- 高二數(shù)學知識點總結 推薦度:
- 相關推薦
高二數(shù)學知識點總結【精】
總結是把一定階段內的有關情況分析研究,做出有指導性結論的書面材料,它能使我們及時找出錯誤并改正,不如靜下心來好好寫寫總結吧。但是總結有什么要求呢?以下是小編精心整理的高二數(shù)學知識點總結,僅供參考,歡迎大家閱讀。
高二數(shù)學知識點總結1
課內重視聽講,課后及時復習。
新知識的接受,數(shù)學能力的培養(yǎng)主要在課堂上進行,所以要特點重視課內的學習效率,尋求正確的學習方法。上課時要緊跟老師的思路,積極展開思維預測下面的步驟,比較自己的解題思路與教師所講有哪些不同。特別要抓住基礎知識和基本技能的學習,課后要及時復習不留疑點。首先要在做各種習題之前將老師所講的知識點回憶一遍,正確掌握各類公式的推理過程,應盡量回憶而不采用不清楚立即翻書之舉。認真獨立完成作業(yè),勤于思考,從某種意義上講,應不造成不懂即問的學習作風,對于有些題目由于自己的思路不清,一時難以解出,應讓自己冷靜下來認真分析題目,盡量自己解決。在每個階段的學習中要進行整理和歸納總結,把知識的點、線、面結合起來交織成知識網絡,納入自己的知識體系。
適當多做題,養(yǎng)成良好的解題習慣。
要想學好數(shù)學,多做題是難免的,熟悉掌握各種題型的解題思路。剛開始要從基礎題入手,以課本上的習題為準,反復練習打好基礎,再找一些課外的習題,以幫助開拓思路,提高自己的分析、解決能力,掌握一般的解題規(guī)律。對于一些易錯題,可備有錯題集,寫出自己的解題思路和正確的解題過程兩者一起比較找出自己的`錯誤所在,以便及時更正。在平時要養(yǎng)成良好的解題習慣。讓自己的精力高度集中,使大腦興奮,思維敏捷,能夠進入最佳狀態(tài),在考試中能運用自如。實踐證明:越到關鍵時候,你所表現(xiàn)的解題習慣與平時練習無異。如果平時解題時隨便、粗心、大意等,往往在大考中充分暴露,故在平時養(yǎng)成良好的解題習慣是非常重要的。
調整心態(tài),正確對待考試。
首先,應把主要精力放在基礎知識、基本技能、基本方法這三個方面上,因為每次考試占絕大部分的也是基礎性的題目,而對于那些難題及綜合性較強的題目作為調劑,認真思考,盡量讓自己理出頭緒,做完題后要總結歸納。調整好自己的心態(tài),使自己在任何時候鎮(zhèn)靜,思路有條不紊,克服浮躁的情緒。特別是對自己要有信心,永遠鼓勵自己,除了自己,誰也不能把我打倒,要有自己不垮,誰也不能打垮我的自豪感。
在考試前要做好準備,練練常規(guī)題,把自己的思路展開,切忌考前去在保證正確率的前提下提高解題速度。對于一些容易的基礎題要有十二分把握拿全分;對于一些難題,也要盡量拿分,考試中要學會嘗試得分,使自己的水平正常甚至超常發(fā)揮。
高二數(shù)學知識點總結2
空間中的垂直問題
(1)線線、面面、線面垂直的定義
、賰蓷l異面直線的垂直:如果兩條異面直線所成的角是直角,就說這兩條異面直線互相垂直。
、诰面垂直:如果一條直線和一個平面內的`任何一條直線垂直,就說這條直線和這個平面垂直。
、燮矫婧推矫娲怪保喝绻麅蓚平面相交,所成的二面角(從一條直線出發(fā)的兩個半平面所組成的圖形)是直二面角(平面角是直角),就說這兩個平面垂直。
(2)垂直關系的判定和性質定理
①線面垂直判定定理和性質定理
判定定理:如果一條直線和一個平面內的兩條相交直線都垂直,那么這條直線垂直這個平面。
性質定理:如果兩條直線同垂直于一個平面,那么這兩條直線平行。
、诿婷娲怪钡呐卸ǘɡ砗托再|定理
判定定理:如果一個平面經過另一個平面的一條垂線,那么這兩個平面互相垂直。
性質定理:如果兩個平面互相垂直,那么在一個平面內垂直于他們的交線的直線垂直于另一個平面。
高二數(shù)學知識點總結3
一、理解集合中的有關概念
(1)集合中元素的特征: 確定性 , 互異性 , 無序性 。
(2)集合與元素的關系用符號=表示。
(3)常用數(shù)集的符號表示:自然數(shù)集 ;正整數(shù)集 ;整數(shù)集 ;有理數(shù)集 、實數(shù)集 。
(4)集合的表示法: 列舉法 , 描述法 , 韋恩圖 。
(5)空集是指不含任何元素的集合。
空集是任何集合的子集,是任何非空集合的真子集。
二、函數(shù)
一、映射與函數(shù):
(1)映射的概念: (2)一一映射:(3)函數(shù)的概念:
二、函數(shù)的三要素:
相同函數(shù)的判斷方法:①對應法則 ;②定義域 (兩點必須同時具備)
(1)函數(shù)解析式的求法:
、俣x法(拼湊):②換元法:③待定系數(shù)法:④賦值法:
(2)函數(shù)定義域的求法:
①含參問題的定義域要分類討論;
、趯τ趯嶋H問題,在求出函數(shù)解析式后;必須求出其定義域,此時的定義域要根據實際意義來確定。
(3)函數(shù)值域的求法:
①配方法:轉化為二次函數(shù),利用二次函數(shù)的特征來求值;常轉化為型如: 的形式;
②逆求法(反求法):通過反解,用 來表示 ,再由 的取值范圍,通過解不等式,得出 的取值范圍;常用來解,型如: ;
④換元法:通過變量代換轉化為能求值域的函數(shù),化歸思想;
、萑怯薪绶:轉化為只含正弦、余弦的函數(shù),運用三角函數(shù)有界性來求值域;
、藁静坏仁椒:轉化成型如: ,利用平均值不等式公式來求值域;
、邌握{性法:函數(shù)為單調函數(shù),可根據函數(shù)的單調性求值域。
、鄶(shù)形結合:根據函數(shù)的幾何圖形,利用數(shù)型結合的方法來求值域。
三、函數(shù)的性質
函數(shù)的單調性、奇偶性、周期性
單調性:定義:注意定義是相對與某個具體的區(qū)間而言。
判定方法有:定義法(作差比較和作商比較)
導數(shù)法(適用于多項式函數(shù))
復合函數(shù)法和圖像法。
應用:比較大小,證明不等式,解不等式。
奇偶性:定義:注意區(qū)間是否關于原點對稱,比較f(x) 與f(-x)的關系。f(x) -f(-x)=0 f(x) =f(-x) f(x)為偶函數(shù);
f(x)+f(-x)=0 f(x) =-f(-x) f(x)為奇函數(shù)。
判別方法:定義法, 圖像法 ,復合函數(shù)法
應用:把函數(shù)值進行轉化求解。
周期性:定義:若函數(shù)f(x)對定義域內的任意x滿足:f(x+T)=f(x),則T為函數(shù)f(x)的周期。
其他:若函數(shù)f(x)對定義域內的任意x滿足:f(x+a)=f(x-a),則2a為函數(shù)f(x)的.周期.
