成大在线免费视频,亚洲精品免费一级视频,日韩亚洲欧美大陆,又黄又爽免费国产视频

<style id="t465f"></style>
<legend id="t465f"><u id="t465f"><thead id="t465f"></thead></u></legend>

<acronym id="t465f"></acronym>

<sub id="t465f"><ol id="t465f"><nobr id="t465f"></nobr></ol></sub>
<sub id="t465f"></sub>

高考數(shù)學(xué)易錯點知識總結(jié)

時間:2022-07-30 09:28:41 總結(jié) 投訴 投稿
  • 相關(guān)推薦

高考數(shù)學(xué)易錯點知識總結(jié)

  總結(jié)就是把一個時間段取得的成績、存在的問題及得到的經(jīng)驗和教訓(xùn)進行一次全面系統(tǒng)的總結(jié)的書面材料,它可以促使我們思考,因此十分有必須要寫一份總結(jié)哦。那么我們該怎么去寫總結(jié)呢?下面是小編幫大家整理的高考數(shù)學(xué)易錯點知識總結(jié),希望對大家有所幫助。

高考數(shù)學(xué)易錯點知識總結(jié)

高考數(shù)學(xué)易錯點知識總結(jié)1

  求函數(shù)奇偶性的常見錯誤

  錯因分析:求函數(shù)奇偶性的常見錯誤有求錯函數(shù)定義域或是忽視函數(shù)定義域,對函數(shù)具有奇偶性的前提條件不清,對分段函數(shù)奇偶性判斷方法不當(dāng)?shù)。判斷函?shù)的奇偶性,首先要考慮函數(shù)的定義域,一個函數(shù)具備奇偶性的必要條件是這個函數(shù)的定義域區(qū)間關(guān)于原點對稱,如果不具備這個條件,函數(shù)一定是非奇非偶的函數(shù)。在定義域區(qū)間關(guān)于原點對稱的前提下,再根據(jù)奇偶函數(shù)的定義進行判斷,在用定義進行判斷時要注意自變量在定義域區(qū)間內(nèi)的任意性。

  抽象函數(shù)中推理不嚴(yán)密致誤

  錯因分析:很多抽象函數(shù)問題都是以抽象出某一類函數(shù)的共同“特征”而設(shè)計出來的,在解決問題時,可以通過類比這類函數(shù)中一些具體函數(shù)的性質(zhì)去解決抽象函數(shù)的性質(zhì)。解答抽象函數(shù)問題要注意特殊賦值法的應(yīng)用,通過特殊賦值可以找到函數(shù)的不變性質(zhì),這個不變性質(zhì)往往是進一步解決問題的突破口。抽象函數(shù)性質(zhì)的證明是一種代數(shù)推理,和幾何推理證明一樣,要注意推理的嚴(yán)謹(jǐn)性,每一步推理都要有充分的條件,不可漏掉一些條件,更不要臆造條件,推理過程要層次分明,書寫規(guī)范。

  函數(shù)零點定理使用不當(dāng)致誤

  錯因分析:如果函數(shù)y=f(x)在區(qū)間[a,b]上的圖象是連續(xù)不斷的一條曲線,并且有f(a)f(b)<0,那么,函數(shù)y=f(x)在區(qū)間(a,b)內(nèi)有零點,即存在c∈(a,b),使得f(c)=0,這個c也是方程f(c)=0的根,這個結(jié)論我們一般稱之為函數(shù)的零點定理。函數(shù)的零點有“變號零點”和“不變號零點”,對于“不變號零點”,函數(shù)的零點定理是“無能為力”的,在解決函數(shù)的零點時要注意這個問題。

  混淆兩類切線致誤

  錯因分析:曲線上一點處的切線是指以該點為切點的曲線的切線,這樣的切線只有一條;曲線的過一個點的切線是指過這個點的曲線的所有切線,這個點如果在曲線上當(dāng)然包括曲線在該點處的切線,曲線的過一個點的切線可能不止一條。因此求解曲線的切線問題時,首先要區(qū)分是什么類型的切線。

