成大在线免费视频,亚洲精品免费一级视频,日韩亚洲欧美大陆,又黄又爽免费国产视频

<style id="t465f"></style>
<legend id="t465f"><u id="t465f"><thead id="t465f"></thead></u></legend>

<acronym id="t465f"></acronym>

<sub id="t465f"><ol id="t465f"><nobr id="t465f"></nobr></ol></sub>
<sub id="t465f"></sub>

平行四邊形教案

時(shí)間:2023-05-25 11:10:10 教案 投訴 投稿

【推薦】平行四邊形教案3篇

  作為一名默默奉獻(xiàn)的教育工作者,往往需要進(jìn)行教案編寫工作,借助教案可以讓教學(xué)工作更科學(xué)化。怎樣寫教案才更能起到其作用呢?下面是小編整理的平行四邊形教案3篇,僅供參考,希望能夠幫助到大家。

【推薦】平行四邊形教案3篇

平行四邊形教案 篇1

  教學(xué)目標(biāo):

  1.使學(xué)生在理解的基礎(chǔ)上掌握平行四邊形面積的計(jì)算公式,并會(huì)運(yùn)用公式正確地計(jì)算平行四邊形的面積

  2.通過操作、觀察、比較,發(fā)展學(xué)生的空間觀念,培養(yǎng)學(xué)生運(yùn)用轉(zhuǎn)化的思考方法解決問題的能力和邏輯思維能力.

  3.對(duì)學(xué)生進(jìn)行辯詐唯物主義觀點(diǎn)的啟蒙教育.

  教學(xué)重點(diǎn):

  理解公式并正確計(jì)算平行四邊形的面積.

  教學(xué)難點(diǎn):

  理解平行四邊形面積公式的推導(dǎo)過程.

  學(xué)具準(zhǔn)備:

  每個(gè)學(xué)生準(zhǔn)備一個(gè)平行四邊形。

  教學(xué)過程:

  一、導(dǎo)入新課。

  1.請(qǐng)同學(xué)翻書到86頁,仔細(xì)觀察,找一找圖中有哪些學(xué)過的圖形?

  2.好,下面誰來說一說你找到了哪些學(xué)過的圖形?

  3.請(qǐng)觀察這兩個(gè)花壇,哪一個(gè)大呢?假如這塊長方形花壇的長是3米,寬是2米,怎樣計(jì)算它的面積呢?根據(jù)長方形的面積=長寬(板書),得出長方形花壇的面積是6平方米,平行四邊形面積我們還沒有學(xué)過,所以不能計(jì)算出平行四邊形花壇的面積,這節(jié)課我們就學(xué)習(xí)平行四邊形面積計(jì)算。

  二、民主導(dǎo)學(xué)

 。ㄒ唬、數(shù)方格法

  用展示臺(tái)出示方格圖

  1.這是什么圖形?(長方形)如果每個(gè)小方格代表1平方厘米,這個(gè)長方形的面積是多少?(18平方厘米)

  2.這是什么圖形?(平行四邊形)每一個(gè)方格表示1平方厘米,自己數(shù)一數(shù)是多少平方厘米?

  請(qǐng)同學(xué)認(rèn)真觀察一下,平行四邊形在方格紙上出現(xiàn)了不滿一格的,怎么數(shù)呢?可以都按半格計(jì)算。然后指名說出數(shù)得的結(jié)果,并說一說是怎樣數(shù)的。

  3.請(qǐng)同學(xué)看方格圖填87頁最下方的表,填完后請(qǐng)學(xué)生回答發(fā)現(xiàn)了什么?

  小結(jié):如果長方形的長和寬分別等于平行四邊形的'底和高,則它們的面積相等。

  (二)引入割補(bǔ)法

  以后我們遇到平行四邊形的地、平行四邊形的零件等等平行四邊形的東西,都像這樣數(shù)方格的方法來計(jì)算平行四邊形的面積方不方便?那么我們就要找到一種方便、又有規(guī)律的計(jì)算平行四邊形面積的方法。

 。ㄈ└钛a(bǔ)法

  這是一個(gè)平行四邊形,請(qǐng)同學(xué)們把自己準(zhǔn)備的平行四邊形沿著所作的高剪下來,自己拼一下,看可以拼成我們以前學(xué)過的什么圖形?

