成大在线免费视频,亚洲精品免费一级视频,日韩亚洲欧美大陆,又黄又爽免费国产视频

<style id="t465f"></style>
<legend id="t465f"><u id="t465f"><thead id="t465f"></thead></u></legend>

<acronym id="t465f"></acronym>

<sub id="t465f"><ol id="t465f"><nobr id="t465f"></nobr></ol></sub>
<sub id="t465f"></sub>

初中數(shù)學(xué)圓的知識點總結(jié)歸納

時間:2022-05-28 05:19:04 學(xué)習(xí)資料 投訴 投稿
  • 相關(guān)推薦

初中數(shù)學(xué)圓的知識點總結(jié)歸納

  總結(jié)就是把一個時段的學(xué)習(xí)、工作或其完成情況進(jìn)行一次全面系統(tǒng)的總結(jié),它可以幫助我們有尋找學(xué)習(xí)和工作中的規(guī)律,不如靜下心來好好寫寫總結(jié)吧?偨Y(jié)怎么寫才不會流于形式呢?下面是小編整理的初中數(shù)學(xué)圓的知識點總結(jié)歸納,僅供參考,希望能夠幫助到大家。

初中數(shù)學(xué)圓的知識點總結(jié)歸納

初中數(shù)學(xué)圓的知識點總結(jié)歸納1

  1、不在同一直線上的三點確定一個圓。

  2、垂徑定理垂直于弦的直徑平分這條弦并且平分弦所對的兩條弧

  推論1 ①平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧

  ②弦的垂直平分線經(jīng)過圓心,并且平分弦所對的兩條弧

 、燮椒窒宜鶎Φ囊粭l弧的直徑,垂直平分弦,并且平分弦所對的另一條弧

  推論2圓的兩條平行弦所夾的弧相等

  3、圓是以圓心為對稱中心的中心對稱圖形

  4、圓是定點的距離等于定長的點的集合

  5、圓的內(nèi)部可以看作是圓心的.距離小于半徑的點的集合

  6、圓的外部可以看作是圓心的距離大于半徑的點的集合

  7、同圓或等圓的半徑相等

  8、到定點的距離等于定長的點的軌跡,是以定點為圓心,定長為半徑的圓

  9、定理在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦的弦心距相等

  10、推論在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對應(yīng)的其余各組量都相等。

  11定理圓的內(nèi)接四邊形的對角互補(bǔ),并且任何一個外角都等于它的內(nèi)對角

  12、①直線L和⊙O相交d

 、谥本L和⊙O相切d=r

 、壑本L和⊙O相離d>r

  13、切線的判定定理經(jīng)過半徑的外端并且垂直于這條半徑的直線是圓的切線

  14、切線的性質(zhì)定理圓的切線垂直于經(jīng)過切點的半徑

  15、推論1經(jīng)過圓心且垂直于切線的直線必經(jīng)過切點

  16、推論2經(jīng)過切點且垂直于切線的直線必經(jīng)過圓心

  17、切線長定理從圓外一點引圓的兩條切線,它們的切線長相等,圓心和這一點的連線平分兩條切線的夾角

  18、圓的外切四邊形的兩組對邊的和相等外角等于內(nèi)對角

  19、如果兩個圓相切,那么切點一定在連心線上

  20、①兩圓外離d>R+r ②兩圓外切d=R+r

 、邸蓤A相交R—rr)

 、、兩圓內(nèi)切d=R—r(R>r)

  ⑤、兩圓內(nèi)含dr)

  21、定理相交兩圓的連心線垂直平分兩圓的公共弦

  22、定理把圓分成n(n≥3):

  ⑴依次連結(jié)各分點所得的多邊形是這個圓的內(nèi)接正n邊形

 、平(jīng)過各分點作圓的切線,以相鄰切線的交點為頂點的多邊形是這個圓的外切正n邊形

  23、定理任何正多邊形都有一個外接圓和一個內(nèi)切圓,這兩個圓是同心圓

  24、正n邊形的每個內(nèi)角都等于(n—2)×180°/n

  25、定理正n邊形的半徑和邊心距把正n邊形分成2n個全等的直角三角形

  26、正n邊形的面積Sn=pnrn/2 p表示正n邊形的周長

  27、正三角形面積√3a/4 a表示邊長

  28、如果在一個頂點周圍有k個正n邊形的角,由于這些角的和應(yīng)為360°,因此k×(n—2)180°/n=360°化為(n—2)(k—2)=4

  29、弧長計算公式:L=n兀R/180

  30、扇形面積公式:S扇形=n兀R^2/360=LR/2

  31、內(nèi)公切線長= d—(R—r)外公切線長= d—(R+r)

