成知識的講解學習,希望同學們對上面的內容都能很好的掌握,同學們認真學習吧。

  初中數學知識點:點的坐標的性質

  下面是對數學中點的坐標的性質知識學習,同學們認真看看哦。

  點的`坐標的性質

  建立了平面直角坐標系后,對于坐標系平面內的任何一點,我們可以確定它的坐標。反過來,對于任何一個坐標,我們可以在坐標平面內確定它所表示的一個點。

  對于平面內任意一點C,過點C分別向X軸、Y軸作垂線,垂足在X軸、Y軸上的對應點a,b分別叫做點C的橫坐標、縱坐標,有序實數對(a,b)叫做點C的坐標。

  一個點在不同的象限或坐標軸上,點的坐標不一樣。

  希望上面對點的坐標的性質知識講解學習,同學們都能很好的掌握,相信同學們會在考試中取得優(yōu)異成績的。

  初中數學知識點:因式分解的一般步驟

  關于數學中因式分解的一般步驟內容學習,我們做下面的知識講解。

  因式分解的一般步驟

  如果多項式有公因式就先提公因式,沒有公因式的多項式就考慮運用公式法;若是四項或四項以上的多項式,

  通常采用分組分解法,最后運用十字相乘法分解因式。因此,可以概括為:“一提”、“二套”、“三分組”、“四十字”。

  注意:因式分解一定要分解到每一個因式都不能再分解為止,否則就是不完全的因式分解,若題目沒有明確指出在哪個范圍內因式分解,應該是指在有理數范圍內因式分解,因此分解因式的結果,必須是幾個整式的積的形式。

  相信上面對因式分解的一般步驟知識的內容講解學習,同學們已經能很好的掌握了吧,希望同學們會考出好成績。

  初中數學知識點:因式分解

  下面是對數學中因式分解內容的知識講解,希望同學們認真學習。

  因式分解定義

  把一個多項式化成幾個整式的積的形式的變形叫把這個多項式因式分解。

  因式分解要素

 、俳Y果必須是整式

 、诮Y果必須是積的形式

  ③結果是等式

 、芤蚴椒纸馀c整式乘法的關系:m(a+b+c)

  公因式:

  一個多項式每項都含有的公共的因式,叫做這個多項式各項的公因式。

  公因式確定方法

  ①系數是整數時取各項最大公約數。

 、谙嗤帜溉∽畹痛蝺

  ③系數最大公約數與相同字母取最低次冪的積就是這個多項式各項的公因式。

  提取公因式步驟:

 、俅_定公因式。

 、诖_定商式

  ③公因式與商式寫成積的形式。

  分解因式注意;

 、俨粶蕘G字母

 、诓粶蕘G常數項注意查項數

  ③雙重括號化成單括號

 、芙Y果按數單字母單項式多項式順序排列

  ⑤相同因式寫成冪的形式

 、奘醉椮撎柗爬ㄌ柾

  ⑦括號內同類項合并。

  通過上面對因式分解內容知識的講解學習,相信同學們已經能很好的掌握了吧,希望上面的內容給同學們的學習很好的幫助。

  初中數學知識點總結7

  1、圓是定點的距離等于定長的點的集合

  2、圓的內部可以看作是圓心的距離小于半徑的點的集合3、圓的外部可以看作是圓心的距離大于半徑的點的集合4、同圓或等圓的半徑相等

  5、到定點的距離等于定長的點的軌跡,是以定點為圓心,定長為半徑的圓6、和已知線段兩個端點的距離相等的點的軌跡,是著條線段的垂直平分線7、到已知角的兩邊距離相等的點的軌跡,是這個角的平分線

  8、到兩條平行線距離相等的點的軌跡,是和這兩條平行線平行且距離相等的一條直線

  9、定理不在同一直線上的三點確定一個圓。

  10、垂徑定理垂直于弦的直徑平分這條弦并且平分弦所對的兩條弧11、推論1:

  ①平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧②弦的垂直平分線經過圓心,并且平分弦所對的兩條弧

  ③平分弦所對的一條弧的直徑,垂直平分弦,并且平分弦所對的另一條弧12、推論2:圓的兩條平行弦所夾的弧相等13、圓是以圓心為對稱中心的中心對稱圖形

  14、定理:在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦的弦心距相等

  15、推論:在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對應的其余各組量都相等

  16、定理:一條弧所對的圓周角等于它所對的圓心角的一半

  17、推論:1同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等

  18、推論:2半圓(或直徑)所對的圓周角是直角;90°的圓周角所對的弦是直徑

  19、推論:3如果三角形一邊上的中線等于這邊的一半,那么這個三角形是直角三角形

  20、定理:圓的`內接四邊形的對角互補,并且任何一個外角都等于它的內對角

  21、①直線L和⊙O相交dr②直線L和⊙O相切d=r③直線L和⊙O相離dr

  22、切線的判定定理經過半徑的外端并且垂直于這條半徑的直線是圓的切線23、切線的性質定理圓的切線垂直于經過切點的半徑24、推論1經過圓心且垂直于切線的直線必經過切點25、推論2經過切點且垂直于切線的直線必經過圓心

  26、切線長定理:從圓外一點引圓的兩條切線,它們的切線長相等圓心和這一點的連線平分兩條切線的夾角

  27、圓的外切四邊形的兩組對邊的和相等

  28、弦切角定理:弦切角等于它所夾的弧對的圓周角

  29、推論:如果兩個弦切角所夾的弧相等,那么這兩個弦切角也相等30、相交弦定理:圓內的兩條相交弦,被交點分成的兩條線段長的積相等31、推論:如果弦與直徑垂直相交,那么弦的一半是它分直徑所成的兩條線段的比例中項

  32、切割線定理:從圓外一點引圓的切線和割線,切線長是這點到割線與圓交點的兩條線段長的比例中項

  33、推論:從圓外一點引圓的兩條割線,這一點到每條割線與圓的交點的兩條線段長的積相等

  34、如果兩個圓相切,那么切點一定在連心線上35、①兩圓外離dR+r②兩圓外切d=R+r

 、蹆蓤A相交R-rdR+r(Rr)④兩圓內切d=R-r(Rr)⑤兩圓內含dR-r(Rr)

  36、定理:相交兩圓的連心線垂直平分兩圓的公共弦37、定理:把圓分成n(n≥3):

 、乓来芜B結各分點所得的多邊形是這個圓的內接正n邊形

  ⑵經過各分點作圓的切線,以相鄰切線的交點為頂點的多邊形是這個圓的外切正n邊形

  38、定理:任何正多邊形都有一個外接圓和一個內切圓,這兩個圓是同心圓

  39、正n邊形的每個內角都等于(n-2)×180°/n40、定理:正n邊形的半徑和邊心距把正n邊形分成2n個全等的直角三角形

  41、正n邊形的面積Sn=pnrn/2p表示正n邊形的周長42、正三角形面積√3a/4a表示邊長

  43、如果在一個頂點周圍有k個正n邊形的角,由于這些角的和應為360°,因此k(n-2)180°/n=360°化為(n-2)(k-2)=444、弧長計算公式:L=n兀R/180

  45、扇形面積公式:S扇形=n兀R^2/360=LR/246、內公切線長=d-(R-r)外公切線長=d-(R+r)

  初中數學知識點總結8

  一、基本知識

 、、數與代數A、數與式:

  1、有理數

  有理數:

  ①整數→正整數/0/負整數

  ②分數→正分數/負分數

  數軸:

 、佼嬕粭l水平直線,在直線上取一點表示0(原點),選取某一長度作為單位長度,規(guī)定直線上向右的方

  向為正方向,就得到數軸。

  ②任何一個有理數都可以用數軸上的一個點來表示。

 、廴绻麅蓚數只有符號不同,那么我們稱其中一個數為另外一個數的相反數,也稱這兩個數互為相反數。在數軸上,表示互為相反數的兩個點,位于原點的兩側,并且與原點距離相等。

 、軘递S上兩個點表示的數,右邊的總比左邊的大。正數大于0,負數小于0,正數大于負數。

  絕對值:

 、僭跀递S上,一個數所對應的點與原點的距離叫做該數的絕對值。②正數的絕對值是他的本身、負數的

  絕對值是他的相反數、0的絕對值是0。兩個負數比較大小,絕對值大的反而小。

  有理數的運算:

  加法:

 、偻栂嗉,取相同的符號,把絕對值相加。

 、诋愄栂嗉,絕對值相等時和為0;絕對值不等時,取絕對值較大的數的符號,并用較大的絕對值減去較小的絕對值。

 、垡粋數與0相加不變。

  減法:減去一個數,等于加上這個數的相反數。

  乘法:①兩數相乘,同號得正,異號得負,絕對值相乘。

  ②任何數與0相乘得0。

  ③乘積為1的兩個有理數互為倒數。除法:①除以一個數等于乘以一個數的倒數。

 、0不能作除數。

  乘方:求N個相同因數A的積的運算叫做乘方,乘方的結果叫冪,A叫底數,N叫次數。混合順序:先算乘法,再算乘除,最后算加減,有括號要先算括號里的。2、實數

  無理數:無限不循環(huán)小數叫無理數

  平方根:

 、偃绻粋正數X的平方等于A,那么這個正數X就叫做A的算術平方根。

 、谌绻粋數X的平方等于A,那么這個數X就叫做A的平方根。③一個正數有2個平方根/0的平方根為0/負數沒有平方根。

 、芮笠粋數A的平方根運算,叫做開平方,其中A叫做被開方數。

  立方根:

 、偃绻粋數X的立方等于A,那么這個數X就叫做A的立方根。

 、谡龜档牧⒎礁钦龜、0的立方根是0、負數的立方根是負數。③求一個數A的立方根的運算叫開立方,其中A叫做被開方數。

  實數:

 、賹崝捣钟欣頂岛蜔o理數。

 、谠趯崝捣秶鷥龋喾磾担箶,絕對值的意義和有理數范圍內的相反數,倒數,絕對值的意義完全一樣。③每一個實數都可以在數軸上的一個點來表示。3、代數式

  代數式:單獨一個數或者一個字母也是代數式。

  合并同類項:①所含字母相同,并且相同字母的指數也相同的項,叫做同類項。

 、诎淹愴椇喜⒊梢豁椌徒凶龊喜⑼愴棥

  ③在合并同類項時,我們把同類項的系數相加,字母和字母的指數不變。

  4、整式與分式

  整式:①數與字母的乘積的代數式叫單項式,幾個單項式的和叫多項式,單項式和多項式統(tǒng)稱整式。

 、谝粋單項式中,所有字母的指數和叫做這個單項式的次數。③一個多項式中,次數最高的項的次數叫做這個多項式的次數。整式運算:加減運算時,如果遇到括號先去括號,再合并同類項。冪的運算:AM+AN=A(M+N)

  (AM)N=AMN

 。ˋ/B)N=AN/BN除法一樣。

  整式的乘法:①單項式與單項式相乘,把他們的系數,相同字母的冪分別相乘,其余字母連同他的指數不變,作

  為積的因式。

  ②單項式與多項式相乘,就是根據分配律用單項式去乘多項式的每一項,再把所得的積相加。③多項式與多項式相乘,先用一個多項式的每一項乘另外一個多項式的每一項,再把所得的積相加。

  公式兩條:平方差公式/完全平方公式

  整式的除法:①單項式相除,把系數,同底數冪分別相除后,作為商的因式;對于只在被除式里含有的字母,則

  連同他的指數一起作為商的一個因式。

 、诙囗検匠詥雾検剑劝堰@個多項式的每一項分別除以單項式,再把所得的商相加。

  分解因式:把一個多項式化成幾個整式的積的形式,這種變化叫做把這個多項式分解因式。方法:提公因式法、運用公式法、分組分解法、十字相乘法。

  分式:①整式A除以整式B,如果除式B中含有分母,那么這個就是分式,對于任何一個分式,分母不為0。

 、诜质降姆肿优c分母同乘以或除以同一個不等于0的整式,分式的值不變。分式的運算:

  乘法:把分子相乘的積作為積的分子,把分母相乘的積作為積的分母。除法:除以一個分式等于乘以這個分式的倒數。

  加減法:①同分母分式相加減,分母不變,把分子相加減。②異分母的分式先通分,化為同分母的分式,再加減。分式方程:①分母中含有未知數的方程叫分式方程。②使方程的分母為0的解稱為原方程的增根。B、方程與不等式1、方程與方程組

  一元一次方程:①在一個方程中,只含有一個未知數,并且未知數的指數是1,這樣的方程叫一元一次方程。

  ②等式兩邊同時加上或減去或乘以或除以(不為0)一個代數式,所得結果仍是等式。

  解一元一次方程的步驟:去分母,移項,合并同類項,未知數系數化為1。

  二元一次方程:含有兩個未知數,并且所含未知數的項的次數都是1的'方程叫做二元一次方程。二元一次方程組:兩個二元一次方程組成的方程組叫做二元一次方程組。適合一個二元一次方程的一組未知數的值,叫做這個二元一次方程的一個解。二元一次方程組中各個方程的公共解,叫做這個二元一次方程的解。解二元一次方程組的方法:代入消元法/加減消元法。

  一元二次方程:只有一個未知數,并且未知數的項的最高系數為2的方程1)一元二次方程的二次函數的關系

  大家已經學過二次函數(即拋物線)了,對他也有很深的了解,好像解法,在圖象中表示等等,其實一元二次方程也可以用二次函數來表示,其實一元二次方程也是二次函數的一個特殊情況,就是當Y的0的時候就構成了一元二次方程了。那如果在平面直角坐標系中表示出來,一元二次方程就是二次函數中,圖象與X軸的交點。也就是該方程的解了2)一元二次方程的解法

  大家知道,二次函數有頂點式(-b/2a,4ac-b2/4a),這大家要記住,很重要,因為在上面已經說過了,一元二次方程也是二次函數的一部分,所以他也有自己的一個解法,利用他可以求出所有的一元一次方程的解(1)配方法

  利用配方,使方程變?yōu)橥耆椒焦剑谟弥苯娱_平方法去求出解(2)分解因式法

  提取公因式,套用公式法,和十字相乘法。在解一元二次方程的時候也一樣,利用這點,把方程化為幾個乘積的

  形式去解(3)公式法

  這方法也可以是在解一元二次方程的萬能方法了,方程的根X1={-b+√[b2-4ac)]}/2a,X2={-b-√[b2-4ac)]}/2a3)解一元二次方程的步驟:(1)配方法的步驟:

  先把常數項移到方程的右邊,再把二次項的系數化為1,再同時加上1次項的系數的一半的平方,最后配成完全平方公式

  (2)分解因式法的步驟:

  把方程右邊化為0,然后看看是否能用提取公因式,公式法(這里指的是分解因式中的公式法)或十字相乘,如果可以,就可以化為乘積的形式(3)公式法

  就把一元二次方程的各系數分別代入,這里二次項的系數為a,一次項的系數為b,常數項的系數為c4)韋達定理

  利用韋達定理去了解,韋達定理就是在一元二次方程中,二根之和=-b/a,二根之積=c/a

  也可以表示為x1+x2=-b/a,x1x2=c/a。利用韋達定理,可以求出一元二次方程中的各系數,在題目中很常用5)一元一次方程根的情況

  利用根的判別式去了解,根的判別式可在書面上可以寫為“△”,讀作“diaota”,而△=b2-4ac,這里可以分為3種情況:

  I當△>0時,一元二次方程有2個不相等的實數根;II當△=0時,一元二次方程有2個相同的實數根;

  III當△B,A+C>B+C在不等式中,如果減去同一個數(或加上一個負數),不等式符號不改向;例如:A>B,A-C>B-C在不等式中,如果乘以同一個正數,不等號不改向;例如:A>B,A*C>B*C(C>0)在不等式中,如果乘以同一個負數,不等號改向;例如:A>B,A*C系內描出它的對應點,所有這些點組成的圖形叫做該函數的圖象。②正比例函數Y=KX的圖象是經過原點的一條直線。

  ③在一次函數中,當K〈0,B〈O,則經234象限;當K〈0,B〉0時,則經124象限;當K〉0,B〈0時,則經134象限;當K〉0,B〉0時,則經123象限。

 、墚擪〉0時,Y的值隨X值的增大而增大,當X〈0時,Y的值隨X值的增大而減少。

 、婵臻g與圖形A、圖形的認識1、點,線,面

  點,線,面:①圖形是由點,線,面構成的。

 、诿媾c面相交得線,線與線相交得點。③點動成線,線動成面,面動成體。

  展開與折疊:①在棱柱中,任何相鄰的兩個面的交線叫做棱,側棱是相鄰兩個側面的交線,棱柱的所有側棱長相

  等,棱柱的上下底面的形狀相同,側面的形狀都是長方體。②N棱柱就是底面圖形有N條邊的棱柱。

  截一個幾何體:用一個平面去截一個圖形,截出的面叫做截面。視圖:主視圖,左視圖,俯視圖。

  多邊形:他們是由一些不在同一條直線上的線段依次首尾相連組成的封閉圖形; ⑸刃危孩儆梢粭l弧和經過這條弧的端點的兩條半徑所組成的圖形叫扇形。

 、趫A可以分割成若干個扇形。

  2、角

  線:①線段有兩個端點。

 、趯⒕段向一個方向無限延長就形成了射線。射線只有一個端點。③將線段的兩端無限延長就形成了直線。直線沒有端點。④經過兩點有且只有一條直線。

  比較長短:①兩點之間的所有連線中,線段最短。

 、趦牲c之間線段的長度,叫做這兩點之間的距離。

  角的度量與表示:①角由兩條具有公共端點的射線組成,兩條射線的公共端點是這個角的頂點。

 、谝欢鹊1/60是一分,一分的1/60是一秒。

  角的比較:①角也可以看成是由一條射線繞著他的端點旋轉而成的。

 、谝粭l射線繞著他的端點旋轉,當終邊和始邊成一條直線時,所成的角叫做平角。始邊繼續(xù)旋轉,當他又和始邊重合時,所成的角叫做周角。

 、蹚囊粋角的頂點引出的一條射線,把這個角分成兩個相等的角,這條射線叫做這個角的平分線。

  平行:①同一平面內,不相交的兩條直線叫做平行線。

  ②經過直線外一點,有且只有一條直線與這條直線平行。

 、廴绻麅蓷l直線都與第3條直線平行,那么這兩條直線互相平行。垂直:①如果兩條直線相交成直角,那么這兩條直線互相垂直。

 、诨ハ啻怪钡膬蓷l直線的交點叫做垂足。

 、燮矫鎯,過一點有且只有一條直線與已知直線垂直。垂直平分線:垂直和平分一條線段的直線叫垂直平分線。

  垂直平分線垂直平分的一定是線段,不能是射線或直線,這根據射線和直線可以無限延長有關,再看后面的,垂直平分線是一條直線,所以在畫垂直平分線的時候,確定了2點后(關于畫法,后面會講)一定要把線段穿出2點。

  垂直平分線定理:

  性質定理:在垂直平分線上的點到該線段兩端點的距離相等;判定定理:到線段2端點距離相等的點在這線段的垂直平分線上角平分線:把一個角平分的射線叫該角的角平分線。

  定義中有幾個要點要注意一下的,就是角的角平分線是一條射線,不是線段也不是直線,很多時,在題目中會出

  現(xiàn)直線,這是角平分線的對稱軸才會用直線的,這也涉及到軌跡的問題,一個角個角平分線就是到角兩邊距離相等的點

  性質定理:角平分線上的點到該角兩邊的距離相等

  判定定理:到角的兩邊距離相等的點在該角的角平分線上正方形:一組鄰邊相等的矩形是正方形

  性質:正方形具有平行四邊形、菱形、矩形的一切性質判定:1、對角線相等的菱形2、鄰邊相等的矩形

  二、基本定理

  1、過兩點有且只有一條直線2、兩點之間線段最短

  3、同角或等角的補角相等4、同角或等角的余角相等

  5、過一點有且只有一條直線和已知直線垂直

  6、直線外一點與直線上各點連接的所有線段中,垂線段最短

  7、平行公理經過直線外一點,有且只有一條直線與這條直線平行8、如果兩條直線都和第三條直線平行,這兩條直線也互相平行9、同位角相等,兩直線平行10、內錯角相等,兩直線平行11、同旁內角互補,兩直線平行12、兩直線平行,同位角相等13、兩直線平行,內錯角相等14、兩直線平行,同旁內角互補