平行四邊形教案 篇2

  教學(xué)內(nèi)容:國標(biāo)蘇教版數(shù)學(xué)第八冊P43-45。

  教學(xué)目標(biāo):

  1、學(xué)生在聯(lián)系生活實(shí)際和動(dòng)手操作的過程中認(rèn)識(shí)平行四邊形,發(fā)現(xiàn)平行四邊形的基本特征,認(rèn)識(shí)平行四邊形的高。

  2、學(xué)生在活動(dòng)中進(jìn)一步積累認(rèn)識(shí)圖形的學(xué)習(xí)經(jīng)驗(yàn),學(xué)會(huì)用不同方法做出一個(gè)平行四邊形,會(huì)在方格紙上畫平行四邊形,能正確判斷一個(gè)平面圖形是不是平行四邊形,能測量或畫出平行四邊形的高。

  3、學(xué)生感受圖形與生活的聯(lián)系,感受平面圖形的學(xué)習(xí)價(jià)值,進(jìn)一步發(fā)展對(duì)“空間與圖形”的學(xué)習(xí)興趣。

  教學(xué)重點(diǎn):進(jìn)一步認(rèn)識(shí)平行四邊形,發(fā)現(xiàn)平行四邊形的基本特征,會(huì)畫高。

  教學(xué)難點(diǎn):引導(dǎo)學(xué)生發(fā)現(xiàn)平行四邊形的特征。

  教學(xué)準(zhǔn)備:配套多媒體課件。

  教學(xué)過程:

  一、生活導(dǎo)入。

  1、(課件出示學(xué)校大門關(guān)閉和打開的錄象,最后定格成放大的圖片)教師談話:同學(xué)們每天都要經(jīng)過校門進(jìn)入校園,但是你們注意觀察我們的校門了嗎?從圖片中你們能找到一些平面圖形嗎?根據(jù)回答,教師板書:平行四邊形。

  2、你們還能找出我們生活中見過的一些平行四邊形嗎?學(xué)生回答后,教師課件出示一些生活中的平行四邊形:如活動(dòng)衣架、風(fēng)箏、樓梯欄桿等。

  3、今天這節(jié)課我們一起來進(jìn)一步研究平行四邊形,相信通過研究,我們將有新的收獲。板書完整課題:認(rèn)識(shí)平行四邊形。

 。墼u(píng):《數(shù)學(xué)課程標(biāo)準(zhǔn)》指出:“學(xué)生的數(shù)學(xué)學(xué)習(xí)內(nèi)容應(yīng)當(dāng)是現(xiàn)實(shí)的、有意義的、富有挑戰(zhàn)性的。”選擇學(xué)生熟悉和感興趣的素材,吸引學(xué)生的注意力,激發(fā)學(xué)生主動(dòng)參與學(xué)習(xí)活動(dòng)的熱情,讓學(xué)生初步感知平行四邊形。]

  二、探究特點(diǎn)。

  1、剛才同學(xué)們已經(jīng)能找出生活中的一些平行四邊形了,那我們能不能利用身邊的一些物品,自己來想辦法來制作一個(gè)平行四邊形呢?你們可以先看一看材料袋中有哪些材料,再獨(dú)立思考一下準(zhǔn)備怎么做;如果有困難的可以先看看學(xué)具袋中的平行四邊形再操作。

  2、大家已經(jīng)完成了自己的創(chuàng)作,現(xiàn)在請(qǐng)你們和小組的同學(xué)交流一下,說說自己的做法和為什么這樣做,然后派代表上來交流。

  學(xué)生小組交流,教師巡視,并進(jìn)行一定的輔導(dǎo)。

  3、哪個(gè)小組派代表上來交流?注意把你的方法展示在投影儀上,然后說說這么做的理由,其他小組等他們說完后可以進(jìn)行補(bǔ)充。

  (1)方法一:用小棒擺。請(qǐng)你說說你為什么這么做?要注意些什么呢?