應用:求函數(shù)值和某個區(qū)間上的函數(shù)解析式。
四、圖形變換:函數(shù)圖像變換:(重點)要求掌握常見基本函數(shù)的圖像,掌握函數(shù)圖像變換的一般規(guī)律。
常見圖像變化規(guī)律:(注意平移變化能夠用向量的語言解釋,和按向量平移聯(lián)系起來思考)
平移變換 y=f(x)→y=f(x+a),y=f(x)+b
注意:(ⅰ)有系數(shù),要先提取系數(shù)。如:把函數(shù)y=f(2x)經過 平移得到函數(shù)y=f(2x+4)的圖象。
(ⅱ)會結合向量的平移,理解按照向量 (m,n)平移的意義。
對稱變換 y=f(x)→y=f(-x),關于y軸對稱
y=f(x)→y=-f(x) ,關于x軸對稱
y=f(x)→y=f|x|,把x軸上方的圖象保留,x軸下方的圖象關于x軸對稱
y=f(x)→y=|f(x)|把y軸右邊的圖象保留,然后將y軸右邊部分關于y軸對稱。(注意:它是一個偶函數(shù))
伸縮變換:y=f(x)→y=f(ωx),
y=f(x)→y=Af(ωx+φ)具體參照三角函數(shù)的圖象變換。
一個重要結論:若f(a-x)=f(a+x),則函數(shù)y=f(x)的圖像關于直線x=a對稱;
高二數(shù)學知識點總結4
一、集合、簡易邏輯(14課時,8個)
1.集合;2.子集;3.補集;4.交集;5.并集;6.邏輯連結詞;7.四種命題;8.充要條件。
二、函數(shù)(30課時,12個)
1.映射;2.函數(shù);3.函數(shù)的單調性;4.反函數(shù);5.互為反函數(shù)的函數(shù)圖象間的關系;6.指數(shù)概念的擴充;7.有理指數(shù)冪的運算;8.指數(shù)函數(shù);9.對數(shù);10.對數(shù)的運算性質;11.對數(shù)函數(shù).12.函數(shù)的應用舉例。
三、數(shù)列(12課時,5個)
1.數(shù)列;2.等差數(shù)列及其通項公式;3.等差數(shù)列前n項和公式;4.等比數(shù)列及其通頂公式;5.等比數(shù)列前n項和公式。
四、三角函數(shù)(46課時,17個)
1.角的概念的推廣;2.弧度制;3.任意角的三角函數(shù);4.單位圓中的三角函數(shù)線;5.同角三角函數(shù)的基本關系式;6.正弦、余弦的誘導公式;7.兩角和與差的正弦、余弦、正切;8.二倍角的正弦、余弦、正切;9.正弦函數(shù)、余弦函數(shù)的圖象和性質;10.周期函數(shù);11.函數(shù)的奇偶性;12.函數(shù)的圖象;13.正切函數(shù)的圖象和性質;14.已知三角函數(shù)值求角;15.正弦定理;16.余弦定理;17.斜三角形解法舉例。
五、平面向量(12課時,8個)
1.向量;2.向量的加法與減法;3.實數(shù)與向量的積;4.平面向量的坐標表示;5.線段的定比分點;6.平面向量的數(shù)量積;7.平面兩點間的距離;8.平移。
六、不等式(22課時,5個)
1.不等式;2.不等式的基本性質;3.不等式的證明;4.不等式的解法;5.含絕對值的不等式。
七、直線和圓的方程(22課時,12個)
1.直線的傾斜角和斜率;2.直線方程的點斜式和兩點式;3.直線方程的一般式;4.兩條直線平行與垂直的條件;5.兩條直線的交角;6.點到直線的距離;7.用二元一次不等式表示平面區(qū)域;8.簡單線性規(guī)劃問題;9.曲線與方程的概念;10.由已知條件列出曲線方程;11.圓的標準方程和一般方程;12.圓的參數(shù)方程。
八、圓錐曲線(18課時,7個)
1.橢圓及其標準方程;2.橢圓的簡單幾何性質;3.橢圓的參數(shù)方程;4.雙曲線及其標準方程;5.雙曲線的簡單幾何性質;6.拋物線及其標準方程;7.拋物線的.簡單幾何性質。
九、直線、平面、簡單何體(36課時,28個)
1.平面及基本性質;2.平面圖形直觀圖的畫法;3.平面直線;4.直線和平面平行的判定與性質;5.直線和平面垂直的判定與性質;6.三垂線定理及其逆定理;7.兩個平面的位置關系;8.空間向量及其加法、減法與數(shù)乘;9.空間向量的坐標表示;10.空間向量的數(shù)量積;11.直線的方向向量;12.異面直線所成的角;13.異面直線的公垂線;14.異面直線的距離;15.直線和平面垂直的性質;16.平面的法向量;17.點到平面的距離;18.直線和平面所成的角;19.向量在平面內的射影;20.平面與平面平行的性質;21.平行平面間的距離;22.二面角及其平面角;23.兩個平面垂直的判定和性質;24.多面體;25.棱柱;26.棱錐;27.正多面體;28.球。
十、排列、組合、二項式定理(18課時,8個)
1.分類計數(shù)原理與分步計數(shù)原理;2.排列;3.排列數(shù)公式;4.組合;5.組合數(shù)公式;6.組合數(shù)的兩個性質;7.二項式定理;8.二項展開式的性質。
十一、概率(12課時,5個)
1.隨機事件的概率;2.等可能事件的概率;3.互斥事件有一個發(fā)生的概率;4.相互獨立事件同時發(fā)生的概率;5.獨立重復試驗。
選修Ⅱ(24個)
十二、概率與統(tǒng)計(14課時,6個)