  15、定理三角形兩邊的和大于第三邊16、推論三角形兩邊的差小于第三邊

  17、三角形內角和定理三角形三個內角的和等于180°18、推論1直角三角形的兩個銳角互余

  19、推論2三角形的一個外角等于和它不相鄰的兩個內角的和20、推論3三角形的一個外角大于任何一個和它不相鄰的內角21、全等三角形的對應邊、對應角相等

  22、邊角邊公理(SAS)有兩邊和它們的夾角對應相等的兩個三角形全等23、角邊角公理(ASA)有兩角和它們的夾邊對應相等的兩個三角形全等24、推論(AAS)有兩角和其中一角的對邊對應相等的兩個三角形全等25、邊邊邊公理(SSS)有三邊對應相等的兩個三角形全等

  26、斜邊、直角邊公理(HL)有斜邊和一條直角邊對應相等的兩個直角三角形全等27、定理1在角的平分線上的點到這個角的兩邊的距離相等

  28、定理2到一個角的兩邊的距離相同的點,在這個角的平分線上29、角的平分線是到角的兩邊距離相等的所有點的集合

  30、等腰三角形的性質定理等腰三角形的兩個底角相等(即等邊對等角)31、推論1等腰三角形頂角的平分線平分底邊并且垂直于底邊

  32、等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合33、推論3等邊三角形的各角都相等,并且每一個角都等于60°

  34、等腰三角形的判定定理如果一個三角形有兩個角相等,那么這兩個角所對的邊也相等(等角對等邊)35、推論1三個角都相等的三角形是等邊三角形

  36、推論2有一個角等于60°的等腰三角形是等邊三角形

  37、在直角三角形中,如果一個銳角等于30°那么它所對的直角邊等于斜邊的一半38、直角三角形斜邊上的中線等于斜邊上的一半

  5

  39、定理線段垂直平分線上的點和這條線段兩個端點的距離相等

  40、逆定理和一條線段兩個端點距離相等的點,在這條線段的垂直平分線上41、線段的垂直平分線可看作和線段兩端點距離相等的所有點的集合42、定理1關于某條直線對稱的兩個圖形是全等形

  43、定理2如果兩個圖形關于某直線對稱,那么對稱軸是對應點連線的垂直平分線

  44、定理3兩個圖形關于某直線對稱,如果它們的對應線段或延長線相交,那么交點在對稱軸上45、逆定理如果兩個圖形的對應點連線被同一條直線垂直平分,那么這兩個圖形關于這條直線對稱46、勾股定理直角三角形兩直角邊a、b的平方和、等于斜邊c的平方,即a2+b2=c2

  47、勾股定理的逆定理如果三角形的三邊長a、b、c有關系a2+b2=c2,那么這個三角形是直角三角形48、定理四邊形的內角和等于360°49、四邊形的外角和等于360°

  50、多邊形內角和定理n邊形的內角的和等于(n-2)×180°51、推論任意多邊的外角和等于360°

  52、平行四邊形性質定理1平行四邊形的對角相等53、平行四邊形性質定理2平行四邊形的對邊相等54、推論夾在兩條平行線間的平行線段相等

  55、平行四邊形性質定理3平行四邊形的對角線互相平分

  56、平行四邊形判定定理1兩組對角分別相等的四邊形是平行四邊形57、平行四邊形判定定理2兩組對邊分別相等的四邊形是平行四邊形58、平行四邊形判定定理3對角線互相平分的四邊形是平行四邊形59、平行四邊形判定定理4一組對邊平行相等的四邊形是平行四邊形60、矩形性質定理1矩形的四個角都是直角61、矩形性質定理2矩形的對角線相等

  62、矩形判定定理1有三個角是直角的四邊形是矩形63、矩形判定定理2對角線相等的平行四邊形是矩形64、菱形性質定理1菱形的四條邊都相等

  65、菱形性質定理2菱形的對角線互相垂直,并且每一條對角線平分一組對角66、菱形面積=對角線乘積的一半,即S=(a×b)÷267、菱形判定定理1四邊都相等的四邊形是菱形

  68、菱形判定定理2對角線互相垂直的平行四邊形是菱形

  69、正方形性質定理1正方形的四個角都是直角,四條邊都相等

  70、正方形性質定理2正方形的兩條對角線相等,并且互相垂直平分,每條對角線平分一組對角71、定理1關于中心對稱的兩個圖形是全等的

  72、定理2關于中心對稱的兩個圖形,對稱點連線都經過對稱中心,并且被對稱中心平分

  73、逆定理如果兩個圖形的對應點連線都經過某一點,并且被這一點平分,那么這兩個圖形關于這一點對稱74、等腰梯形性質定理等腰梯形在同一底上的兩個角相等75、等腰梯形的兩條對角線相等

  76、等腰梯形判定定理在同一底上的兩個角相等的梯形是等腰梯形77、對角線相等的梯形是等腰梯形

  78、平行線等分線段定理如果一組平行線在一條直線上截得的線段相等,那么在其他直線上截得的線段也相等79、推論1經過梯形一腰的中點與底平行的直線,必平分另一腰

  80、推論2經過三角形一邊的中點與另一邊平行的直線,必平分第三邊81、三角形中位線定理三角形的中位線平行于第三邊,并且等于它的一半

  82、梯形中位線定理梯形的中位線平行于兩底,并且等于兩底和的一半L=(a+b)÷2S=L×h83、(1)比例的基本性質:如果a:b=c:d,那么ad=bc如果ad=bc,那么a:b=c:d84、(2)合比性質:如果a/b=c/d,那么(a±b)/b=(c±d)/d85、(3)等比性質:如果a/b=c/d==m/n(b+d++n≠0),

  那么(a+c++m)/(b+d++n)=a/b

  86、平行線分線段成比例定理三條平行線截兩條直線,所得的對應線段成比例87、推論平行于三角形一邊的直線截其他兩邊(或兩邊的延長線),所得的對應線段成比例

  88、定理如果一條直線截三角形的兩邊(或兩邊的延長線)所得的對應線段成比例,那么這條直線平行于三角形的第三邊

  89、平行于三角形的一邊,并且和其他兩邊相交的直線,所截得的三角形的三邊與原三角形三邊對應成比例90、定理平行于三角形一邊的直線和其他兩邊(或兩邊的延長線)相交,所構成的三角形與原三角形相似91、相似三角形判定定理1兩角對應相等,兩三角形相似(ASA)92、直角三角形被斜邊上的高分成的兩個直角三角形和原三角形相似93、判定定理2兩邊對應成比例且夾角相等,兩三角形相似(SAS)94、判定定理3三邊對應成比例,兩三角形相似(SSS)95、定理如果一個直角三角形的斜邊和一條直角邊與另一個直角三角形的斜邊和一條直角邊對應成比例,那么這兩個直角三角形相似

  96、性質定理1相似三角形對應高的比,對應中線的比與對應角平分線的比都等于相似比97、性質定理2相似三角形周長的比等于相似比

  98、性質定理3相似三角形面積的比等于相似比的平方

  99、任意銳角的正弦值等于它的余角的余弦值,任意銳角的余弦值等于它的余角的正弦值100、任意銳角的正切值等于它的余角的余切值,任意銳角的余切值等于它的余角的正切值101、圓是定點的距離等于定長的點的集合

  102、圓的內部可以看作是圓心的距離小于半徑的點的集合103、圓的外部可以看作是圓心的距離大于半徑的點的集合104、同圓或等圓的半徑相等

  105、到定點的距離等于定長的點的軌跡,是以定點為圓心,定長為半徑的圓106、和已知線段兩個端點的距離相等的點的軌跡,是著條線段的垂直平分線107、到已知角的兩邊距離相等的點的軌跡,是這個角的平分線

  108、到兩條平行線距離相等的點的軌跡,是和這兩條平行線平行且距離相等的一條直線109、定理不在同一直線上的三點確定一個圓。

  110、垂徑定理垂直于弦的直徑平分這條弦并且平分弦所對的兩條弧111、推論1

 、倨椒窒遥ú皇侵睆剑┑闹睆酱怪庇谙遥⑶移椒窒宜鶎Φ膬蓷l、谙业拇怪逼椒志經過圓心,并且平分弦所對的兩條弧

 、燮椒窒宜鶎Φ囊粭l弧的直徑,垂直平分弦,并且平分弦所對的另一條弧112、推論2圓的兩條平行弦所夾的弧相等113、圓是以圓心為對稱中心的中心對稱圖形

  114、定理在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦的弦心距相等

  115、推論在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對應的其余各組量都相等

  116、定理一條弧所對的圓周角等于它所對的圓心角的一半

  117、推論1同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等118、推論2半圓(或直徑)所對的圓周角是直角;90°的圓周角所對的弦是直徑

  119、推論3如果三角形一邊上的中線等于這邊的一半,那么這個三角形是直角三角形120、定理圓的內接四邊形的對角互補,并且任何一個外角都等于它的內對角121、①直線L和⊙O相交dr②直線L和⊙O相切d=r③直線L和⊙O相離dr

  122、切線的判定定理經過半徑的外端并且垂直于這條半徑的直線是圓的切線123、切線的性質定理圓的切線垂直于經過切點的半徑

  124、推論1經過圓心且垂直于切線的直線必經過切點125、推論2經過切點且垂直于切線的直線必經過圓心

  126、切線長定理從圓外一點引圓的兩條切線,它們的切線長相等圓心和這一點的連線平分兩條切線的夾角127、圓的外切四邊形的兩組對邊的和相等

  128、弦切角定理弦切角等于它所夾的弧對的圓周角

  129、推論如果兩個弦切角所夾的弧相等,那么這兩個弦切角也相等130、相交弦定理圓內的兩條相交弦,被交點分成的兩條線段長的積相等

  131、推論如果弦與直徑垂直相交,那么弦的一半是它分直徑所成的兩條線段的比例中項

  132、切割線定理從圓外一點引圓的切線和割線,切線長是這點到割線與圓交點的兩條線段長的比例中項133、推論從圓外一點引圓的兩條割線,這一點到每條割線與圓的交點的兩條線段長的積相等134、如果兩個圓相切,那么切點一定在連心線上