  (2)方法二:在釘子板上面圍一個(gè)平行四邊形。你介紹一下,在圍的時(shí)候要注意些什么?怎樣才能做一個(gè)平行四邊形?

  (3)方法三:在方格紙上畫一個(gè)平行四邊形。你能提醒一下大家嗎?應(yīng)該怎樣才能得到一個(gè)平行四邊形?

  (4)用直尺畫一個(gè)平行四邊形。

  ……

  (評(píng):這個(gè)個(gè)環(huán)節(jié)的設(shè)計(jì),本著學(xué)生為主體的思想,敢于放手,讓學(xué)生的多種感官參與學(xué)習(xí)活動(dòng),讓學(xué)生在操作中體驗(yàn)平行四邊形的一些特點(diǎn);既實(shí)現(xiàn)了探究過程開放性,也突出了師生之間、學(xué)生之間的多向交流,體現(xiàn)那了學(xué)生為本的理念。)

  4、剛才我們已經(jīng)能用多種方法來制作平行四邊形,現(xiàn)在請(qǐng)大家在方格紙上獨(dú)立在方格紙上畫一個(gè)平行四邊形,想想應(yīng)該怎么畫?注意些什么?

  (評(píng):本環(huán)節(jié)的設(shè)計(jì),通過在方格紙上畫,讓學(xué)生再次感知平行四邊形的一些特點(diǎn),為下面的猜想、驗(yàn)證和畫高作了鋪墊。)

  5、我們已經(jīng)能夠用不同的方法制作平行四邊形,并且能夠在方格紙上話一個(gè)平行四邊形。那么這些大小不同的平行四邊形到底有什么共同特點(diǎn)呢?下面我們一起來研究。

  根據(jù)你們在制作平行四邊形的時(shí)候的體會(huì),你們可以猜想一下:平行四邊形有哪些特點(diǎn)?(友情提示:課件中出示提示:我們可以從平行四邊形的那些方面來猜想它的特征呢?邊?角?)

  6、學(xué)生小組討論后提問并板書猜想:

  對(duì)邊可能平行;

  對(duì)邊可能相等;

  對(duì)角相等;

  ……

  7、你們真行,有了這么多的猜想,那我們能夠自己想辦法來證明這些猜想是否正確呢?請(qǐng)每個(gè)小組先認(rèn)領(lǐng)一條,時(shí)間有多余可以再研究其他的猜想。

  學(xué)生每小組上臺(tái)認(rèn)領(lǐng)一條猜想,學(xué)生分組驗(yàn)證猜想。

  8、經(jīng)過同學(xué)們的努力,我們已經(jīng)自己驗(yàn)證了其中一條猜想,現(xiàn)在我們舊來交流一下,其他小組認(rèn)真聽好,他們的回答是否正確,你覺得怎樣?

  9、小組派代表上來交流自己小組的驗(yàn)證方法,其他小組在其完成后進(jìn)行評(píng)價(jià)。

  (1) 兩組對(duì)邊分別相等:學(xué)生介紹可以用對(duì)折或用直尺量的方法來驗(yàn)證對(duì)邊相等后,教師用課件直觀展示。

  (2) 兩組對(duì)邊分別平行:學(xué)生匯報(bào)的時(shí)候如果不一定很完整,教師用課件展示:兩條對(duì)邊分別延伸,然后顯示不相交。

  (3) 對(duì)角相等:學(xué)生說出方法后,教師讓學(xué)生再自己量一量。

  ……

  最后,教師板書出經(jīng)過驗(yàn)證特點(diǎn):

  兩組對(duì)邊分別平行并且相等;

  對(duì)角相等;