1.離散型隨機變量的分布列;2.離散型隨機變量的期望值和方差;3.抽樣方法;4.總體分布的估計;5.正態(tài)分布;6.線性回歸。
十三、極限(12課時,6個)
1.數(shù)學歸納法;2.數(shù)學歸納法應用舉例;3.數(shù)列的極限;4.函數(shù)的極限;5.極限的四則運算;6.函數(shù)的連續(xù)性。
十四、導數(shù)(18課時,8個)
1.導數(shù)的概念;2.導數(shù)的幾何意義;3.幾種常見函數(shù)的導數(shù);4.兩個函數(shù)的和、差、積、商的導數(shù);5.復合函數(shù)的導數(shù);6.基本導數(shù)公式;7.利用導數(shù)研究函數(shù)的單調性和極值;8.函數(shù)的最大值和最小值。
十五、復數(shù)(4課時,4個)
1.復數(shù)的概念;2.復數(shù)的加法和減法;3.復數(shù)的乘法和除法;4.復數(shù)的一元二次方程和二項方程的解法。
高二數(shù)學知識點總結5
1.1柱、錐、臺、球的結構特征
1.2空間幾何體的三視圖和直觀圖
11三視圖:
正視圖:從前往后
側視圖:從左往右
俯視圖:從上往下
22畫三視圖的原則:
長對齊、高對齊、寬相等
33直觀圖:斜二測畫法
44斜二測畫法的步驟:
(1).平行于坐標軸的線依然平行于坐標軸;
(2).平行于y軸的線長度變半,平行于x,z軸的線長度不變;
(3).畫法要寫好。
5用斜二測畫法畫出長方體的步驟:(1)畫軸(2)畫底面(3)畫側棱(4)成圖
1.3空間幾何體的表面積與體積
(一)空間幾何體的表面積
1棱柱、棱錐的表面積:各個面面積之和
2圓柱的表面積3圓錐的表面積
4圓臺的表面積
5球的表面積
(二)空間幾何體的體積
1柱體的體積
2錐體的體積
3臺體的體積
4球體的體積
高二數(shù)學必修二知識點:直線與平面的位置關系
2.1空間點、直線、平面之間的位置關系
2.1.1
1平面含義:平面是無限延展的
2平面的畫法及表示
(1)平面的畫法:水平放置的平面通常畫成一個平行四邊形,銳角畫成450,且橫邊畫成鄰邊的2倍長(如圖)
(2)平面通常用希臘字母α、β、γ等表示,如平面α、平面β等,也可以用表示平面的平行四邊形的四個頂點或者相對的兩個頂點的大寫字母來表示,如平面AC、平面ABCD等。
3三個公理:
(1)公理1:如果一條直線上的兩點在一個平面內,那么這條直線在此平面內
符號表示為
A∈L
B∈L=>Lα
A∈α
B∈α
公理1作用:判斷直線是否在平面內
(2)公理2:過不在一條直線上的三點,有且只有一個平面。
符號表示為:A、B、C三點不共線=>有且只有一個平面α,
使A∈α、B∈α、C∈α。
公理2作用:確定一個平面的.依據。
(3)公理3:如果兩個不重合的平面有一個公共點,那么它們有且只有一條過該點的公共直線。
符號表示為:P∈α∩β=>α∩β=L,且P∈L
公理3作用:判定兩個平面是否相交的依據
2.1.2空間中直線與直線之間的位置關系
1空間的兩條直線有如下三種關系:
共面直線
相交直線:同一平面內,有且只有一個公共點;
平行直線:同一平面內,沒有公共點;
異面直線:不同在任何一個平面內,沒有公共點。
2公理4:平行于同一條直線的兩條直線互相平行。
符號表示為:設a、b、c是三條直線
a∥b
c∥b
強調:公理4實質上是說平行具有傳遞性,在平面、空間這個性質都適用。
公理4作用:判斷空間兩條直線平行的依據。
3等角定理:空間中如果兩個角的兩邊分別對應平行,那么這兩個角相等或互補
4注意點:
、賏'與b'所成的角的大小只由a、b的相互位置來確定,與O的選擇無關,為了簡便,點O一般取在兩直線中的一條上;
、趦蓷l異面直線所成的角θ∈(0,);
、郛攦蓷l異面直線所成的角是直角時,我們就說這兩條異面直線互相垂直,記作a⊥b;
、軆蓷l直線互相垂直,有共面垂直與異面垂直兩種情形;
、萦嬎阒校ǔ0褍蓷l異面直線所成的角轉化為兩條相交直線所成的角。
2.1.3—2.1.4空間中直線與平面、平面與平面之間的位置關系
1、直線與平面有三種位置關系:
(1)直線在平面內——有無數(shù)個公共點
(2)直線與平面相交——有且只有一個公共點
(3)直線在平面平行——沒有公共點
指出:直線與平面相交或平行的情況統(tǒng)稱為直線在平面外,可用aα來表示
aαa∩α=Aa∥α
2.2.直線、平面平行的判定及其性質
2.2.1直線與平面平行的判定
1、直線與平面平行的判定定理:平面外一條直線與此平面內的一條直線平行,則該直線與此平面平行。
簡記為:線線平行,則線面平行。
符號表示:
aα
bβ=>a∥α
a∥b
2.2.2平面與平面平行的判定
1、兩個平面平行的判定定理:一個平面內的兩條交直線與另一個平面平行,則這兩個平面平行。
符號表示:
aβ
bβ
a∩b=Pβ∥α
a∥α
b∥α
2、判斷兩平面平行的方法有三種:
(1)用定義;
(2)判定定理;
(3)垂直于同一條直線的兩個平面平行。
2.2.3—2.2.4直線與平面、平面與平面平行的性質
1、定理:一條直線與一個平面平行,則過這條直線的任一平面與此平面的交線與該直線平行。
簡記為:線面平行則線線平行。
符號表示:
a∥α
aβa∥b
α∩β=b
作用:利用該定理可解決直線間的平行問題。
2、定理:如果兩個平面同時與第三個平面相交,那么它們的交線平行。