  32、定理一條弧所對的圓周角等于它所對的圓心角的一半

  33、推論1同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等

  34、推論2半圓(或直徑)所對的圓周角是直角;90°的圓周角所對的弦是直徑

  35、弧長公式l=axr a是圓心角的弧度數(shù)r >0扇形面積公式s=1/2xlxr

初中數(shù)學(xué)圓的知識點總結(jié)歸納2

  一、圓的定義。

  1、以定點為圓心,定長為半徑的點組成的圖形。

  2、在同一平面內(nèi),到一個定點的距離都相等的點組成的圖形。

  二、圓的各元素。

  1、半徑:圓上一點與圓心的連線段。

  2、直徑:連接圓上兩點有經(jīng)過圓心的線段。

  3、弦:連接圓上兩點線段(直徑也是弦)。

  4、。簣A上兩點之間的曲線部分。半圓周也是弧。

  (1)劣。盒∮诎雸A周的弧。

 。2)優(yōu)。捍笥诎雸A周的弧。

  5、圓心角:以圓心為頂點,半徑為角的邊。

  6、圓周角:頂點在圓周上,圓周角的兩邊是弦。

  7、弦心距:圓心到弦的垂線段的長。

  三、圓的基本性質(zhì)。

  1、圓的對稱性。

 。1)圓是軸對稱圖形,它的對稱軸是直徑所在的直線。

 。2)圓是中心對稱圖形,它的對稱中心是圓心。

 。3)圓是旋轉(zhuǎn)對稱圖形。

  2、垂徑定理。

  (1)垂直于弦的直徑平分這條弦,且平分這條弦所對的兩條弧。

  (2)推論:

  平分弦(非直徑)的直徑,垂直于弦且平分弦所對的兩條弧。

  平分弧的直徑,垂直平分弧所對的弦。

  3、圓心角的度數(shù)等于它所對弧的度數(shù)。圓周角的度數(shù)等于它所對弧度數(shù)的一半。

 。1)同弧所對的圓周角相等。

 。2)直徑所對的圓周角是直角;圓周角為直角,它所對的弦是直徑。

  4、在同圓或等圓中,兩條弦、兩條弧、兩個圓周角、兩個圓心角、兩條弦心距五對量中只要有一對量相等,其余四對量也分別相等。

  5、夾在平行線間的兩條弧相等。

  6、設(shè)⊙O的'半徑為r,OP=d。

  7、(1)過兩點的圓的圓心一定在兩點間連線段的中垂線上。

  (2)不在同一直線上的三點確定一個圓,圓心是三邊中垂線的交點,它到三個點的距離相等。

 。ㄖ苯侨切蔚耐庑木褪切边叺闹悬c。)

  8、直線與圓的位置關(guān)系。d表示圓心到直線的距離,r表示圓的半徑。

  直線與圓有兩個交點,直線與圓相交;直線與圓只有一個交點,直線與圓相切;

  直線與圓沒有交點,直線與圓相離。

  9、平面直角坐標(biāo)系中,A(x1,y1)、B(x2,y2)。

  則AB=(x1+x2,y1+y2)