  內(nèi)角和是360°

  (評(píng):這個(gè)環(huán)節(jié)的設(shè)計(jì)蘊(yùn)涵了“猜想-驗(yàn)證-結(jié)論”這樣一個(gè)科學(xué)的探究方法。給學(xué)生提供了充分的自制探索的空間,引導(dǎo)學(xué)生先猜測特點(diǎn),再放手讓學(xué)生自己去驗(yàn)證和交流,使學(xué)生在碰撞和交流中最后的出結(jié)論。在這個(gè)過程中,學(xué)生充分展示了自己的思維過程,在交流中與傾聽中把自己的方法與別人的想法進(jìn)行了比較。)

  10、完成“想想做做1”。學(xué)生獨(dú)立完成后說說理由。

  三、認(rèn)識(shí)高、底。

  1、出示一張平行四邊形的圖,介紹:這是一個(gè)平行四邊形,你能量出平行四邊形兩條紅線間的距離嗎?應(yīng)該怎么量?把你量的線段畫出來。

  學(xué)生自己嘗試后交流。

  2、老師剛才發(fā)現(xiàn),大家畫的高位置都不一樣,你們想想這是為什么呢?這樣的線段到底有多少條呢?(一組平行線之間的距離處處相等,有無數(shù)條。)

  說明:從平行四邊形一條邊上的一點(diǎn)到它對(duì)邊的垂直線段是平行四邊形的高,這條對(duì)邊是平行四邊形的底。

  3、你能畫出另一組對(duì)邊上的高,并量一量嗎?學(xué)生繼續(xù)嘗試。

  完成后,讓學(xué)生指一指:兩次畫的.高分別垂直于哪一組對(duì)邊。板書:高和一組對(duì)邊對(duì)應(yīng)。

  4、完成“試一試”:(1)先指一指高垂直于哪條邊;(2)量出每個(gè)平行四邊形的底和高各是多少厘米。

  5、想想做做5,先指一指平行四邊形的底,再畫出這條底邊上的高,注意畫上直角標(biāo)記。如果有錯(cuò)誤,讓學(xué)生說說錯(cuò)在哪里。

  (這個(gè)環(huán)節(jié)的設(shè)計(jì),通過學(xué)生自己去量、去畫,從而很方便得到了平行四邊形的高和底的概念,在的出高和底對(duì)應(yīng)的時(shí)候比較巧妙,學(xué)生學(xué)得輕松、明了。設(shè)計(jì)的練習(xí)也遵循循序漸進(jìn)的原則,很好地讓學(xué)生領(lǐng)悟了高的知識(shí)。)

  四、練習(xí)提高。

  1、想想做做1,哪些圖形是平行四邊形,為什么。

  2、想想做做2,用2塊、4塊完全一樣的三角尺分別拼成一個(gè)平行四邊形,在小組里交流是怎樣拼的。

  3、想想做做3,用七巧板中的3塊拼成一個(gè)平行四邊形。

  出示,你能移動(dòng)其中的一塊將它改拼成長方形嗎?

  4、想想做做4,想把一塊平行四邊形的木板鋸開做成一張盡可能的的長方形桌面,該從哪里鋸開呢?找一張平行四邊形紙?jiān)囈辉嚒?/p>

  5、想想做做6,用飲料管作成一個(gè)長方形,再拉成平行四邊形,比一比長方形和平行四邊形的相同點(diǎn)和不同點(diǎn)。

  (評(píng):在鞏固練習(xí)中,注意通過學(xué)生動(dòng)手、動(dòng)腦來進(jìn)一步掌握平行四邊形的特點(diǎn)。來年系的層次清楚、逐步提高,學(xué)生容易接受,并且注意了引導(dǎo)學(xué)生去自主探索、合作交流。)

  五、閱讀調(diào)查

  自主閱讀“你知道嗎?”,說說有什么收獲,再到生活中去找找類似的例子。

  六、全課小結(jié)

  今天我們重點(diǎn)研究了哪種平面圖形?它有什么特點(diǎn)?回想一下,我們通過哪些活動(dòng)進(jìn)行研究?