符號表示:
α∥β
α∩γ=aa∥b
β∩γ=b
作用:可以由平面與平面平行得出直線與直線平行
2.3直線、平面垂直的判定及其性質
2.3.1直線與平面垂直的判定
1、定義
如果直線L與平面α內的任意一條直線都垂直,我們就說直線L與平面α互相垂直,記作L⊥α,直線L叫做平面α的垂線,平面α叫做直線L的垂面。直線與平面垂直時,它們公共點P叫做垂足。
2、判定定理:一條直線與一個平面內的兩條相交直線都垂直,則該直線與此平面垂直。
注意點:a)定理中的“兩條相交直線”這一條件不可忽視;
b)定理體現(xiàn)了“直線與平面垂直”與“直線與直線垂直”互相轉化的數(shù)學思想。
2.3.2平面與平面垂直的判定
1、二面角的概念:表示從空間一直線出發(fā)的兩個半平面所組成的圖形
2、二面角的記法:二面角α-l-β或α-AB-β
3、兩個平面互相垂直的判定定理:一個平面過另一個平面的垂線,則這兩個平面垂直。
2.3.3—2.3.4直線與平面、平面與平面垂直的性質
1、定理:垂直于同一個平面的兩條直線平行。
2性質定理:兩個平面垂直,則一個平面內垂直于交線的直線與另一個平面垂直。
高二數(shù)學知識點總結6
反正弦函數(shù)的導數(shù):正弦函數(shù)y=sinx在[-π/2,π/2]上的反函數(shù),叫做反正弦函數(shù)。記作arcsinx,表示一個正弦值為x的`角,該角的范圍在[-π/2,π/2]區(qū)間內。定義域[-1,1],值域[-π/2,π/2]。
反函數(shù)求導方法
若F(X),G(X)互為反函數(shù),
則:F'(X)_'(X)=1
E.G.:y=arcsinx=siny
y'_'=1(arcsinx)'_siny)'=1
y'=1/(siny)'=1/(cosy)=1/根號(1-sin^2y)=1/根號(1-x^2)
其余依此類推
高二數(shù)學知識點總結7
一、導數(shù)的應用
1.用導數(shù)研究函數(shù)的最值
確定函數(shù)在其確定的定義域內可導(通常為開區(qū)間),求出導函數(shù)在定義域內的零點,研究在零點左、右的函數(shù)的單調性,若左增,右減,則在該零點處,函數(shù)去極大值;若左邊減少,右邊增加,則該零點處函數(shù)取極小值。學習了如何用導數(shù)研究函數(shù)的最值之后,可以做一個有關導數(shù)和函數(shù)的綜合題來檢驗下學習成果。
2.生活中常見的函數(shù)優(yōu)化問題
1)費用、成本最省問題
2)利潤、收益最大問題
3)面積、體積最(大)問題
二、推理與證明
1.歸納推理:歸納推理是高二數(shù)學的一個重點內容,其難點就是有部分結論得到一般結論,破解的方法是充分考慮部分結論提供的信息,從中發(fā)現(xiàn)一般規(guī)律;類比推理的難點是發(fā)現(xiàn)兩類對象的相似特征,由其中一類對象的特征得出另一類對象的特征,破解的方法是利用已經掌握的數(shù)學知識,分析兩類對象之間的關系,通過兩類對象已知的相似特征得出所需要的相似特征。
2.類比推理:由兩類對象具有某些類似特征和其中一類對象的某些已知特征,推出另一類對象也具有這些特征的推理稱為類比推理,簡而言之,類比推理是由特殊到特殊的推理。
三、不等式
對于含有參數(shù)的一元二次不等式解的討論
1)二次項系數(shù):如果二次項系數(shù)含有字母,要分二次項系數(shù)是正數(shù)、零和負數(shù)三種情況進行討論。
2)不等式對應方程的根:如果一元二次不等式對應的方程的根能夠通過因式分解的方法求出來,則根據這兩個根的大小進行分類討論,這時,兩個根的大小關系就是分類標準,如果一元二次不等式對應的方程根不能通過因式分解的方法求出來,則根據方程的判別式進行分類討論。通過不等式練習題能夠幫助你更加熟練的運用不等式的知識點,例如用放縮法證明不等式這種技巧以及利用均值不等式求最值的九種技巧這樣的解題思路需要再做題的過程中總結出來。
拓展閱讀
說明:以下內容為本文主關鍵詞的百科內容,一詞可能多意,僅作為參考閱讀內容,下載的文檔不包含此內容。每個關鍵詞后面會隨機推薦一個搜索引擎工具,方便用戶從多個垂直領域了解更多與本文相似的內容。
1、數(shù)學:數(shù)學,是研究數(shù)量、結構、變化、空間以及信息等概念的一門學科。數(shù)學是人類對事物的抽象結構與模式進行嚴格描述的一種通用手段,可以應用于現(xiàn)實世界的任何問題,所有的數(shù)學對象本質上都是人為定義的。從這個意義上,數(shù)學屬于形式科學,而不是自然科學。不同的數(shù)學家和哲學家對數(shù)學的確切范圍和定義有一系列的看法。在人類歷史發(fā)展和社會生活中,數(shù)學發(fā)揮著不可替代的作用,同時也是學習和研究現(xiàn)代科學技術必不可少的基本工具。數(shù)學史數(shù)理邏輯與數(shù)學基礎a:演繹邏輯學(也稱符號邏輯學),b:證明論(也稱元數(shù)學),c:遞歸論,d:模型論,e:公理集合論,f:數(shù)學基礎,g:數(shù)理邏輯與數(shù)學基礎其他學科。數(shù)論a:初等數(shù)論,b:解析數(shù)論,c:代數(shù)數(shù)論,d:超越數(shù)論,e:丟番圖逼近,f:數(shù)的幾何,g:概率數(shù)論,h:計算數(shù)論,i:數(shù)論其他學科。代數(shù)學a:線性代數(shù),b:群論,c:域論,d:李群,e:李代數(shù),f:Kac-Moody代數(shù),g:環(huán)論(包括交換環(huán)與交換代數(shù),...頭條搜索更多高二數(shù)學下冊知識點總結