  135、①兩圓外離dR+r②兩圓外切d=R+r③兩圓相交R-rdR+r(Rr)

 、軆蓤A內切d=R-r(Rr)⑤兩圓內含dR-r(Rr)136、定理相交兩圓的連心線垂直平分兩圓的公共弦137、定理把圓分成n(n≥3):

  ⑴依次連結各分點所得的多邊形是這個圓的內接正n邊形

 、平涍^各分點作圓的切線,以相鄰切線的交點為頂點的多邊形是這個圓的外切正n邊形138、定理任何正多邊形都有一個外接圓和一個內切圓,這兩個圓是同心圓139、正n邊形的每個內角都等于(n-2)×180°/n

  140、定理正n邊形的半徑和邊心距把正n邊形分成2n個全等的直角三角形141、正n邊形的面積Sn=pnrn/2p表示正n邊形的周長142、正三角形面積√3a/4a表示邊長

  143、如果在一個頂點周圍有k個正n邊形的角,由于這些角的和應為360°,因此k×(n-2)180°/n=360°化為(n-2)(k-2)=4

  144、弧長計算公式:L=n兀R/180

  145、扇形面積公式:S扇形=n兀R^2/360=LR/2146、內公切線長=d-(R-r)外公切線長=d-(R+r)

  一、常用數學公式

  公式分類公式表達式乘法與因式分解a2-b2=(a+b)(a-b)a3+b3=(a+b)(a2-ab+b2)a3-b3=(a-b(a2+ab+b2)

  三角不等式|a+b|≤|a|+|b||a-b|≤|a|+|b|

  |a|≤b-b≤a≤b|a-b|≥|a|-|b|-|a|≤a≤|a|

  一元二次方程的解-b+√(b2-4ac)/2a-b-√(b2-4ac)/2a

  根與系數的關系X1+X2=-b/aX1*X2=c/a注:韋達定理判別式

  b2-4ac=0注:方程有兩個相等的實根b2-4ac>0注:方程有兩個不等的實根

  b2-4ac歸謬是反證法的關鍵,導出矛盾的過程沒有固定的模式,但必須從反設出發(fā),否則推導將成為無源之水,無本之木。推理必須嚴謹。導出的矛盾有如下幾種類型:與已知條件矛盾;與已知的公理、定義、定理、公式矛盾;與反設矛盾;自相矛盾。8、面積法

  平面幾何中講的面積公式以及由面積公式推出的與面積計算有關的性質定理,不僅可用于計算面積,而且用它來證明平面幾何題有時會收到事半功倍的效果。運用面積關系來證明或計算平面幾何題的方法,稱為面積方法,它是幾何中的一種常用方法。

  用歸納法或分析法證明平面幾何題,其困難在添置輔助線。面積法的特點是把已知和未知各量用面積公式聯(lián)系起來,通過運算達到求證的結果。所以用面積法來解幾何題,幾何元素之間關系變成數量之間的關系,只需要計算,有時可以不添置補助線,即使需要添置輔助線,也很容易考慮到。9、幾何變換法

  在數學問題的研究中,常常運用變換法,把復雜性問題轉化為簡單性的問題而得到解決。所謂變換是一個集合的任一元素到同一集合的元素的一個一一映射。中學數學中所涉及的變換主要是初等變換。有一些看來很難甚至于無法下手的習題,可以借助幾何變換法,化繁為簡,化難為易。另一方面,也可將變換的觀點滲透到中學數學教學中。將圖形從相等靜止條件下的研究和運動中的研究結合起來,有利于對圖形本質的認識。幾何變換包括:(1)平移;(2)旋轉;(3)對稱。10、客觀性題的解題方法

  選擇題是給出條件和結論,要求根據一定的關系找出正確答案的一類題型。選擇題的題型構思精巧,形式靈活,可以比較全面地考察學生的基礎知識和基本技能,從而增大了試卷的容量和知識覆蓋面。

  填空題是標準化考試的重要題型之一,它同選擇題一樣具有考查目標明確,知識復蓋面廣,評卷準確迅速,有利于考查學生的分析判斷能力和計算能力等優(yōu)點,不同的是填空題未給出答案,可以防止學生猜估答案的情況。要想迅速、正確地解選擇題、填空題,除了具有準確的計算、嚴密的推理外,還要有解選擇題、填空題的方法與技巧。下面通過實例介紹常用方法。

 。1)直接推演法:直接從命題給出的條件出發(fā),運用概念、公式、定理等進行推理或運算,得出結論,選擇正確答案,這就是傳統(tǒng)的解題方法,這種解法叫直接推演法。

 。2)驗證法:由題設找出合適的驗證條件,再通過驗證,找出正確答案,亦可將供選擇的答案代入條件中去驗證,找出正確答案,此法稱為驗證法(也稱代入法)。當遇到定量命題時,常用此法。

 。3)特殊元素法:用合適的特殊元素(如數或圖形)代入題設條件或結論中去,從而獲得解答。這種方法叫特殊元素法。

  (4)排除、篩選法:對于正確答案有且只有一個的選擇題,根據數學知識或推理、演算,把不正確的結論排除,余下的結論再經篩選,從而作出正確的結論的解法叫排除、篩選法。

  (5)圖解法:借助于符合題設條件的圖形或圖象的性質、特點來判斷,作出正確的選擇稱為圖解法。圖解法是解選擇題常用方法之一。

  (6)分析法:直接通過對選擇題的條件和結論,作詳盡的分析、歸納和判斷,從而選出正確的結果,為分析法。

  初中數學知識點總結9

  本章內容通過讓學生經歷觀察、操作等過程了解旋轉的概念,探索旋轉的性質,進一步發(fā)展空間觀察,培養(yǎng)幾何思維和審美意識,在實際問題中體驗數學的快樂,激發(fā)對學習學習。

  一.知識框架

  二.知識概念

  1.旋轉:在平面內,將一個圖形繞一個圖形按某個方向轉動一個角度,這樣的運動叫做圖形的旋轉。這個定點叫做旋轉中心,轉動的角度叫做旋轉角。(圖形的旋轉是圖形上的每一點在平面上繞著某個固定點旋轉固定角度的位置移動,其中對應點到旋轉中心的距離相等,對應線段的長度、對應角的大小相等,旋轉前后圖形的大小和形狀沒有改變。)

  2.旋轉對稱中心:把一個圖形繞著一個定點旋轉一個角度后,與初始圖形重合,這種圖形叫做旋轉對稱圖形,這個定點叫做旋轉對稱中心,旋轉的角度叫做旋轉角(旋轉角小于0°,大于360°)。

  3.中心對稱和中心對稱圖形是兩個不同而又緊密聯(lián)系的概念.區(qū)別是:中心對稱是指兩個全等圖形之間的相互位置關系,這兩個圖形關于一點對稱,這個點是對稱中心,兩個圖形關于點的對稱也叫做中心對稱.成中心對稱的兩個圖形中,其中一個上所有點關于對稱中心的對稱點都在另一個圖形上,反之,另一個圖形上所有點的對稱點,又都在這個圖形上;而中心對稱圖形是指一個圖形本身成中心對稱.中心對稱圖形上所有點關于對稱中心的對稱點都在這個圖形本身上.如果將中心對稱的.兩個圖形看成一個整體(一個圖形),那么這個圖形就是中心對稱圖形;一個中心對稱圖形,如果把對稱的部分看成是兩個圖形,那么它們又是關于中心對稱.

  4.中心對稱圖形與中心對稱:

  中心對稱圖形:如果把一個圖形繞著某一點旋轉180度后能與自身重合,那么我們就說,這個圖形成中心對稱圖形。

  中心對稱:如果把一個圖形繞著某一點旋轉180度后能與另一個圖形重合,那么我們就說,這兩個圖形成中心對稱。

  5.把一個圖形繞著某一點旋轉180°,如果它能與另一個圖形重合,那么就說這兩個圖形關于這個點對稱或中心對稱(centralsymmetry),這個點叫做對稱中心,這兩個圖形的對應點叫做關于中心的對稱點。

  6.中心對稱的性質:

  關于中心對稱的兩個圖形是全等形。

  關于中心對稱的兩個圖形,對稱點連線都經過對稱中心,并且被對稱中心平分。關于中心對稱的兩個圖形,對應線段平行(或者在同一直線上)且相等。

  初中數學知識點總結10

  一、平移變換:

  1。概念:在平面內,將一個圖形沿著某個方向移動一定的距離,這樣的圖形運動叫做平移。

  2。性質:(1)平移前后圖形全等;

  (2)對應點連線平行或在同一直線上且相等。

  3。平移的作圖步驟和方法:

  (1)分清題目要求,確定平移的方向和平移的距離;

  (2)分析所作的圖形,找出構成圖形的關健點;

 。3)沿一定的方向,按一定的距離平移各個關健點;

 。4)連接所作的各個關鍵點,并標上相應的字母;

  (5)寫出結論。

  二、旋轉變換:

  1。概念:在平面內,將一個圖形繞一個定點沿某個方向轉動一個角度,這樣的`圖形運動叫做旋轉。

  說明:

 。1)圖形的旋轉是由旋轉中心和旋轉的角度所決定的;

 。2)旋轉過程中旋轉中心始終保持不動。

 。3)旋轉過程中旋轉的方向是相同的。

 。4)旋轉過程靜止時,圖形上一個點的旋轉角度是一樣的。⑤旋轉不改變圖形的大小和形狀。

  2。性質:

 。1)對應點到旋轉中心的距離相等;

 。2)對應點與旋轉中心所連線段的夾角等于旋轉角;

 。3)旋轉前、后的圖形全等。

  3。旋轉作圖的步驟和方法:

 。1)確定旋轉中心及旋轉方向、旋轉角;

 。2)找出圖形的關鍵點;

 。3)將圖形的關鍵點和旋轉中心連接起來,然后按旋轉方向分別將它們旋轉一個旋轉角度數,得到這些關鍵點的對應點;

  (4)按原圖形順次連接這些對應點,所得到的圖形就是旋轉后的圖形。

  說明:在旋轉作圖時,一對對應點與旋轉中心的夾角即為旋轉角。

  常見考法

 。1)把平移旋轉結合起來證明三角形全等;