平行四邊形教案 篇3

  【學(xué)習(xí)目標(biāo)】

  1.能運(yùn)用勾股定理解決生活中與直角三角形有關(guān)的問題;

  2.能從實(shí)際問題中建立數(shù)學(xué)模型,將實(shí)際問題轉(zhuǎn)化為數(shù)學(xué)問題,同時(shí)滲透方程、轉(zhuǎn)化等數(shù)學(xué)思想。

  3.進(jìn)一步發(fā)展有條理思考和有條理表達(dá)的能力,體會(huì)數(shù)學(xué)的應(yīng)用價(jià)值

  【學(xué)習(xí)重、難點(diǎn)】

  重點(diǎn):勾股定理的應(yīng)用

  難點(diǎn):將實(shí)際問題轉(zhuǎn)化為數(shù)學(xué)問題

  【新知預(yù)習(xí)】

  1.如圖,單杠AC的高度為5m,若鋼索的底端B與單杠底端C的距離為12m,求鋼索AB的長.

  【導(dǎo)學(xué)過程】

  一、情境創(chuàng)設(shè)

  欣賞生活中含有直角三角形的圖片,如果知道斜拉橋上的索塔AB的高,如何計(jì)算各條拉索的長?

  二、探索活動(dòng)

  活動(dòng)一 如圖,起重機(jī)吊運(yùn)物體,已知BC=6m,AC=10m,求AB的長.

  活動(dòng)二 在我國古代數(shù)學(xué)著作《九章算術(shù)》中記載了一道有趣的問題,這個(gè)問題的意思是:有一個(gè)水池,水面是一個(gè)邊長為10尺的正方形.在水池正中央有一根新生的蘆葦,它高出水面1尺.如果把這根蘆葦垂直拉向岸邊,它的頂端恰好到達(dá)岸邊的水面.請(qǐng)問這個(gè)水池的深度和這根蘆葦?shù)拈L度各為多少?

  活動(dòng)三 一輛裝滿貨物的卡車,其外形高2.5米,寬1.6米,要開進(jìn)廠門形狀如圖所示的某工廠,問這輛卡車能否通過該工廠的廠門?

  三、例題講解:

  1.《中華人民共和國道路交通安全法》規(guī)定:小汽車在城市道路上行駛速度不得超過70km/h,如圖一輛小汽車在一條城市中的直道上行駛,某一時(shí)刻剛好行駛到路對(duì)面車速檢測儀的正前方30m處,過了2s后,測得小汽車與車速檢測儀間的距離為50m,這輛小汽車超速了嗎?

  2.一種盛飲料的圓柱形杯(如圖),測得內(nèi)部地面半徑為2.5cm,高為12cm,吸管斜置于杯中,并在杯口外面至少露出4.6cm,問吸管需要多長?

  【反饋練習(xí)】

  1.(1)在Rt△ABC中,∠C=90°,若BC=4,AC=2,則AB=______;若AB=4,BC=2,則AC=_____;

  (2)一個(gè)直角三角形的模具,量得其中兩邊的長分別為5cm,3cm,則第三邊的長是______;

  (3)甲乙兩人同時(shí)從同一地出發(fā),甲往東走4km,乙往南走6km,這時(shí)甲乙兩人相距____km.

  2.如圖,圓柱高為8cm,地面半徑為2cm ,一只螞蟻從點(diǎn)A爬到點(diǎn)B處吃食,要爬行的最短路程( 取3)是 ( )

  A.20cm B.10cm C.14cm D.無法確定

  3.如圖,筆直的公路上A、B兩點(diǎn)相距25km,C、D為兩村莊,DA⊥AB于點(diǎn)A,CB⊥AB于點(diǎn)B,已知DA=15km,CB=10km,現(xiàn)在要在公路的AB段上建一個(gè)土特產(chǎn)品收購站E,使得C、D兩村到收購站E的距離相等,則收購站E應(yīng)建在離A點(diǎn)多遠(yuǎn)處?