2、類比推理:類比推理亦稱“類推”。推理的一種形式。根據兩個對象在某些屬性上相同或相似,通過比較而推斷出它們在其他屬性上也相同的推理過程。它是從觀察個別現(xiàn)象開始的,因而近似歸納推理。但它又不是由特殊到一般,而是由特殊到特殊,因而又不同于歸納推理。分完全類推和不完全類推兩種形式。完全類推是兩個或兩類事物在進行比較的方面完全相同時的類推;不完全類推是兩個或兩類事物在進行比較的方面不完全相同時的類推。這是科學研究中常用的方法之一。它是從特殊推向特殊的'推理。類比推理是根據兩個或兩類對象有部分屬性相同,從而推出它們的其他屬性也相同的推理。簡稱類推、類比。以關于兩個事物某些屬性相同的判斷為前提,推出兩個事物的其他屬性相同的結論的推理。如聲和光有不少屬性相同--直線傳播,有反射、折射和干擾等現(xiàn)象;由此推出:既然聲有波動性質,光也有波動性質。這就是類比推理。類比推理具有或然性。如果前提中確認的共同屬性很少,而且共同屬性和推出來的屬性沒有什么關系,這樣的類比推...谷歌搜索更多高二數(shù)學下冊知識點總結
3、總結:總結是事后對某一階段的工作或某項工作的完成情況,包括取得的成績、存在的問題及得到的經驗和教訓加以回顧和分析,為今后的工作提供幫助和借鑒的一種書面材料。(1)自身性?偨Y都是以第一人稱,從自身出發(fā)。它是單位或個人自身實踐活動的反映,其內容行文來自自身實踐,其結論也為指導今后自身實踐。(2)指導性?偨Y以回顧思考的方式對自身以往實踐做理性認識,找出事物本質和發(fā)展規(guī)律,取得經驗,避免失誤,以指導未來工作。(3)理論性。總結是理論的升華,是對前一階段工作的經驗、教訓的分析研究,借此上升到理論的高度,并從中提煉出有規(guī)律性的東西,從而提高認識,以正確的認識來把握客觀事物,更好地指導今后的實際工作。(4)客觀性?偨Y是對實際工作再認識的過程,是對前一階段工作的回顧?偨Y的內容必須要完全忠于自身的客觀實踐,其材料必須以客觀事實為依據,不允許東拼西湊,要真實、客觀地分析情況、總結經驗。(1)綜合性總結。對某一單位、某一部門工作進行全面性總結,既反...頭條搜索更多高二數(shù)學下冊知識點總結
4、因式分解:把一個多項式在一個范圍(如實數(shù)范圍內分解,即所有項均為實數(shù))化為幾個整式的積的形式,這種式子變形叫做這個多項式的因式分解,也叫作把這個多項式分解因式。把一個多項式在一個范圍化為幾個整式的積的形式,這種式子變形叫做這個多項式的因式分解,也叫作把這個多項式分解因式。因式分解是中學數(shù)學中最重要的恒等變形之一,它被廣泛地應用于初等數(shù)學之中,在數(shù)學求根作圖、解一元二次方程方面也有很廣泛的應用,是解決許多數(shù)學問題的有力工具。因式分解方法靈活,技巧性強。學習這些方法與技巧,不僅是掌握因式分解內容所需的,而且對于培養(yǎng)解題技能、發(fā)展思維能力都有著十分獨特的作用。學習它,既可以復習整式的四則運算,又為學習分式打好基礎;學好它,既可以培養(yǎng)學生的觀察、思維發(fā)展性、運算能力,又可以提高綜合分析和解決問題的能力;窘Y論:分解因式為整式乘法的逆過程。高級結論:在高等代數(shù)上,因式分解有一些重要結論,在初等代數(shù)層面上證明很困難,但是理解很容易。
高二數(shù)學知識點總結8
1、向量的加法
向量的加法滿足平行四邊形法則和三角形法則。
AB+BC=AC。
a+b=(x+x',y+y')。
a+0=0+a=a。
向量加法的運算律:
交換律:a+b=b+a;
結合律:(a+b)+c=a+(b+c)。
2、向量的減法
如果a、b是互為相反的向量,那么a=-b,b=-a,a+b=0. 0的反向量為0
AB-AC=CB. 即“共同起點,指向被減”
a=(x,y) b=(x',y') 則 a-b=(x-x',y-y').
3、數(shù)乘向量
實數(shù)λ和向量a的乘積是一個向量,記作λa,且∣λa∣=∣λ∣·∣a∣。
當λ>0時,λa與a同方向;
當λ<0時,λa與a反方向;
當λ=0時,λa=0,方向任意。
當a=0時,對于任意實數(shù)λ,都有λa=0。
注:按定義知,如果λa=0,那么λ=0或a=0。
實數(shù)λ叫做向量a的系數(shù),乘數(shù)向量λa的幾何意義就是將表示向量a的有向線段伸長或壓縮。
當∣λ∣>1時,表示向量a的有向線段在原方向(λ>0)或反方向(λ<0)上伸長為原來的∣λ∣倍;
當∣λ∣<1時,表示向量a的有向線段在原方向(λ>0)或反方向(λ<0)上縮短為原來的∣λ∣倍。
數(shù)與向量的乘法滿足下面的運算律
結合律:(λa)·b=λ(a·b)=(a·λb)。
向量對于數(shù)的分配律(第一分配律):(λ+μ)a=λa+μa.
數(shù)對于向量的分配律(第二分配律):λ(a+b)=λa+λb.
