七年級數(shù)學(xué)教案精選15篇
在教學(xué)工作者開展教學(xué)活動前,可能需要進(jìn)行教案編寫工作,編寫教案有利于我們科學(xué)、合理地支配課堂時間。寫教案需要注意哪些格式呢?以下是小編為大家收集的七年級數(shù)學(xué)教案,僅供參考,歡迎大家閱讀。
七年級數(shù)學(xué)教案1
教學(xué)目標(biāo)
1.使學(xué)生理解的意義;
2.使學(xué)生掌握求一個已知數(shù)的;
3.培養(yǎng)學(xué)生的觀察、歸納與概括的能力.
教學(xué)重點和難點
重點:理解的意義,理解的代數(shù)定義與幾何定義的一致性.
難點:多重符號的化簡.
課堂教學(xué)過程 設(shè)計
一、從學(xué)生原有的認(rèn)知結(jié)構(gòu)提出問題
二、師生共同研究的定義
特點?
引導(dǎo)學(xué)生回答:符號不同,一正一負(fù);數(shù)字相同.
像這樣,只有符號不同的兩個數(shù),我們說它們互為,如+5與
應(yīng)點有什么特點?
引導(dǎo)學(xué)生回答:分別在原點的兩側(cè);到原點的距離相等.
這樣我們也可以說,在數(shù)軸上的原點兩旁,離開原點距離相等的兩個點所表示的數(shù)互為.這個概念很重要,它幫助我們直觀地看出的意義,所以有的書上又稱它為的幾何意義.
3.0的是0.
這是因為0既不是正數(shù),也不是負(fù)數(shù),它到原點的距離就是0.這是等于它本身的的數(shù).
三、運用舉例 變式練習(xí)
例1 (1)分別寫出9與-7的;
例1由學(xué)生完成.
在學(xué)習(xí)有理數(shù)時我們就指出字母可以表示一切有理數(shù),那么數(shù)a的如何表示?
引導(dǎo)學(xué)生觀察例1,自己得出結(jié)論:
數(shù)a的是-a,即在一個數(shù)前面加上一個負(fù)號即是它的
1.當(dāng)a=7時,-a=-7,7的是-7;
2.當(dāng)-5時,-a=-(-5),讀作“-5的”,-5的是5,因此,-(-5)=5.
3.當(dāng)a=0時,-a=-0,0的是0,因此,-0=0.
么意思?引導(dǎo)學(xué)生回答:-(-8)表示-8的;-(+4)表示+4的;
例2 簡化-(+3),-(-4),+(-6),+(+5)的符號.
能自己總結(jié)出簡化符號的規(guī)律嗎?
括號外的符號與括號內(nèi)的符號同號,則簡化符號后的數(shù)是正數(shù);括號內(nèi)、外的符號是異號,則簡化符號后的`數(shù)是負(fù)數(shù).
課堂練習(xí)
1.填空:
(1)+1.3的是______; (2)-3的是______;
(5)-(+4)是______的; (6)-(-7)是______的
2.簡化下列各數(shù)的符號:
-(+8),+(-9),-(-6),-(+7),+(+5).
3.下列兩對數(shù)中,哪些是相等的數(shù)?哪對互為?
-(-8)與+(-8);-(+8)與+(-8).
四、小結(jié)
指導(dǎo)學(xué)生閱讀教材,并總結(jié)本節(jié)課學(xué)習(xí)的主要內(nèi)容:一是理解的定義——代數(shù)定義與幾何定義;二是求a的;三是簡化多重符號的問題.
五、作業(yè)
1.分別寫出下列各數(shù)的:
2.在數(shù)軸上標(biāo)出2,-4.5,0各數(shù)與它們的
3.填空:
(1)-1.6是______的,______的是-0.2.
4.化簡下列各數(shù):
5.填空:
(1)如果a=-13,那么-a=______;(2)如果a=-5.4,那么-a=______;
(3)如果-x=-6,那么x=______; (4)如果-x=9,那么x=______.