  【課后作業(yè)】P67 習(xí)題2.7 1、4題

  八年級(jí)數(shù)學(xué)競賽輔導(dǎo)教案:由中點(diǎn)想到什么

  第十八講 由中點(diǎn)想到什么

  線段的中點(diǎn)是幾何圖形中一個(gè)特殊的點(diǎn),它關(guān)聯(lián)著三角形中線、直角三角形斜邊中線、中心對(duì)稱圖形、三角形中位線、梯形中位線等豐富的知識(shí),恰當(dāng)?shù)乩弥悬c(diǎn),處理中點(diǎn)是解與中點(diǎn)有關(guān)問題的關(guān)鍵,由中點(diǎn)想到什么?常見的聯(lián)想路徑是:

  1.中線倍長;

  2.作直角三角形斜邊中線;

  3.構(gòu)造中位線;

  4.構(gòu)造中心對(duì)稱全等三角形等.

  熟悉以下基本圖形,基本結(jié)論:

  例題求解

  【例1】 如圖,在△ABC中,∠B=2∠C,AD⊥BC于D,M為BC的中點(diǎn), AB=10cm,則MD的長為 .

  (“希望杯”邀請(qǐng)賽試題)

  思路點(diǎn)撥 取AB中點(diǎn)N,為直角三角形斜邊中線定理、三角形中位線定理的運(yùn)用創(chuàng)造條件.

  注 證明線段倍分關(guān)系是幾何問題中一種常見題型,利用中點(diǎn)是一個(gè)有效途徑,基本方法有:

  (1)利用直角三角斜邊中線定理;

  (2)運(yùn)用中位線定理;

  (3)倍長(或折半)法.

  【例2】 如圖,在四邊形ABCD中,一組對(duì)邊AB=CD,另一組對(duì)邊AD≠BC,分別取AD、BC的中點(diǎn)M、N,連結(jié)MN.則AB與MN的關(guān)系是( )

  A.AB=MN B.AB>MN C.AB

  (20xx年河北省初中數(shù)學(xué)創(chuàng)新與知識(shí)應(yīng)用競賽試題)

  思路點(diǎn)撥 中點(diǎn)M、N不能直接運(yùn)用,需增設(shè)中點(diǎn),常見的方法是作對(duì)角線的中點(diǎn).

  【例3】如圖,在△ABC中,AB=AC,延長AB到D,使BD=AB,E為AB中點(diǎn),連結(jié)CE、CD,求證:C D=2EC.

  (浙江省寧波市中考題)

  思路點(diǎn)撥 聯(lián)想到與中位線相關(guān)的豐富知識(shí),將線段倍分關(guān)系的證明轉(zhuǎn)化為線段相等關(guān)系的證明,解題的關(guān)鍵是恰當(dāng)添輔助線.

  【例4】 已知:如圖l,BD、CE分別是△ABC的外角平分線,過點(diǎn)A作AF⊥BD,AG ⊥ CE,垂足分別為F、G,連結(jié)FG,延長AF、AG,與直線BC相交,易證FG= (AB+BC+AC).

  若(1)BD、CF分別是△ABC的內(nèi)角平分線(如圖2);

  (2)BD為△ABC的內(nèi)角平分線,CE為△ABC的外角平分線(如圖3),則在圖2、圖3兩種情況下,線段FG與△ABC三邊又有怎樣的數(shù)量關(guān)系?請(qǐng)寫出你的猜想,并對(duì)其中的一種情況給予證明.

  (20xx年黑龍江省中考題)

  思路點(diǎn)撥 圖1中FG與△ABC三邊的數(shù)量關(guān)系的求法(關(guān)鍵是作輔助線),對(duì)尋求后兩個(gè)圖形中線段FG與△ABC三邊的數(shù)量關(guān)系起著重要作用,而由平分線、垂線發(fā)現(xiàn)中點(diǎn),這是解題的基礎(chǔ).