  混淆導(dǎo)數(shù)與單調(diào)性的關(guān)系致誤

  錯因分析:對于一個函數(shù)在某個區(qū)間上是增函數(shù),如果認(rèn)為函數(shù)的導(dǎo)函數(shù)在此區(qū)間上恒大于0,就會出錯。研究函數(shù)的單調(diào)性與其導(dǎo)函數(shù)的關(guān)系時一定要注意:一個函數(shù)的導(dǎo)函數(shù)在某個區(qū)間上單調(diào)遞增(減)的充要條件是這個函數(shù)的導(dǎo)函數(shù)在此區(qū)間上恒大(小)于等于0,且導(dǎo)函數(shù)在此區(qū)間的任意子區(qū)間上都不恒為零。

  導(dǎo)數(shù)與極值關(guān)系不清致誤

  錯因分析:在使用導(dǎo)數(shù)求函數(shù)極值時,很容易出現(xiàn)的'錯誤就是求出使導(dǎo)函數(shù)等于0的點,而沒有對這些點左右兩側(cè)導(dǎo)函數(shù)的符號進行判斷,誤以為使導(dǎo)函數(shù)等于0的點就是函數(shù)的極值點。出現(xiàn)這些錯誤的原因是對導(dǎo)數(shù)與極值關(guān)系不清。可導(dǎo)函數(shù)在一個點處的導(dǎo)函數(shù)值為零只是這個函數(shù)在此點處取到極值的必要條件,在此提醒廣大考生在使用導(dǎo)數(shù)求函數(shù)極值時一定要注意對極值點進行檢驗。

  用錯基本公式致誤

  錯因分析:等差數(shù)列的首項為a1、公差為d,則其通項公式an=a1+(n-1)d,前n項和公式Sn=na1+n(n-1)d/2=(a1+an)d/2;等比數(shù)列的首項為a1、公比為q,則其通項公式an=a1pn-1,當(dāng)公比q≠1時,前n項和公式Sn=a1(1-pn)/(1-q)=(a1-anq)/(1-q),當(dāng)公比q=1時,前n項和公式Sn=na1。在數(shù)列的基礎(chǔ)性試題中,等差數(shù)列、等比數(shù)列的這幾個公式是解題的根本,用錯了公式,解題就失去了方向。

  an,Sn關(guān)系不清致誤

  錯因分析:在數(shù)列問題中,數(shù)列的通項an與其前n項和Sn之間存在關(guān)系:這個關(guān)系是對任意數(shù)列都成立的,但要注意的是這個關(guān)系式是分段的,在n=1和n≥2時這個關(guān)系式具有完全不同的表現(xiàn)形式,這也是解題中經(jīng)常出錯的一個地方,在使用這個關(guān)系式時要牢牢記住其“分段”的特點。當(dāng)題目中給出了數(shù)列{an}的an與Sn之間的關(guān)系時,這兩者之間可以進行相互轉(zhuǎn)換,知道了an的具體表達(dá)式可以通過數(shù)列求和的方法求出Sn,知道了Sn可以求出an,解題時要注意體會這種轉(zhuǎn)換的相互性。

  對等差、等比數(shù)列的性質(zhì)理解錯誤

  錯因分析:等差數(shù)列的前n項和在公差不為0時是關(guān)于n的常數(shù)項為0的二次函數(shù)。一般地,有結(jié)論“若數(shù)列{an}的前N項和Sn=an2+bn+c(a,b,c∈R),則數(shù)列{an}為等差數(shù)列的充要條件是c=0”;在等差數(shù)列中,Sm,S2m-Sm,S3m-S2m(m∈N*)是等差數(shù)列。解決這類題目的一個基本出發(fā)點就是考慮問題要全面,把各種可能性都考慮進去,認(rèn)為正確的命題給以證明,認(rèn)為不正確的命題舉出反例予以駁斥。在等比數(shù)列中公比等于-1時是一個很特殊的情況,在解決有關(guān)問題時要注意這個特殊情況。