數(shù)乘向量的消去律:① 如果實數(shù)λ≠0且λa=λb,那么a=b。② 如果a≠0且λa=μa,那么λ=μ。
4、向量的的數(shù)量積
定義:兩個非零向量的夾角記為〈a,b〉,且〈a,b〉∈[0,π]。
定義:兩個向量的數(shù)量積(內積、點積)是一個數(shù)量,記作a·b。若a、b不共線,則a·b=|a|·|b|·cos〈a,b〉;若a、b共線,則a·b=+-∣a∣∣b∣。
向量的`數(shù)量積的坐標表示:a·b=x·x'+y·y'。
向量的數(shù)量積的運算率
a·b=b·a(交換率);
(a+b)·c=a·c+b·c(分配率);
向量的數(shù)量積的性質
a·a=|a|的平方。
a⊥b 〈=〉a·b=0。
|a·b|≤|a|·|b|。
高二數(shù)學知識點總結9
(1)必然事件:在條件S下,一定會發(fā)生的事件,叫相對于條件S的必然事件;
(2)不可能事件:在條件S下,一定不會發(fā)生的事件,叫相對于條件S的不可能事件;
(3)確定事件:必然事件和不可能事件統(tǒng)稱為相對于條件S的確定事件;
(4)隨機事件:在條件S下可能發(fā)生也可能不發(fā)生的事件,叫相對于條件S的隨機事件;
(5)頻數(shù)與頻率:在相同的條件S下重復n次試驗,觀察某一事件A是否出現(xiàn),稱n次試驗中事件A出現(xiàn)的次數(shù)nA為事件A出現(xiàn)的頻數(shù);稱事件A出現(xiàn)的比例fn(A)=nnA為事件A出現(xiàn)的概率:對于給定的隨機事件A,如果隨著試驗次數(shù)的增加,事件A發(fā)生的頻率fn(A)穩(wěn)定在某個常數(shù)上,把這個常數(shù)記作P(A),稱為事件A的概率。
(6)頻率與概率的'區(qū)別與聯(lián)系:隨機事件的頻率,指此事件發(fā)生的次數(shù)nA與試驗總次數(shù)n的比值nnA,它具有一定的穩(wěn)定性,總在某個常數(shù)附近擺動,且隨著試驗次數(shù)的不斷增多,這種擺動幅度越來越小。我們把這個常數(shù)叫做隨機事件的概率,概率從數(shù)量上反映了隨機事件發(fā)生的可能性的大小。頻率在大量重復試驗的前提下可以近似地作為這個事件的概率。
然說難度比較大,我建議考生,采取分部得分整個試
高二數(shù)學知識點總結10
反正弦函數(shù)的導數(shù):正弦函數(shù)y=sin_在[-π/2,π/2]上的反函數(shù),叫做反正弦函數(shù)。記作arcsin_,表示一個正弦值為_的角,該角的.范圍在[-π/2,π/2]區(qū)間內。定義域[-1,1],值域[-π/2,π/2]。
反函數(shù)求導方法
若F(_),G(_)互為反函數(shù),
則:F'(_)_G'(_)=1
E.G.:y=arcsin__=siny
y'__'=1(arcsin_)'_(siny)'=1
y'=1/(siny)'=1/(cosy)=1/根號(1-sin^2y)=1/根號(1-_^2)
其余依此類推
高二數(shù)學知識點總結11
考點一:求導公式。
例1.f(x)是f(x)13x2x1的導函數(shù),則f(1)的值是3
考點二:導數(shù)的幾何意義。
例2.已知函數(shù)yf(x)的圖象在點M(1,f(1))處的切線方程是y
1x2,則f(1)f(1)2
,3)處的`切線方程是例3.曲線yx32x24x2在點(1
點評:以上兩小題均是對導數(shù)的幾何意義的考查。
考點三:導數(shù)的幾何意義的應用。
例4.已知曲線C:yx33x22x,直線l:ykx,且直線l與曲線C相切于點x0,y0x00,求直線l的方程及切點坐標。
點評:本小題考查導數(shù)幾何意義的應用。解決此類問題時應注意“切點既在曲線上又在切線上”這個條件的應用。函數(shù)在某點可導是相應曲線上過該點存在切線的充分條件,而不是必要條件。
考點四:函數(shù)的單調性。
例5.已知fxax3_1在R上是減函數(shù),求a的取值范圍。32
點評:本題考查導數(shù)在函數(shù)單調性中的應用。對于高次函數(shù)單調性問題,要有求導意識。
考點五:函數(shù)的極值。
例6.設函數(shù)f(x)2x33ax23bx8c在x1及x2時取得極值。
(1)求a、b的值;
(2)若對于任意的x[0,3],都有f(x)c2成立,求c的取值范圍。
點評:本題考查利用導數(shù)求函數(shù)的極值。求可導函數(shù)fx的極值步驟:
、偾髮(shù)f'x;
、谇骹'x0的根;③將f'x0的根在數(shù)軸上標出,得出單調區(qū)間,由f'x在各區(qū)間上取值的正負可確定并求出函數(shù)fx的極值。
高二數(shù)學知識點總結12
考點一:向量的概念、向量的基本定理
【內容解讀】了解向量的實際背景,掌握向量、零向量、平行向量、共線向量、單位向量、相等向量等概念,理解向量的幾何表示,掌握平面向量的基本定理。
注意對向量概念的理解,向量是可以自由移動的,平移后所得向量與原向量相同;兩個向量無法比較大小,它們的模可比較大小。
考點二:向量的運算
【內容解讀】向量的運算要求掌握向量的加減法運算,會用平行四邊形法則、三角形法則進行向量的加減運算;掌握實數(shù)與向量的積運算,理解兩個向量共線的含義,會判斷兩個向量的平行關系;掌握向量的數(shù)量積的運算,體會平面向量的數(shù)量積與向量投影的關系,并理解其幾何意義,掌握數(shù)量積的坐標表達式,會進行平面向量積的運算,能運用數(shù)量積表示兩個向量的夾角,會用向量積判斷兩個平面向量的垂直關系。
【命題規(guī)律】命題形式主要以選擇、填空題型出現(xiàn),難度不大,考查重點為模和向量夾角的定義、夾角公式、向量的坐標運算,有時也會與其它內容相結合。