  注 三角形與梯形的中位線.在位置上涉及到平行,在數(shù)量上是上下底和的一半,它起著傳遞角的位置關(guān)系和線段長度的功能,在證明線段倍分關(guān)系、兩直線位置關(guān)系、線段長度的計(jì)算等方面有著廣泛的應(yīng)用.

  【例5】 如圖,任意五邊形ABCDE,M、N、P、Q分別為AB、CD、BC、DE的中點(diǎn),K、L分別為MN、PQ的中點(diǎn),求證:KL∥AE且KL= AE.

  (20xx年天津賽區(qū)試題)

  思路點(diǎn)撥 通過連線,將多邊形分割成三角形、四邊形,為多個(gè)中點(diǎn)的 利用創(chuàng)造條件,這是解本例的突破口.

  注 需要什么,構(gòu)造什么,構(gòu)造基本圖形、構(gòu)造線段的和差(倍分)關(guān)系、構(gòu)造角的關(guān)系等,這是作輔助線的有效思考方法之一.

  學(xué)歷訓(xùn)練

  1.BD、CE是△ABC的中線,G、H分別是BE、CD的中點(diǎn),BC=8,則GH= .

  (20xx年廣西中考題)

  2.如圖,△ABC中、BC=a,若D1、E1;分別是AB、AC的'中點(diǎn),則 ;若 D2、E2分別是D1B、E1C的中點(diǎn),則 :若 D3、E3分別是D2B、E2C的中點(diǎn).則 ……若Dn、En分別是Dn-1B、En-1C的中點(diǎn),則DnEn= (n≥1且 n為整數(shù)).

  (200l年山東省濟(jì)南市中考題)

  3.如圖,△ABC邊長分別為AD=14,BC=l6,AC=26,P為∠A的平分線AD上一點(diǎn),且BP⊥AD,M為BC的中點(diǎn),則PM的值是 .

  4.如圖, 梯形ABCD中,AD∥BC,對(duì)角線AC⊥BD,AC=5cm,BD=12cm,則該梯形的中位線的長等于 cm.

  (20xx年天津市中考題)

  5.如圖,在梯形ABCD中,AD∥EF∥GH∥BC,AE=EG=GB=AD=18,BC=32,則EF+GH=( )

  A.40 B.48 C 50 D.56

  6.如圖,在梯形ABCD中,AD∥BC,E、F分別是對(duì)角線BD、AC的中點(diǎn),若AD=6cm,BC=18?,則EF的長為( )

  A.8cm D.7cm C. 6cm D.5cm

  7.如圖,矩形紙片ABCD沿DF折疊后,點(diǎn)C落在AB上的E點(diǎn),DE、DF三等分∠ADC,AB的長為6,則梯形ABCD的中位線長為( )

  A.不能確定 B.2 C. D. +1

  (20xx年浙江省寧波市中考題)

  8.已知四邊形ABCD和對(duì)角線AC、BD,順次連結(jié)各邊中點(diǎn)得四邊形MNPQ,給出以下6個(gè)命題:

 、偃羲盟倪呅蜯NPQ為矩形,則原四邊形ABCD為菱形;

 、谌羲盟倪呅蜯NPQ為菱形,則原四邊形ABCD為矩形;

 、廴羲盟倪呅蜯NPQ為矩形,則AC⊥BD;

 、苋羲盟倪呅蜯NPQ為菱形,則AC=BD;

  ⑤若所得四邊形MNPQ為矩形,則∠BAD=90°;

 、奕羲盟倪呅蜯NPQ為菱形,則AB=AD.

  以上命題中,正確的是( )

  A.①② B.③④ C.③④⑤⑥ D.①②③④

  (20xx年江蘇省蘇州市中考題)

  9.如圖,已知△ABC中,AD是 高,CE是中線,DC=BE,DG⊥CE,G為垂足.求證:(1)G 是CE的 中點(diǎn);(2)∠B=2∠BCE.

  (20xx年上海市中考題)

  10.如圖,已知在正方形ABCD中,E為DC上一點(diǎn),連結(jié)BE,作CF⊥BE于P,交AD于F點(diǎn),若恰好使得AP=AB,求證:E是DC的中點(diǎn).