  (2)利用平移變換與旋轉變換的性質,設計一些題目。

  誤區(qū)提醒

  (1)弄反了坐標平移的上加下減,左減右加的規(guī)律;

 。2)平移與旋轉的性質沒有掌握。

  初中數學知識點總結11

  一、初中數學基本概念

  1.方程:含有未知數的等式叫做方程。

  2.一元一次方程:只含有一個未知數,并且未知數的次數是1,并且含未知數項的系數不是零的整式方程是一元一次方程。

  3.二元一次方程:含有兩個未知數,并且未知數的次數是1的二元一次方程。

  4.二元一次方程組:由兩個二元一次方程組成的方程組。

  5.一元二次方程:含有一個未知數,并且未知數的最高次數是2的整式方程。

  6.一元二次方程的解:使一元二次方程左右兩邊相等的未知數的值。

  7.一元二次方程的根:一元二次方程的解。

  8.一元二次方程的.判別式:當a是正數時,如果一元二次方程左右兩邊相等時,那么這個一元二次方程有兩個不相等的實數根;當a是負數時,如果一元二次方程左右兩邊相等時,那么這個一元二次方程沒有實數根;當a是零時,如果一元二次方程左右兩邊相等時,那么這個一元二次方程有兩個相等的實數根。

  9.函數:在某變化過程中有兩個變量x、y,如果對于x在某一范圍內的每一個確定的值,y都有唯一的值與它對應,那么稱y是x的函數,x叫做自變量。

  10.一次函數:在某個變化過程中有兩個變量x、y,如果對于x在某一范圍內的每一個確定的值,y都有唯一的值與它對應,那么稱y是x的一次函數。

  11.正比例函數:在某個變化過程中有兩個變量x、y,如果對于x在某一范圍內的每一個確定的值,y都有唯一的值與它對應,并且這個數值在比例上成正比,那么稱y是x的比例函數。

  12.反比例函數:在某個變化過程中有兩個變量x、y,如果對于x在某一范圍內的每一個確定的值,y都有唯一的值與它對應,并且這個數值在比例上成反比,那么稱y是x的反比例函數。

  13.平行四邊形:在同一個平面內兩組對角分別平行的四邊形叫做平行四邊形。

  14.矩形:有一個內角是直角的平行四邊形叫做矩形。

  15.菱形:有兩組鄰邊相等的平行四邊形叫做菱形。

  16.正方形:四邊相等的矩形叫做正方形。

  17.等腰梯形:兩條腰相等的梯形叫做等腰梯形。

  18.三角形:在同一個平面內由不在同一條直線上的三條線段首尾順次相接所組成的圖形叫做三角形。

  19.中線:連接一個頂點和它對邊的中點的線段叫做中線。

  20.高線:從三角形的一個頂點向它的對邊作垂線,垂足與頂點之間的線段叫做高線。

  21.角平分線:三角形的一個內角的平分線與它的對邊相交,這個角的頂點與交點之間的線段叫做角平分線。

  22.中位線:連接三角形兩邊中點的線段叫做中位線。

  23.軸對稱圖形:一條物體沿一條直線折疊后,直線兩旁的部分能夠互相重合,那么這個圖形叫做軸對稱圖形。

  24.直接開平方法:形如x2=p或者(nx+m)2=p(p≥0)的一元二次方程可采用直接開平方的方法解一元二次方程的方法。

  25.配方法:把一元二次方程的常數項移到方程的右邊,兩邊加上一次項系數的一半的平方,再用右邊的式子除以左邊的式子,得到一個平方的形式,再用直接開平方的方法求解一元二次方程的方法。

  26.公式法:用求根公式解一元二次方程的方法。

  27.因式分解法:將一元二次方程分解成兩個一次因式的積等于0的一元二次方程,然后將各個因式分解,得到一元一次方程,再用直接開方法求解一元一次方程的方法。

  二、初中數學基本運算

  1.整式:單項式和多項式的統(tǒng)稱。

  2.單項式:由數字和字母的積組成的代數式叫做單項式。單獨的一個數字或字母也叫做單項式。

  3.多項式:幾個單項式的和叫做多項式。每個單項式叫做多項式的項。其中不含字母的項叫做常數

  初中數學知識點總結12

  代數部分:有理數、無理數、實數整式、分式、二次根式一元一次方程、一元二次方程、二(三)元一次方程組、二元二次方程組、分式方程、一元一次不等式函數(一次函數、二次函數、反比例函數)

  幾何部分:線段、角相交線、平行線三角形、四邊形、相似形、圓。

  1、實數的分類

  有理數:整數(包括:正整數、0、負整數)和分數(包括:有限小數和無限環(huán)循小數)都是有理數。如:—3,0.231,0.737373......

  無理數:無限不環(huán)循小數叫做無理數如:π,—,0.1010010001......(兩個1之間依次多1個0)。

  實數:有理數和無理數統(tǒng)稱為實數。

  2、無理數

  在理解無理數時,要抓住"無限不循環(huán)"這一時之,它包含兩層意思:一是無限小數;二是不循環(huán)。二者缺一不可。歸納起來有四類:

 。1)開方開不盡的數,如等;

 。2)有特定意義的數,如圓周率π,或化簡后含有π的數,如+8等;

 。3)有特定結構的數,如0.1010010001......等;

  (4)某些三角函數,如sin60o等。

  注意:判斷一個實數的屬性(如有理數、無理數),應遵循:一化簡,二辨析,三判斷。要注意:"神似"或"形似"都不能作為判斷的標準。

  3、非負數:正實數與零的統(tǒng)稱。(表為:x≥0)

  常見的非負數有:

  性質:若干個非負數的和為0,則每個非負擔數均為0。

  4、數軸:規(guī)定了原點、正方向和單位長度的直線叫做數軸(畫數軸時,要注意上述規(guī)定的'三要素缺一不可)。

  解題時要真正掌握數形結合的思想,理解實數與數軸的點是一一對應的,并能靈活運用。

 、佼嬕粭l水平直線,在直線上取一點表示0(原點),選取某一長度作為單位長度,規(guī)定直線上向右的方向為正方向,就得到數軸("三要素")。

 、谌魏我粋有理數都可以用數軸上的一個點來表示。

 、廴绻麅蓚數只有符號不同,那么我們稱其中一個數為另外一個數的相反數,也稱這兩個數互為相反數。

  作用:A、直觀地比較實數的大;B、明確體現(xiàn)絕對值意義;C、建立點與實數的一一對應關系。

  5、相反數

  實數與它的相反數時一對數(只有符號不同的兩個數叫做互為相反數,零的相反數是零),從數軸上看,互為相反數的兩個數所對應的點關于原點對稱,如果a與b互為相反數,則有a+b=0,a=—b,反之亦成立。

  即:(1)實數的相反數是。

  初中數學知識點總結13

  1.不在同一直線上的三點確定一個圓。

  2.垂徑定理 垂直于弦的直徑平分這條弦并且平分弦所對的兩條弧

  推論1: ①平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧

 、谙业拇怪逼椒志經過圓心,并且平分弦所對的兩條弧 、燮椒窒宜鶎Φ囊粭l弧的直徑,垂直平分弦,并且平分弦所對的另一條弧

  推論2 :圓的兩條平行弦所夾的弧相等

  3.圓是以圓心為對稱中心的中心對稱圖形。

  4.圓是定點的距離等于定長的點的集合。

  5.圓的內部可以看作是圓心的距離小于半徑的點的集合。

  6.圓的外部可以看作是圓心的距離大于半徑的點的集合。

  7.同圓或等圓的半徑相等。

  8.到定點的距離等于定長的點的軌跡,是以定點為圓心,定長為半徑的圓。

  9.定理 在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦 相等,所對的弦的弦心距相等。

  10.推論 在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩 弦的弦心距中有一組量相等那么它們所對應的其余各組量都相等。

  11定理 圓的內接四邊形的對角互補,并且任何一個外角都等于它 的內對角。

  12.①直線L和⊙O相交 d 、谥本L和⊙O相切 d=r 、壑本L和⊙O相離 d>r

  13.切線的判定定理 經過半徑的外端并且垂直于這條半徑的直線是圓的切線。

  14.切線的性質定理 圓的切線垂直于經過切點的半徑。

  15.推論1 經過圓心且垂直于切線的直線必經過切點。

  16.推論2 經過切點且垂直于切線的直線必經過圓心。

  17.切線長定理 從圓外一點引圓的兩條切線,它們的切線長相等, 圓心和這一點的連線平分兩條切線的夾角。

  18.圓的外切四邊形的兩組對邊的和相等 外角等于內對角。

  19.如果兩個圓相切,那么切點一定在連心線上。

  20.①兩圓外離 d>R+r ②兩圓外切 d=R+r 、.兩圓相交 R-rr) 、.兩圓內切 d=R-r(R>r) ⑤兩圓內含dr)

  21.定理 相交兩圓的連心線垂直平分兩圓的公共弦。

  22.定理 把圓分成n(n≥3): 、乓来芜B結各分點所得的多邊形是這個圓的內接正n邊形 、平涍^各分點作圓的切線,以相鄰切線的交點為頂點的多邊形是這個圓的外切正n邊形。

  23.定理 任何正多邊形都有一個外接圓和一個內切圓,這兩個圓是同心圓。

  24.正n邊形的每個內角都等于(n-2)×180°/n。

  25.定理 正n邊形的半徑和邊心距把正n邊形分成2n個全等的直角三角形。

  26.正n邊形的面積Sn=pnrn/2 p表示正n邊形的周長。

  27.正三角形面積√3a/4 a表示邊長。

  28.如果在一個頂點周圍有k個正n邊形的角,由于這些角的和應為 360°,因此k×(n-2)180°/n=360°化為(n-2)(k-2)=4。

  29.弧長計算公式:L=n兀R/180。

  30.扇形面積公式:S扇形=n兀R^2/360=LR/2。

  31.內公切線長= d-(R-r) 外公切線長= d-(R+r)。

  32.定理 一條弧所對的圓周角等于它所對的圓心角的一半。

  33.推論1 同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等。

  34.推論2 半圓(或直徑)所對的圓周角是直角;90°的圓周角所 對的弦是直徑。

  35.弧長公式 l=a*r a是圓心角的弧度數r >0 扇形面積公式 s=1/2*l*r。

  1.直接法:根據選擇題的題設條件,通過計算、推理或判斷,最后得到題目的所求。

  2.特殊值法:(特殊值淘汰法)有些選擇題所涉及的數學命題與字母的取值范圍有關;