  遺忘空集致誤

  錯因分析:由于空集是任何非空集合的真子集,因此,對于集合B高三經(jīng)典糾錯筆記:數(shù)學(xué)A,就有B=A,φ≠B高三經(jīng)典糾錯筆記:數(shù)學(xué)A,B≠φ,三種情況,在解題中如果思維不夠縝密就有可能忽視了 B≠φ這種情況,導(dǎo)致解題結(jié)果錯誤。尤其是在解含有參數(shù)的集合問題時,更要充分注意當(dāng)參數(shù)在某個范圍內(nèi)取值時所給的集合可能是空集這種情況?占且粋特殊的集合,由于思維定式的原因,考生往往會在解題中遺忘了這個集合,導(dǎo)致解題錯誤或是解題不全面。

  忽視集合元素的三性致誤

  錯因分析:集合中的元素具有確定性、無序性、互異性,集合元素的三性中互異性對解題的影響最大,特別是帶有字母參數(shù)的集合,實際上就隱含著對字母參數(shù)的一些要求。在解題時也可以先確定字母參數(shù)的范圍后,再具體解決問題。

  四種命題的結(jié)構(gòu)不明致誤

  錯因分析:如果原命題是“若 A則B”,則這個命題的逆命題是“若B則A”,否命題是“若┐A則┐B”,逆否命題是“若┐B則┐A”。這里面有兩組等價的命題,即“原命題和它的逆否命題等價,否命題與逆命題等價”。在解答由一個命題寫出該命題的其他形式的命題時,一定要明確四種命題的結(jié)構(gòu)以及它們之間的等價關(guān)系。另外,在否定一個命題時,要注意全稱命題的否定是特稱命題,特稱命題的否定是全稱命題。如對“a,b都是偶數(shù)”的否定應(yīng)該是“a,b不都是偶數(shù)”,而不應(yīng)該是“a ,b都是奇數(shù)”。

  充分必要條件顛倒致誤

  錯因分析:對于兩個條件A,B,如果A=>B成立,則A是B的充分條件,B是A的必要條件;如果B=>A成立,則A是B的必要條件,B是A的充分條件;如果A<=>B,則A,B互為充分必要條件。解題時最容易出錯的就是顛倒了充分性與必要性,所以在解決這類問題時一定要根據(jù)充要條件的概念作出準(zhǔn)確的判斷。

  09

  導(dǎo)數(shù)的幾何意義不明致誤

  函數(shù)在一點處的導(dǎo)數(shù)值是函數(shù)圖像在該點處的切線的斜率.但在許多問題中,往往是要解決過函數(shù)圖像外的一點向函數(shù)圖像上引切線的問題,解決這類問題的基本思想是設(shè)出切點坐標(biāo),根據(jù)導(dǎo)數(shù)的幾何意義寫出切線方程.然后根據(jù)題目中給出的其他條件列方程(組)求解.因此解題中要分清是“在某點處的切線”,還是“過某點的切線”。

  10

  導(dǎo)數(shù)與極值關(guān)系不清致誤

  f′(x0)=0只是可導(dǎo)函數(shù)f(x)在x0處取得極值的必要條件,即必須有這個條件,但只有這個條件還不夠,還要考慮是否滿足f′(x)在x0兩側(cè)異號.另外,已知極值點求參數(shù)時要進行檢驗。

【高考數(shù)學(xué)易錯點知識總結(jié)】相關(guān)文章:

高考數(shù)學(xué)易錯點知識總結(jié)3篇07-30

高中化學(xué)易錯知識點總結(jié)07-30

數(shù)學(xué)高考知識點總結(jié)02-22

高考數(shù)學(xué)知識點總結(jié)10-03

數(shù)學(xué)高考必考知識點總結(jié)11-12

高考數(shù)學(xué)必考知識點總結(jié)02-11

高一生物必修一知識點易錯點總結(jié)5篇10-08

數(shù)學(xué)高考知識點總結(jié)15篇02-22

數(shù)學(xué)高考知識點總結(jié)(15篇)02-22