  11.如圖,在梯形ABCD中,AB∥CD,以AC、AD為邊作平行四邊形ACED,DC的延長線交BE于F.

  (1)求證:EF=FB;

  (2)S△BCE能否為S梯形ABCD的 ?若不能,說明理由;若能,求出AB與CD的關(guān)系.

  12.如圖,已知AG⊥BD,AF⊥CE,BD、CF分別是∠ABC和∠ACB的角平分線,若BF=2,ED=3,GC=4,則△ABC的周長為 .

  (20xx年四川省競賽題)

  13.四邊形ADCD的對(duì)角線AC、BD相交于點(diǎn)F,M、N分別為AB、CD中點(diǎn),MN分別交BD、AC于P、Q,且∠FPQ=∠FQP,若BD=10,則AC= .

  (重慶市競賽題)

  1 4.四邊形ABCD中,AD>BC,C、F分別是AB、CD的中點(diǎn),AD、BC的延長線分別與EF的延長線交于H、G,則∠AHE ∠BGE(填“>”或“=”或“<”號(hào))

  15.如圖,在△ABC中,DC=4,BC邊上的中線AD=2,AB+AC=3+ ,則S△ABC等于( )

  A. B. C. D.

  16.如圖,正方形ABCD中,AB=8,Q是CD的中點(diǎn),設(shè)∠DAQ=α,在CD上取一點(diǎn)P,使∠BAP=2α,則CP的長是( )

  A.1 D.2 C.3 D.

  17.如圖,已知A為DE的中點(diǎn),設(shè)△DBC、△ABC、△EBC的面積分別為S1,S2,S3,則S1、S2、S3之間的關(guān)系式是( )

  A. B. C. D.

  18.如圖,已知在△ABC中,D為AB的中點(diǎn),分別延長CA、CB到E、F,使DE=DF,過E、F分別作CA、 CB的垂線,相交于點(diǎn)P.求證:∠PAE=∠PBF.

  (20xx年全國初中數(shù)學(xué)聯(lián)賽試題)

  19.如圖,梯形ABCD中,AD∥BC,AC⊥BD于O,試判斷AB+CD與AD+BC的大小,并證明你的結(jié)論.

  (山東省競賽題)

  20.已知:△ABD和△ACE都是直角三角形,且∠ABD=∠ACE=90°.如圖甲,連結(jié)DE,設(shè)M為D正的中點(diǎn).

  (1)求證:MB=MC;

  (2)設(shè)∠BAD=∠CAE,固定△ABD, 讓Rt△ACE繞頂點(diǎn)A在平面內(nèi)旋轉(zhuǎn)到圖乙的位置,試問:MB;MC是否還能成立?并證明其結(jié)論.

  (江蘇省競賽題)

  21.如圖甲,平行四邊形ABCD外有一條直線MN,過A、B、C、D4個(gè)頂點(diǎn)分別作MN的垂線AA1、BB1、CCl、DDl,垂足分別為Al、B1、Cl、D1.

  (1)求證AA1+ CCl = BB1 +DDl;

  (2)如圖乙,直線MN向上移動(dòng),使點(diǎn)A與點(diǎn)B、C、D位于直線MN兩側(cè),這時(shí)過A、B、C、D向直線MN引垂線,垂足分別為Al、B1、Cl、D1,那么AA1、BB1、CCl、DDl 之間存在什么關(guān)系?

【平行四邊形教案】相關(guān)文章:

《平行四邊形的面積》教案01-02

平行四邊形面積教案02-09

認(rèn)識(shí)平行四邊形教案03-05

平行四邊形的面積教案03-17

平行四邊形的面積教案03-31

《平行四邊形面積的計(jì)算》教案09-14

數(shù)學(xué)《平行四邊形的面積》教案02-14

數(shù)學(xué)平行四邊形的面積教案02-28

平行四邊形面積的計(jì)算教案03-03

平行四邊形和梯形教案03-11