  在解這類選擇題時,可以考慮從取值范圍內選取某幾個特殊值,代入原命題進行驗證,然后淘汰錯誤的,保留正確的。

  3.淘汰法:把題目所給的四個結論逐一代回原題的題干中進行驗證,把錯誤的淘汰掉,直至找到正確的答案。

  4.逐步淘汰法:如果我們在計算或推導的過程中不是一步到位,而是逐步進行,既采用“走一走、瞧一瞧”的策略;

  每走一步都與四個結論比較一次,淘汰掉不可能的,這樣也許走不到最后一步,三個錯誤的`結論就被全部淘汰掉了。

  5.數形結合法:根據數學問題的條件和結論之間的內在聯(lián)系,既分析其代數含義,又揭示其幾何意義;

  使數量關系和圖形巧妙和諧地結合起來,并充分利用這種結合,尋求解題思路,使問題得到解決。

  常用的數學思想方法

  1.數形結合思想:就是根據數學問題的條件和結論之間的內在聯(lián)系,既分析其代數含義,又揭示其幾何意義;

  使數量關系和圖形巧妙和諧地結合起來,并充分利用這種結合,尋求解體思路,使問題得到解決。

  2.聯(lián)系與轉化的思想:事物之間是相互聯(lián)系、相互制約的,是可以相互轉化的。數學學科的各部分之間也是相互聯(lián)系,可以相互轉化的。

  在解題時,如果能恰當處理它們之間的相互轉化,往往可以化難為易,化繁為簡。

  如:代換轉化、已知與未知的轉化、特殊與一般的轉化、具體與抽象的轉化、部分與整體的轉化、動與靜的轉化等等。

  3.分類討論的思想:在數學中,我們常常需要根據研究對象性質的差異,分各種不同情況予以考查;

  這種分類思考的方法,是一種重要的數學思想方法,同時也是一種重要的解題策略。

  4.待定系數法:當我們所研究的數學式子具有某種特定形式時,要確定它,只要求出式子中待確定的字母得值就可以了。

  為此,把已知條件代入這個待定形式的式子中,往往會得到含待定字母的方程或方程組,然后解這個方程或方程組就使問題得到解決。

  5.配方法:就是把一個代數式設法構造成平方式,然后再進行所需要的變化。

  配方法是初中代數中重要的變形技巧,配方法在分解因式、解方程、討論二次函數等問題,都有重要的作用。

  6.換元法:在解題過程中,把某個或某些字母的式子作為一個整體,用一個新的字母表示,以便進一步解決問題的一種方法。

  換元法可以把一個較為復雜的式子化簡,把問題歸結為比原來更為基本的問題,從而達到化繁為簡,化難為易的目的。

  7.分析法:在研究或證明一個命題時,又結論向已知條件追溯,既從結論開始,推求它成立的充分條件,這個條件的成立還不顯然;

  則再把它當作結論,進一步研究它成立的充分條件,直至達到已知條件為止,從而使命題得到證明。這種思維過程通常稱為“執(zhí)果尋因”

  8.綜合法:在研究或證明命題時,如果推理的方向是從已知條件開始,逐步推導得到結論,這種思維過程通常稱為“由因導果”

  9.演繹法:由一般到特殊的推理方法。

  10.歸納法:由一般到特殊的推理方法。

  初中數學知識點總結14

  1.常量和變量

  在某變化過程中可以取不同數值的量,叫做變量.在某變化過程中保持同一數值的量或數,叫常量或常數.

  2.函數

  設在一個變化過程中有兩個變量x與y,如果對于x在某一范圍的每一個值,y都有唯一的值與它對應,那么就說x是自變量,y是x的函數.

  3.自變量的取值范圍

  (1)整式:自變量取一切實數.(2)分式:分母不為零.

  (3)偶次方根:被開方數為非負數.

  (4)零指數與負整數指數冪:底數不為零.

  4.函數值

  對于自變量在取值范圍內的一個確定的值,如當x=a時,函數有唯一確定的對應值,這個對應值,叫做x=a時的函數值.

  5.函數的表示法

  (1)解析法;(2)列表法;(3)圖象法.

  6.函數的圖象

  把自變量x的一個值和函數y的對應值分別作為點的橫坐標和縱坐標,可以在平面直角坐標系內描出一個點,所有這些點的集合,叫做這個函數的圖象.由函數解析式畫函數圖象的步驟:

  (1)寫出函數解析式及自變量的取值范圍;

  (2)列表:列表給出自變量與函數的一些對應值;

  (3)描點:以表中對應值為坐標,在坐標平面內描出相應的點;

  (4)連線:用平滑曲線,按照自變量由小到大的順序,把所描各點連接起來.

  7.一次函數

  (1)一次函數

  如果y=kx+b(k、b是常數,k≠0),那么y叫做x的一次函數.

  特別地,當b=0時,一次函數y=kx+b成為y=kx(k是常數,k≠0),這時,y叫做x的正比例函數.

  (2)一次函數的圖象

  一次函數y=kx+b的圖象是一條經過(0,b)點和點的直線.特別地,正比例函數圖象是一條經過原點的直線.需要說明的是,在平面直角坐標系中,“直線”并不等價于“一次函數y=kx+b(k≠0)的圖象”,因為還有直線y=m(此時k=0)和直線x=n(此時k不存在),它們不是一次函數圖象.

  (3)一次函數的性質

  當k>0時,y隨x的增大而增大;當k<0時,y隨x的增大而減小.直線y=kx+b與y軸的交點坐標為(0,b),與x軸的交點坐標為.

  (4)用函數觀點看方程(組)與不等式

 、偃魏我辉淮畏匠潭伎梢赞D化為ax+b=0(a,b為常數,a≠0)的形式,所以解一元一次方程可以轉化為:一次函數y=kx+b(k,b為常數,k≠0),當y=0時,求相應的自變量的值,從圖象上看,相當于已知直線y=kx+b,確定它與x軸交點的橫坐標.

  ②二元一次方程組對應兩個一次函數,于是也對應兩條直線,從“數”的角度看,解方程組相當于考慮自變量為何值時兩個函數值相等,以及這兩個函數值是何值;從“形”的角度看,解方程組相當于確定兩條直線的交點的坐標.

 、廴魏我辉淮尾坏仁蕉伎梢赞D化ax+b>0或ax+b<0(a、b為常數,a≠0)的形式,解一元一次不等式可以看做:當一次函數值大于0或小于0時,求自變量相應的取值范圍.

  8.反比例函數(1)反比例函數

  (1)如果(k是常數,k≠0),那么y叫做x的反比例函數.

  (2)反比例函數的圖象反比例函數的圖象是雙曲線.

  (3)反比例函數的性質

 、佼攌>0時,圖象的兩個分支分別在第一、三象限內,在各自的象限內,y隨x的增大而減。

 、诋攌<0時,圖象的兩個分支分別在第二、四象限內,在各自的`象限內,y隨x的增大而增大.

  ③反比例函數圖象關于直線y=±x對稱,關于原點對稱.

  (4)k的兩種求法

  ①若點(x0,y0)在雙曲線上,則k=x0y0.②k的幾何意義:

  若雙曲線上任一點A(x,y),AB⊥x軸于B,則S△AOB

  (5)正比例函數和反比例函數的交點問題

  若正比例函數y=k1x(k1≠0),反比例函數,則當k1k2<0時,兩函數圖象無交點;

  當k1k2>0時,兩函數圖象有兩個交點,坐標分別為由此可知,正反比例函數的圖象若有交點,兩交點一定關于原點對稱.

  1.二次函數

  如果y=ax2+bx+c(a,b,c為常數,a≠0),那么y叫做x的二次函數.

  幾種特殊的二次函數:y=ax2(a≠0);y=ax2+c(ac≠0);y=ax2+bx(ab≠0);y=a(x-h(huán))2(a≠0).

  2.二次函數的圖象

  二次函數y=ax2+bx+c的圖象是對稱軸平行于y軸的一條拋物線.由y=ax2(a≠0)的圖象,通過平移可得到y(tǒng)=a(x-h(huán))2+k(a≠0)的圖象.

  3.二次函數的性質

  二次函數y=ax2+bx+c的性質對應在它的圖象上,有如下性質:

  (1)拋物線y=ax2+bx+c的頂點是,對稱軸是直線,頂點必在對稱軸上;

  (2)若a>0,拋物線y=ax2+bx+c的開口向上,因此,對于拋物線上的任意一點(x,y),當x<時,y隨x的增大而減;當x>時,y隨x的增大而增大;當x=,y有最小值;若a<0,拋物線y=ax2+bx+c的開口向下,因此,對于拋物線上的任意一點(x,y),當x<,y隨x的增大而增大;當時,y隨x的增大而減;當x=時,y有最大值;

  (3)拋物線y=ax2+bx+c與y軸的交點為(0,c);

  (4)在二次函數y=ax2+bx+c中,令y=0可得到拋物線y=ax2+bx+c與x軸交點的情況:

 。0時,拋物線y=ax2+bx+c與x軸沒有公共點.=0時,拋物線y=ax2+bx+c與x軸只有一個公共點,即為此拋物線的頂點;當=b2-4ac>0,拋物線y=ax2+bx+c與x軸有兩個不同的公共點,它們的坐標分別是和,這兩點的距離為;當當4.拋物線的平移

  拋物線y=a(x-h(huán))2+k與y=ax2形狀相同,位置不同.把拋物線y=ax2向上(下)、向左(右)平移,可以得到拋物線y=a(x-h(huán))2+k.平移的方向、距離要根據h、k的值來決定.

  初中數學知識點總結15

  一元一次方程定義

  通過化簡,只含有一個未知數,且含有未知數的最高次項的次數是一的等式,叫一元一次方程。通常形式是ax+b=0(a,b為常數,且a≠0)。一元一次方程屬于整式方程,即方程兩邊都是整式。

  一元指方程僅含有一個未知數,一次指未知數的次數為1,且未知數的系數不為0。我們將ax+b=0(其中x是未知數,a、b是已知數,并且a≠0)叫一元一次方程的標準形式。這里a是未知數的系數,b是常數,x的次數必須是1。

  即一元一次方程必須同時滿足4個條件:⑴它是等式;⑵分母中不含有未知數;⑶未知數最高次項為1;⑷含未知數的項的系數不為0。

  一元一次方程的五個核心問題

  一、什么是等式?1+1=1是等式嗎?