考點三:定比分點
【內容解讀】掌握線段的定比分點和中點坐標公式,并能熟練應用,求點分有向線段所成比時,可借助圖形來幫助理解。
【命題規(guī)律】重點考查定義和公式,主要以選擇題或填空題型出現(xiàn),難度一般。由于向量應用的廣泛性,經常也會與三角函數(shù),解析幾何一并考查,若出現(xiàn)在解答題中,難度以中檔題為主,偶爾也以難度略高的`題目。
考點四:向量與三角函數(shù)的綜合問題
【內容解讀】向量與三角函數(shù)的綜合問題是高考經常出現(xiàn)的問題,考查了向量的知識,三角函數(shù)的知識,達到了高考中試題的覆蓋面的要求。
【命題規(guī)律】命題以三角函數(shù)作為坐標,以向量的坐標運算或向量與解三角形的內容相結合,也有向量與三角函數(shù)圖象平移結合的問題,屬中檔偏易題。
考點五:平面向量與函數(shù)問題的交匯
【內容解讀】平面向量與函數(shù)交匯的問題,主要是向量與二次函數(shù)結合的問題為主,要注意自變量的取值范圍。
【命題規(guī)律】命題多以解答題為主,屬中檔題。
考點六:平面向量在平面幾何中的應用
【內容解讀】向量的坐標表示實際上就是向量的代數(shù)表示.在引入向量的坐標表示后,使向量之間的運算代數(shù)化,這樣就可以將“形”和“數(shù)”緊密地結合在一起.因此,許多平面幾何問題中較難解決的問題,都可以轉化為大家熟悉的代數(shù)運算的論證.也就是把平面幾何圖形放到適當?shù)淖鴺讼抵校x予幾何圖形有關點與平面向量具體的坐標,這樣將有關平面幾何問題轉化為相應的代數(shù)運算和向量運算,從而使問題得到解決.
【命題規(guī)律】命題多以解答題為主,屬中等偏難的試題。
高二數(shù)學知識點總結13
一、集合、簡易邏輯(14課時,8個)1.集合;2.子集;3.補集;4.交集;5.并集;6.邏輯連結詞;7.四種命題;8.充要條件.
二、函數(shù)(30課時,12個)1.映射;2.函數(shù);3.函數(shù)的單調性;4.反函數(shù);5.互為反函數(shù)的函數(shù)圖象間的關系;6.指數(shù)概念的擴充;7.有理指數(shù)冪的運算;8.指數(shù)函數(shù);9.對數(shù);10.對數(shù)的運算性質;11.對數(shù)函數(shù).12.函數(shù)的應用舉例.
三、數(shù)列(12課時,5個)1.數(shù)列;2.等差數(shù)列及其通項公式;3.等差數(shù)列前n項和公式;4.等比數(shù)列及其通頂公式;5.等比數(shù)列前n項和公式.
四、三角函數(shù)(46課時17個)1.角的概念的推廣;2.弧度制;3.任意角的三角函數(shù);4,單位圓中的三角函數(shù)線;5.同角三角函數(shù)的基本關系式;6.正弦、余弦的誘導公式’7.兩角和與差的正弦、余弦、正切;8.二倍角的正弦、余弦、正切;9.正弦函數(shù)、余弦函數(shù)的圖象和性質;10.周期函數(shù);11.函數(shù)的奇偶性;12.函數(shù)的圖象;13.正切函數(shù)的圖象和性質;14.已知三角函數(shù)值求角;15.正弦定理;16余弦定理;17斜三角形解法舉例.
五、平面向量(12課時,8個)1.向量2.向量的加法與減法3.實數(shù)與向量的積;4.平面向量的坐標表示;5.線段的定比分點;6.平面向量的數(shù)量積;7.平面兩點間的距離;8.平移.
六、不等式(22課時,5個)1.不等式;2.不等式的基本性質;3.不等式的證明;4.不等式的解法;5.含絕對值的不等式.
七、直線和圓的方程(22課時,12個)1.直線的傾斜角和斜率;2.直線方程的點斜式和兩點式;3.直線方程的一般式;4.兩條直線平行與垂直的條件;5.兩條直線的交角;6.點到直線的距離;7.用二元一次不等式表示平面區(qū)域;8.簡單線性規(guī)劃問題.9.曲線與方程的概念;10.由已知條件列出曲線方程;11.圓的標準方程和一般方程;12.圓的參數(shù)方程.
八、圓錐曲線(18課時,7個)1橢圓及其標準方程;2.橢圓的簡單幾何性質;3.橢圓的參數(shù)方程;4.雙曲線及其標準方程;5.雙曲線的簡單幾何性質;6.拋物線及其標準方程;7.拋物線的簡單幾何性質.九、(B)直線、平面、簡單何體(36課時,28個)1.平面及基本性質;2.平面圖形直觀圖的畫法;3.平面直線;4.直線和平面平行的判定與性質;5,直線和平面垂直的判與性質;6.三垂線定理及其逆定理;7.兩個平面的位置關系;8.空間向量及其加法、減法與數(shù)乘;9.空間向量的坐標表示;10.空間向量的`數(shù)量積;11.直線的方向向量;12.異面直線所成的角;13.異面直線的公垂線;14異面直線的距離;15.直線和平面垂直的性質;16.平面的法向量;17.點到平面的距離;18.直線和平面所成的角;19.向量在平面內的射影;20.平面與平面平行的性質;21.平行平面間的距離;22.二面角及其平面角;23.兩個平面垂直的判定和性質;24.多面體;25.棱柱;26.棱錐;27.正多面體;28.球.
十、排列、組合、二項式定理(18課時,8個)1.分類計數(shù)原理與分步計數(shù)原理.2.排列;3.排列數(shù)公式’4.組合;5.組合數(shù)公式;6.組合數(shù)的兩個性質;7.二項式定理;8.二項展開式的性質.
十一、概率(12課時,5個)1.隨機事件的概率;2.等可能事件的概率;3.互斥事件有一個發(fā)生的概率;4.相互獨立事件同時發(fā)生的概率;5.獨立重復試驗.選修Ⅱ(24個)
十二、概率與統(tǒng)計(14課時,6個)1.離散型隨機變量的分布列;2.離散型隨機變量的期望值和方差;3.抽樣方法;4.總體分布的估計;5.正態(tài)分布;6.線性回歸.