  10、圓的切線判定。

 。1)d=r時,直線是圓的切線。

  切點不明確:畫垂直,證半徑。

  (2)經(jīng)過半徑的'外端且與半徑垂直的直線是圓的切線。

  切點明確:連半徑,證垂直。

  11、圓的切線的性質(zhì)(補(bǔ)充)。

 。1)經(jīng)過切點的直徑一定垂直于切線。

 。2)經(jīng)過切點并且垂直于這條切線的直線一定經(jīng)過圓心。

  12、切線長定理。

 。1)切線長:從圓外一點引圓的兩條切線,切點與這點之間連線段的長叫這個點到圓的切線長。

 。2)切線長定理。

  ∵PA、PB切⊙O于點A、B

  ∴PA=PB,∠1=∠2。

  13、內(nèi)切圓及有關(guān)計算。

 。1)三角形內(nèi)切圓的圓心是三個內(nèi)角平分線的交點,它到三邊的距離相等。

 。2)如圖,△ABC中,AB=5,BC=6,AC=7,⊙O切△ABC三邊于點D、E、F。

  求:AD、BE、CF的長。

  分析:設(shè)AD=x,則AD=AF=x,BD=BE=5—x,CE=CF=7—x、

  可得方程:5—x+7—x=6,解得x=3

 。3)△ABC中,∠C=90°,AC=b,BC=a,AB=c。

  求內(nèi)切圓的半徑r。

  分析:先證得正方形ODCE,

  得CD=CE=r

  AD=AF=b—r,BE=BF=a—r

  b—r+a—r=c

  得r=(b+a—c)/2

 。4)S△ABC=abc/4r

  14、(補(bǔ)充)

 。1)弦切角:角的頂點在圓周上,角的一邊是圓的切線,另一邊是圓的弦。

  如圖,BC切⊙O于點B,AB為弦,∠ABC叫弦切角,∠ABC=∠D。

 。2)相交弦定理。

  圓的兩條弦AB與CD相交于點P,則PAPB=PCPD。

 。3)切割線定理。

  如圖,PA切⊙O于點A,PBC是⊙O的割線,則PA2=PBPC。

 。4)推論:如圖,PAB、PCD是⊙O的割線,則PAPB=PCPD。

  15、圓與圓的位置關(guān)系。

 。1)外離:d>r1+r2,交點有0個;

  外切:d=r1+r2,交點有1個;

  相交:r1—r2

  內(nèi)切:d=r1—r2,交點有1個;

  內(nèi)含:0≤d

 。2)性質(zhì)。

  相交兩圓的連心線垂直平分公共弦。

  相切兩圓的連心線必經(jīng)過切點。

  16、圓中有關(guān)量的計算。

 。1)弧長有L表示,圓心角用n表示,圓的半徑用R表示。

  L=n(圓心角)xπ(圓周率)xr(半徑)/180

 。2)扇形的面積用S表示。

  S=lr/2

  (3)圓錐的側(cè)面展開圖是扇形。

  r為底面圓的半徑,a為母線長。

  扇形的圓心角α=l/r

  S側(cè)=arS全=ar+r2

初中數(shù)學(xué)圓的知識點總結(jié)歸納3

  一、圓及圓的相關(guān)量的定義

  1、平面上到定點的距離等于定長的所有點組成的圖形叫做圓。定點稱為圓心,定長稱為半徑。

  2、圓上任意兩點間的部分叫做圓弧,簡稱弧。大于半圓的弧稱為優(yōu)弧,小于半圓的弧稱為劣弧。連接圓上任意兩點的線段叫做弦。經(jīng)過圓心的弦叫做直徑。

  3、頂點在圓心上的角叫做圓心角。頂點在圓周上,且它的兩邊分別與圓有另一個交點的角叫做圓周角。

  4、過三角形的三個頂點的圓叫做三角形的外接圓,其圓心叫做三角形的外心。和三角形三邊都相切的圓叫做這個三角形的內(nèi)切圓,其圓心稱為內(nèi)心。

  5、直線與圓有3種位置關(guān)系:無公共點為相離;有2個公共點為相交;圓與直線有唯一公共點為相切,這條直線叫做圓的切線,這個唯一的公共點叫做切點。

  6、兩圓之間有5種位置關(guān)系:無公共點的,一圓在另一圓之外叫外離,在之內(nèi)叫內(nèi)含;有唯一公共點的,一圓在另一圓之外叫外切,在之內(nèi)叫內(nèi)切;有2個公共點的叫相交。兩圓圓心之間的距離叫做圓心距。

  7、在圓上,由2條半徑和一段弧圍成的圖形叫做扇形。圓錐側(cè)面展開圖是一個扇形。這個扇形的半徑成為圓錐的母線。

  二、有關(guān)圓的基本性質(zhì)與定理

  1、點P與圓O的位置關(guān)系(設(shè)P是一點,則PO是點到圓心的距離):P在⊙O外,PO>r;P在⊙O上,PO=r;P在⊙O內(nèi),PO;