  表示相等關系的式子叫做等式,等式可分三類:第一類是恒等式,就是用任何允許的數值代替等式中的字母,等式的兩邊總是相等,由數字組成的等式也是恒等式,如2+4=6,a+b=b+a等都是恒等式;第二類是條件等式,也就是方程,這類等式只能取某些數值代替等式中的字母時,等式才成立,如x+y=-5,x+4=7等都是條件等式;第三類是矛盾等式,就是無論用任何值代替等式中的字母,等式總不成立,如x2=-2,|a|+5=0等。

  一個等式中,如果等號多于一個,叫做連等式,連等式可以化為一組只含有一個等號的等式。

  等式與代數式不同,等式中含有等號,代數式中不含等號。

  等式有兩個重要性質1)等式的兩邊都加上或減去同一個數或同一個整式,所得結果仍然是一個等式;(2)等式的兩邊都乘以或除以同一個數除數不為零,所得結果仍然是一個等式。

  二、什么是方程,什么是一元一次方程?

  含有未知數的等式叫做方程,如2x-3=8,x+y=7等。判斷一個式子是否是方程,只需看兩點:一是不是等式;二是否含有未知數,兩者缺一不可。

  只含有一個未知數,并且含未知數的式子都是整式,未知數的次數是1,系數不是0的方程叫做一元一次方程。其標準形式是ax+b=0(a不為0,a,b是已知數),值得注意的'是1)一個整式方程的"元"和"次"是將這個方程化成最簡形式后才能判定的。如方程2y2+6=3x+2y2,形式上是二元二次方程,但化簡后,它實際上是一個一元一次方程。(2)整式方程分母中不含有未知數。判斷是否為整式方程,是不能先將它化簡的如方程x+1/x=2+1/x,因為它的分母中含有未知數x,所以,它不是整式方程。如果將上面的方程進行化簡,則為x=2,這時再去作判斷,將得到錯誤的結論。

  凡是談到次數的方程,都是指整式方程,即方程的兩邊都是整式。一元一次方程是整式方程中元數最少且次數最低的方程。

  三、等式有什么牛掰的基本性質嗎?

  將方程中的某些項改變符號后,從方程的一邊移到另一邊的變形叫做移項,移項的依據是等式的基本性質1。

  移項時不一定要把含未知數的項移到等式的左邊。如解方程3x-2=4x-5時就可以把含未知數的項移到右邊,而把常數項移到左邊,這樣會顯得簡便些。

  去分母,將未知數的系數化為1,則是依據等式的基本性質2進行的。

  四、等式一定是方程嗎?方程一定是等式嗎?

  等式與方程有很多相同之處。如都是用等號連接的,等號左、右兩邊都是代數式,但它們還是有區(qū)別的。方程僅是含有未知數的等式,是等式中的特例。就是說,等式包含方程;反過來,方程并不包含所有的等式。如,13+5=18,18-13=5都屬于等式,但它們并不是方程。因此,等式一定是方程的說法是不對的。

  五、"解方程"與"方程的解"是一回事兒嗎?

  方程的解是使方程左、右兩邊相等的未知數的取值。而解方程是求方程的解或判斷方程無解的過程。即方程的解是結果,而解方程是一個過程。方程的解中的"解"是名詞,而解方程中的"解"是動詞,二者不能混淆。

  初中數學知識點總結16

  一、數與代數

  1.有理數

  有理數:包括正整數、0和負整數。

  數軸:包括原點、正方向和單位長度。

  相反數:只有符號不同的兩個數叫做互為相反數。

  絕對值:正數的絕對值是其本身,負數的絕對值是它的相反數,0的絕對值是0。

  2.整式與分式

  整式:包括單項式和多項式。

  分式:包括一般形式和特殊形式。

  代數式:包括單字母、單項式和多項式。

  二、空間與圖形

  1.點、線、面

  點:沒有大小,沒有長度。

  線:沒有寬度,只有長度。

  面:有長度和寬度,沒有高度。

  2.基本圖形

  直線:包括直線、射線、線段。

  角:包括平角、周角和一般的'角。

  三角形:包括等邊三角形、等腰三角形和一般三角形。

  四邊形:包括矩形、正方形、梯形和平行四邊形。

  圓:包括圓的性質和圓的定理。

  三、統(tǒng)計與概率

  1.統(tǒng)計

  統(tǒng)計圖:包括扇形統(tǒng)計圖、折線統(tǒng)計圖和條形統(tǒng)計圖。

  統(tǒng)計表:包括簡單統(tǒng)計表和復合統(tǒng)計表。

  數據的收集與整理:包括抽樣調查、全面調查和自主調查。

  2.概率

  隨機事件:包括必然事件、不可能事件和隨機事件。

  概率:包括計算事件發(fā)生的概率和隨機事件的概率。

  以上是初中數學知識點總結的主要內容,這些知識點是數學學習的基礎,需要學生熟練掌握和應用。

  初中數學知識點總結17

  一、角的定義

  “靜態(tài)”概念:有公共端點的兩條射線組成的圖形叫做角。

  “動態(tài)”概念:角可以看作是一條射線繞其端點從一個位置旋轉到另一個位置所形成的圖形。

  如果一個角的兩邊成一條直線,那么這個角叫做平角;平角的`一半叫直角;大于直角小于平角的角叫做鈍角;大于0小于直角的角叫做銳角。

  二、角的換算:1周角=2平角=4直角=360°;

  1平角=2直角=180°;

  1直角=90°;

  1度=60分=3600秒(即:1°=60′=3600″);

  1分=60秒(即:1′=60″).

  三、余角、補角的概念和性質:

  概念:如果兩個角的和是一個平角,那么這兩個角叫做互為補角。

  如果兩個角的和是一個直角,那么這兩個角叫做互為余角。

  說明:互補、互余是指兩個角的數量關系,沒有位置關系。

  性質:同角(或等角)的余角相等;

  同角(或等角)的補角相等。

  四、角的比較方法:

  角的大小比較,有兩種方法:

  (1)度量法(利用量角器);

  (2)疊合法(利用圓規(guī)和直尺)。

  五、角平分線:從一個角的頂點引出的一條射線。把這個角分成相等的兩部分,這條射線叫做這個角的平分線。

  常見考法

  (1)考查與時鐘有關的問題;(2)角的計算與度量。

  誤區(qū)提醒

  角的度、分、秒單位的換算是60進制,而不是10進制,換算時易受10進制影響而出錯。

  【典型例題】(20xx云南曲靖)從3時到6時,鐘表的時針旋轉角的度數是( )

  【答案】3時到6時,時針旋轉的是一個周角的1/4,故是90度 ,本題選C.

  初中數學知識點總結18

  [關鍵詞]課堂小結;初中數學;理解提升

  德國作家、科學家利希頓堡說過:“當你還不能對自己說今天學到了什么東西時,你就不要去睡覺。 ”這句話從側面闡明了總結對于知識學習的重要性。課堂小結作為一項提煉收獲、分析問題、概括經驗的學習手段,對于初中數學課堂教學具有很好的促進作用。這是因為初中數學與其他學科相比,有更強的思維性、邏輯性和綜合性,這使得初中數學的知識體系、概念內容更龐雜,更不容易消化吸收,這就需要我們尋求一項有效的手段來將這些知識進行聚合、鞏固、提升,而課堂小結恰恰解決了這一問題。課堂教學形式多變、內涵豐富,并非時時刻刻都應該總結、都需要總結,課堂小結只有在合適的時間運用,才能發(fā)揮效果。筆者正是基于此,對初中數學如何有效運用課堂小結進行策略探析,通過對初中數學教學規(guī)律、學生數學知識吸收特點進行整理、分析后,提出如下四點建議。

  在知識講解之后小結,掌握新

  知強調重點

  我們在進行新知識的課堂教學時,一堂課里一般會有多個小知識點,我們在帶入新知識的同時,還會引入一些老問題,幫助學生進行對比、區(qū)分,增進理解。但這同時也加大了課堂容量,容易讓學生在知識吸收中出現(xiàn)遺漏、錯讀。所以,在新知識教學完成之后進行課堂小結,幫助學生將所學的新知識進行統(tǒng)一規(guī)整,能夠很好地幫助學生理清思路,明確知識重點,快速掌握新知。在對新知識進行課堂小結時,我們講究全而美,即小結涵蓋的內容要全,要將本節(jié)課的所有知識都涵蓋進來;美是指總結的語言要生動,要將新知識的特點用趣味的語言表現(xiàn)出來,讓學生更容易理解,更方便記憶。

  例如,教學蘇教版初中數學“合并同類項”這一部分內容時,筆者進行了這樣的小結:“同學們,我們今天學習了合并同類項,合并同類項我們要掌握兩個關鍵,一是什么是同類項,另一個是怎么合并,你們說對不對?”筆者先拋出一個問題,學生回答:“對。 ”“那你們誰能告訴老師答案呢?”筆者繼續(xù)問,學生思考后回答:“老師,是同類項的話,首先所含字母要相同!薄巴粋字母的指數也必須一樣!绷硪粋學生回答。 “合并同類項就是把同類項的系數加起來。 ”還有學生補充。筆者笑著說:“同學們說得很好呢,其實合并同類項只要掌握兩同、兩無關,常數也是同類項就可以了。兩同就是字母同、指數同,兩無關是字母順序無關、系數大小無關。 ”像這樣,通過教師引導學生思考,再進行總結,能夠有效幫助學生了解新知識的重點,促進學生理解掌握。