十三、極限(12課時,6個)1.數(shù)學歸納法;2.數(shù)學歸納法應用舉例;3.數(shù)列的極限;4.函數(shù)的極限;5.極限的四則運算;6.函數(shù)的連續(xù)性.
十四、導數(shù)(18課時,8個)1.導數(shù)的概念;2.導數(shù)的幾何意義;3.幾種常見函數(shù)的導數(shù);4.兩個函數(shù)的和、差、積、商的導數(shù);5.復合函數(shù)的導數(shù);6.基本導數(shù)公式;7.利用導數(shù)研究函數(shù)的單調性和極值;8函數(shù)的最大值和最小值.
十五、復數(shù)(4課時,4個)1.復數(shù)的概念;2.復數(shù)的加法和減法;3.復數(shù)的乘法和除法答案補充高中數(shù)學有130個知識點,從前一份試卷要考查90個知識點,覆蓋率達70%左右,而且把這一項作為衡量試卷成功與否的標準之一.這一傳統(tǒng)近年被打破,取而代之的是關注思維,突出能力,重視思想方法和思維能力的考查.現(xiàn)在的我們學數(shù)學比前人幸福啊!!相信對你的學習會有幫助的,祝你成功!答案補充一試全國高中數(shù)學聯(lián)賽的一試競賽大綱,完全按照全日制中學《數(shù)學教學大綱》中所規(guī)定的教學要求和內容,即高考所規(guī)定的知識范圍和方法,在方法的要求上略有提高,其中概率和微積分初步不考。二試1、平面幾何基本要求:掌握初中數(shù)學競賽大綱所確定的所有內容。補充要求:面積和面積方法。幾個重要定理:梅涅勞斯定理、塞瓦定理、托勒密定理、西姆松定理。幾個重要的極值:到三角形三頂點距離之和最小的點--費馬點。到三角形三頂點距離的平方和最小的點,重心。三角形內到三邊距離之積最大的點,重心。幾何不等式。簡單的等周問題。了解下述定理:在周長一定的n邊形的集合中,正n邊形的面積最大。在周長一定的簡單閉曲線的集合中,圓的面積最大。在面積一定的n邊形的集合中,正n邊形的周長最小。在面積一定的簡單閉曲線的集合中,圓的周長最小。幾何中的運動:反射、平移、旋轉。復數(shù)方法、向量方法。平面凸集、凸包及應用。答案補充第二數(shù)學歸納法。遞歸,一階、二階遞歸,特征方程法。函數(shù)迭代,求n次迭代,簡單的函數(shù)方程。n個變元的平均不等式,柯西不等式,排序不等式及應用。復數(shù)的指數(shù)形式,歐拉公式,棣莫佛定理,單位根,單位根的應用。圓排列,有重復的排列與組合,簡單的組合恒等式。一元n次方程(多項式)根的個數(shù),根與系數(shù)的關系,實系數(shù)方程虛根成對定理。簡單的初等數(shù)論問題,除初中大綱中所包括的內容外,還應包括無窮遞降法,同余,歐幾里得除法,非負最小完全剩余類,高斯函數(shù),費馬小定理,歐拉函數(shù),孫子定理,格點及其性質。3、立體幾何多面角,多面角的性質。三面角、直三面角的基本性質。正多面體,歐拉定理。體積證法。截面,會作截面、表面展開圖。4、平面解析幾何直線的法線式,直線的極坐標方程,直線束及其應用。二元一次不等式表示的區(qū)域。三角形的面積公式。圓錐曲線的切線和法線。圓的冪和根軸。
高二數(shù)學知識點總結14
平面向量
戴氏航天學校老師總結加法與減法的代數(shù)運算:
(1)若a=(x1,y1 ),b=(x2,y2 )則a b=(x1+x2,y1+y2 ).
向量加法與減法的幾何表示:平行四邊形法則、三角形法則。
戴氏航天學校老師總結向量加法有如下規(guī)律:+= +(交換律); +( +c)=( + )+c (結合律);
兩個向量共線的充要條件:
(1) 向量b與非零向量共線的充要條件是有且僅有一個實數(shù),使得b= .
(2) 若=(),b=()則‖b .
平面向量基本定理:
若e1、e2是同一平面內的.兩個不共線向量,那么對于這一平面內的任一向量,戴氏航天學校老師提醒有且只 有一對實數(shù),,使得= e1+ e2
高二數(shù)學知識點總結15
分層抽樣
先將總體中的所有單位按照某種特征或標志(性別、年齡等)劃分成若干類型或層次,然后再在各個類型或層次中采用簡單隨機抽樣或系用抽樣的辦法抽取一個子樣本,最后,將這些子樣本合起來構成總體的樣本。
兩種方法
1.先以分層變量將總體劃分為若干層,再按照各層在總體中的比例從各層中抽取。
2.先以分層變量將總體劃分為若干層,再將各層中的元素按分層的順序整齊排列,最后用系統(tǒng)抽樣的方法抽取樣本。
2.分層抽樣是把異質性較強的總體分成一個個同質性較強的子總體,再抽取不同的子總體中的樣本分別代表該子總體,所有的樣本進而代表總體。
分層標準
(1)以調查所要分析和研究的主要變量或相關的變量作為分層的標準。
(2)以保證各層內部同質性強、各層之間異質性強、突出總體內在結構的變量作為分層變量。
(3)以那些有明顯分層區(qū)分的變量作為分層變量。
分層的比例問題
(1)按比例分層抽樣:根據各種類型或層次中的單位數(shù)目占總體單位數(shù)目的比重來抽取子樣本的.方法。
(2)不按比例分層抽樣:有的層次在總體中的比重太小,其樣本量就會非常少,此時采用該方法,主要是便于對不同層次的子總體進行專門研究或進行相互比較。如果要用樣本資料推斷總體時,則需要先對各層的數(shù)據資料進行加權處理,調整樣本中各層的比例,使數(shù)據恢復到總體中各層實際的比例結構。