  2、圓是軸對稱圖形,其對稱軸是任意一條過圓心的直線。圓也是中心對稱圖形,其對稱中心是圓心。

  3、垂徑定理:垂直于弦的直徑平分這條弦,并且平分弦所對的弧。逆定理:平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的弧。

  4、在同圓或等圓中,如果2個圓心角,2個圓周角,2條弧,2條弦中有一組量相等,那么他們所對應(yīng)的其余各組量都分別相等。

  5、一條弧所對的圓周角等于它所對的圓心角的一半。

  6、直徑所對的圓周角是直角。90度的圓周角所對的弦是直徑。

  7、不在同一直線上的3個點確定一個圓。

  8、一個三角形有唯一確定的外接圓和內(nèi)切圓。外接圓圓心是三角形各邊垂直平分線的交點,到三角形3個頂點距離相等;內(nèi)切圓的圓心是三角形各內(nèi)角平分線的交點,到三角形3邊距離相等。

  9、直線AB與圓O的位置關(guān)系(設(shè)OP⊥AB于P,則PO是AB到圓心的距離):AB與⊙O相離,PO>r;AB與⊙O相切,PO=r;AB與⊙O相交,PO。

  10、圓的切線垂直于過切點的直徑;經(jīng)過直徑的一端,并且垂直于這條直徑的直線,是這個圓的切線。

  11、圓與圓的位置關(guān)系(設(shè)兩圓的半徑分別為R和r,且R≥r,圓心距為P):外離P>R+r;外切P=R+r;相交R—r。

  三、圓的方程

  1、圓的標(biāo)準(zhǔn)方程

  在平面直角坐標(biāo)系中,以點O(a,b)為圓心,以r為半徑的圓的標(biāo)準(zhǔn)方程是:(x—a)^2+(y—b)^2=r^2

  2、圓的一般方程

  把圓的標(biāo)準(zhǔn)方程展開,移項,合并同類項后,可得圓的一般方程是:x^2+y^2+Dx+Ey+F=0

  和標(biāo)準(zhǔn)方程對比,其實D=—2a,E=—2b,F(xiàn)=a^2+b^2。

  相關(guān)知識:圓的離心率e=0、在圓上任意一點的曲率半徑都是r。

  四、圓的定理

  1、垂徑定理:垂直于弦的直徑平分這條弦并且平分弦所對的兩條弧。

  推論1:①平分弦(不是直徑)的'直徑垂直于弦,并且平分弦所對的兩條弧;

 、谙业拇怪逼椒志經(jīng)過圓心,并且平分弦所對的兩條弧;

  ③平分弦所對的一條弧的直徑,垂直平分弦,并且平分弦所對的另一條弧。

  推論2:圓的兩條平行弦所夾的弧相等。

  2、推論1同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等。

  3、推論2半圓(或直徑)所對的圓周角是直角;90°的圓周角所對的弦是直徑。

  4、定理:任何正多邊形都有一個外接圓和一個內(nèi)切圓,這兩個圓是同心圓。

  5、定理圓的內(nèi)接四邊形的對角互補(bǔ),并且任何一個外角都等于它的內(nèi)對角。

【初中數(shù)學(xué)圓的知識點總結(jié)歸納】相關(guān)文章:

初中數(shù)學(xué)圓的知識點總結(jié)08-30

高二知識點數(shù)學(xué)總結(jié)歸納06-15

高二知識點數(shù)學(xué)總結(jié)歸納02-02

數(shù)學(xué)高二知識點總結(jié)歸納07-25

小升初的數(shù)學(xué)知識點總結(jié)歸納07-13

數(shù)學(xué)圓知識點總結(jié)(7篇)03-07

高三數(shù)學(xué)知識點歸納總結(jié)04-20

初三數(shù)學(xué)知識點總結(jié)歸納07-25

高二知識點數(shù)學(xué)總結(jié)歸納15篇06-15

高二知識點數(shù)學(xué)總結(jié)歸納(15篇)06-15