  在答疑解惑之后小結,突出要

  點指明問題

  學必有疑,學生在數學學習過程中,一定會碰到一些麻煩,提出一些問題。對于學生提出的疑問,教師都會認真講解、仔細分析,直到學生明白為止,但有時候會出現(xiàn)同一知識點學生聽了忘、反復問的現(xiàn)象,出現(xiàn)這種情況的原因是學生對于教師的講解沒理解透徹。而如何才能讓學生參透呢?教師在幫學生答疑解惑之后的課堂小結,很多時候剛好能起到這樣的點撥作用。教師在答疑解惑之后的課堂小結要注意兩個問題:一是小結要指明問題,就學生所出現(xiàn)的問題進行分析,讓學生根據自身情況認領問題,以便對癥下藥;二是小結要注重方法的啟發(fā),針對學生的問題闡明解決辦法,引導學生領會方法,運用原則,破獲解題密碼,得到新的收獲與啟發(fā)。

  例如,教學蘇教版初中數學“一元一次方程”時,有一位學生向筆者提出疑問:“老師,這道題目:+=2,我算了好幾遍,答案都是—1,跟老師給的答案不一樣,這是為什么呢?”筆者稍稍看了學生的解題步驟后發(fā)現(xiàn),原來這個學生犯了解一元一次方程非常常見的錯誤,即他去分母的時候,沒有分母的項忘記乘相同的系數了。于是筆者在向他講解完之后進行小結:“同學們,我們在給一元一次方程去分母的時候,要注意什么呢?方程兩邊要同時乘以所有分母的最小公倍數,只有這么做,方程的大小才會保持不變。一旦你漏乘了誰,特別是沒有分母的項,那就不公平了,等式大小就發(fā)生了改變,那么答案肯定就錯了。 ”像這樣,根據學生的問題,直指關鍵,幫助學生答疑解惑,能促進學生吃一塹長一智,規(guī)避錯誤,更加進步。

  在遷移發(fā)散之后小結,明確關

  系梳理聯(lián)系

  數學知識盤絲錯節(jié),各個知識點之間的聯(lián)系十分多樣、緊密,因此要幫助學生真正深入掌握知識,明晰知識點間的靈活運用,就必須適當對這些知識進行遷移發(fā)散。遷移發(fā)散是一種舉一反三的教學手段,通過一個數學概念遷移出舊識新知,通過一種方法發(fā)散出多種不同形式。遷移發(fā)散是數學萬紫千紅總是春的集中體現(xiàn),是數學學習的較高階段,同時也是學生較難理解掌握的部分,因此,在遷移發(fā)散之后進行課堂小結很有必要。教師要注意通過小結引導學生明確各個知識點之間的因果先后關系,梳理多個知識點之間聯(lián)系的條件和影響因素,讓學生通過小結可以在腦中形成更為準確的印象。

  例如,教學蘇教版初中數學“梯形中位線”這部分內容時,筆者遷移出三角形中位線的相關概念,引導學生進行比對、思考、拓展。遷移發(fā)散之后,筆者做了如下總結:“同學們,通過遷移我們可以得出,三角形中位線是梯形中位線的一種特殊形式,所有梯形通過割補平移都可以轉換成一個三角形。另外,通過式子的轉化我們知道,梯形的`面積可以看做是中位線乘以梯形高的積,那么作為梯形中位線的特例,三角形的面積同樣也可以是中位線與第三邊上的高的乘積。 ”像這樣,在遷移之后進行小結,明確了知識之間的聯(lián)系,能幫助學生進行梳理歸納,有助于學生理解掌握。

  在整體復習之后小結,高屋建

  瓴全面吸收

  復習是數學學習中非常重要的一個環(huán)節(jié),是對學生一段時間以來學習的回顧。整體復習一般具有復習量大、知識跨度大、知識整合度高等特點,一堂整體復習課下來,學生需要重新理順和溫習的知識點非常多,初中生注意力容易分散,對于過于繁多的知識概念會出現(xiàn)“消化不良”的現(xiàn)象。整體復習之后的課堂小結,是對整個復習過程的凝練、概括,起到高屋建瓴的作用,能幫助學生更為系統(tǒng)、全面地知悉內容、吸收知識。

  初中數學知識點總結19

  1有理數加法法則

  1、同號兩數相加,取相同的符號,并把絕對值相加;

  2、異號兩數相加,取絕對值較大的符號,并用較大的絕對值減去較小的絕對值;

  3、一個數與0相加,仍得這個數。

  2有理數加法的運算律

  1、加法的交換律:a+b=b+a;

  2、加法的結合律:(a+b)+c=a+(b+c)

  3有理數減法法則

  減去一個數,等于加上這個數的相反數;即a—b=a+(—b)

  4有理數乘法法則

  1、兩數相乘,同號為正,異號為負,并把絕對值相乘;

  2、任何數同零相乘都得零;

  3、幾個數相乘,有一個因式為零,積為零;各個因式都不為零,積的符號由負因式的個數決定。

  5有理數乘法的.運算律

  1、乘法的交換律:ab=ba;

  2、乘法的結合律:(ab)c=a(bc);

  3、乘法的分配律:a(b+c)=ab+ac

  6單項式

  只含有數字與字母的積的代數式叫做單項式。

  注意:單項式是由系數、字母、字母的指數構成的。

  7多項式

  1、幾個單項式的和叫做多項式。其中每個單項式叫做這個多項式的項。多項式中不含字母的項叫做常數項。多項式中次數最高的項的次數,叫做這個多項式的次數。

  2、同類項所有字母相同,并且相同字母的指數也分別相同的項叫做同類項。幾個常數項也是同類項。

  8中心對稱

  1、定義:把一個圖形繞著某一個點旋轉180°,如果它能夠與另一個圖形重合,那么就說這兩個圖形關于這個點對稱或中心對稱,這個點叫做對稱中心。這兩個圖形中的對應點叫做關于中心的對稱點。

  2、心對稱的兩條基本性質:

 。1)關于中心對稱的兩個圖形,對稱點所連線段都經過對稱中心,而且被對稱中心所平分。

 。2)關于中心對稱的兩個圖形是全等圖形。

  3、中心對稱圖形

  把一個圖形繞著某一個點旋轉180°,如果旋轉后的圖形能夠與原來的圖形重合,那么這個圖形叫做中心對稱圖形,這個點就是它的對稱中心。

  初中數學知識點總結20

  1.有理數:

  (1)凡能寫成形式的數,都是有理數。正整數、0、負整數統(tǒng)稱整數;正分數、負分數統(tǒng)稱分數;整數和分數統(tǒng)稱有理數。注意:0即不是正數,也不是負數;—a不一定是負數,+a也不一定是正數;p不是有理數;

 。2)有理數的分類:① ②

  2.數軸:數軸是規(guī)定了原點、正方向、單位長度的一條直線。

  3.相反數:

 。1)只有符號不同的兩個數,我們說其中一個是另一個的相反數;0的相反數還是0;

  (2)相反數的和為0?a+b=0?a、b互為相反數。

  4.絕對值:

 。1)正數的絕對值是其本身,0的絕對值是0,負數的絕對值是它的相反數;注意:絕對值的意義是數軸上表示某數的點離開原點的距離;

 。2)絕對值可表示為:或;絕對值的問題經常分類討論;

  5.有理數比大。海1)正數的絕對值越大,這個數越大;(2)正數永遠比0大,負數永遠比0;(3)正數大于一切負數;(4)兩個負數比大小,絕對值大的反而;(5)數軸上的兩個數,右邊的數總比左邊的數大;(6)大數—小數> 0,小數—大數< 0。

  6.互為倒數:乘積為1的兩個數互為倒數;注意:0沒有倒數;若a≠0,那么的倒數是;若ab=1?a、b互為倒數;若ab=—1?a、b互為負倒數。

  7.有理數加法法則:

  (1)同號兩數相加,取相同的.符號,并把絕對值相加;

 。2)異號兩數相加,取絕對值較大的符號,并用較大的絕對值減去較小的絕對值;

  (3)一個數與0相加,仍得這個數。

  8.有理數加法的運算律:

 。1)加法的交換律:a+b=b+a;(2)加法的結合律:(a+b)+c=a+(b+c)。

  9.有理數減法法則:減去一個數,等于加上這個數的相反數;即a—b=a+(—b)。

  10.有理數乘法法則:

 。1)兩數相乘,同號為正,異號為負,并把絕對值相乘;

 。2)任何數同零相乘都得零;

 。3)幾個數相乘,有一個因式為零,積為零;各個因式都不為零,積的符號由負因式的個數決定。

  11.有理數乘法的運算律:

 。1)乘法的交換律:ab=ba;(2)乘法的結合律:(ab)c=a(bc);

 。3)乘法的分配律:a(b+c)=ab+ac 。

  12.有理數除法法則:除以一個數等于乘以這個數的倒數;注意:零不能做除數,。

  13.有理數乘方的法則:

  (1)正數的任何次冪都是正數;

 。2)負數的奇次冪是負數;負數的偶次冪是正數;注意:當n為正奇數時:(—a)n=—an或(a —b)n=—(b—a)n,當n為正偶數時:(—a)n =an或(a—b)n=(b—a)n 。

  14.乘方的定義:

 。1)求相同因式積的運算,叫做乘方;

  (2)乘方中,相同的因式叫做底數,相同因式的個數叫做指數,乘方的結果叫做冪;

  15.科學記數法:把一個大于10的數記成a×10n的形式,其中a是整數數位只有一位的數,這種記數法叫科學記數法。

  16.近似數的精確位:一個近似數,四舍五入到那一位,就說這個近似數的精確到那一位。

  17.有效數字:從左邊第一個不為零的數字起,到精確的位數止,所有數字,都叫這個近似數的有效數字。

  18.混合運算法則:先乘方,后乘除,最后加減。

  本章內容要求學生正確認識有理數的概念,在實際生活和學習數軸的基礎上,理解正負數、相反數、絕對值的意義所在。重點利用有理數的運算法則解決實際問題。

  體驗數學發(fā)展的一個重要原因是生活實際的需要。激發(fā)學生學習數學的興趣,教師培養(yǎng)學生的觀察、歸納與概括的能力,使學生建立正確的數感和解決實際問題的能力。教師在講授本章內容時,應該多創(chuàng)設情境,充分體現(xiàn)學生學習的主體性地位。

【初中數學知識點總結】相關文章:

初中數學的知識點總結01-12

初中數學知識點總結01-15

數學初中知識點總結04-12

初中數學知識點總結01-02

初中數學知識點總結08-01

初中數學知識點總結歸納12-04

初中數學知識點總結(精品15篇)07-30

初中數學知識點總結匯總(3篇)02-01

數學知識點總結08-30