課堂教學(xué)設(shè)計說明
教學(xué)過程 是以《教學(xué)大綱》中“重視基礎(chǔ)知識的教學(xué)、基本技能的訓(xùn)練和能力的培養(yǎng)”,“數(shù)學(xué)教學(xué)中,發(fā)展思維能力是培養(yǎng)能力的核心”,“堅持啟發(fā)式,反對注入式”等規(guī)定的精神,結(jié)合教材特點,以及學(xué)生的學(xué)習(xí)基礎(chǔ)和學(xué)習(xí)特征而設(shè)計的由于內(nèi)容較為簡單,經(jīng)過教師適當(dāng)引導(dǎo),便可使學(xué)生充分參與認(rèn)知過程.由于“新”知識與有關(guān)的“舊”知識的聯(lián)系較為直接,在教學(xué)中則著力引導(dǎo)觀察、歸納和概括的過程.
探究活動
有理數(shù)a、b在數(shù)軸上的位置如圖:
將a,-a,b,-b,1,-1用“<”號排列出來.
分析:由圖看出,a>1,-1
解:在數(shù)軸上畫出表示-a、-b的點:
由圖看出:-a<-1
點評:通過數(shù)軸,運用數(shù)形結(jié)合的方法排列三個以上數(shù)的大小順序,經(jīng)常是解這一類問題的最快捷,準(zhǔn)確的方法.
七年級數(shù)學(xué)教案2
教學(xué) 建議
一、重點、難點分析
本節(jié) 教學(xué) 的重點是掌握三元一次方程組的解法, 教學(xué) 難點是解法的靈活運用.能夠熟練的解三元一次方程組是進(jìn)一步學(xué)習(xí)一次方程組的應(yīng)用,以及一次不等式組的解法的基礎(chǔ).
1.方程組有三個未知數(shù),每個方程的未知項的次數(shù)都是1,并且一共有三個方程,這樣的方程組就是三元一次方程組.
2.三元一次方程組的解法仍是用代入法或加減法消元,即通過消元將三元一次方程組轉(zhuǎn)化為二元一次方程組,再轉(zhuǎn)化為一元一次方程.
3.如何消元,首先要認(rèn)真觀察方程組中各方程系數(shù)的特點,然后選擇最好的解法.
4.有些特殊方程組,可用特殊的消元方法,有時一下子可消去兩個未知數(shù),直接求出一個未知數(shù)值來.
5.解一次方程組的消元“轉(zhuǎn)化”基本思想,可以推廣到“四元”、“五元”等多元方程組,這是今后要學(xué)習(xí)的內(nèi)容.
二、知識結(jié)構(gòu)
三、教法建議
1. 解三元一次方程組時,由于方程較多,學(xué)生容易出錯.因此,應(yīng)提醒學(xué)生注意,在消去一個未知數(shù)得出比原方程組少一個未知數(shù)的二元一次方程組的過程中,原方程組的每一個方程一般都至少要用到一次.
2. 消元時,先要考慮好消去哪一個未知數(shù).開始練習(xí)時,可以先把要消去的未知數(shù)寫出來(如教科書在分析中所寫的那樣),然后再進(jìn)行消元.
在例2中,如果先確定消去 ,那么這三個方程兩兩分組的方法有3種;①與②,①與③,②與③.我們可以從中任選2種消去 .這里特別要注意選定2種后,必須消去同一個未知數(shù).如果違背了這一點,所得的兩個新方程雖然各含兩個未知數(shù),但由它們組成的方程組仍然含有三個未知數(shù),這在實際上沒有消元.
教學(xué) 設(shè)計示例
一、素質(zhì) 教育 目標(biāo)
(一)知識 教學(xué) 點
1.知道什么是三元一次方程.
2.會解某個方程只有兩元的簡單的三元一次方程組.
3.掌握解三元一次方程組過程中化三元為二元或一元的思路.
。ǘ┠芰τ(xùn)練點
1.培養(yǎng)學(xué)生分析能力,能根據(jù)題目的特點,確定消元方法、消元對象.
2.培養(yǎng)學(xué)生的計算能力、訓(xùn)練解題技巧.
。ㄈ┑掠凉B透點
滲透“消元”的思想,設(shè)法把未知數(shù)轉(zhuǎn)化為已知.
。ㄋ模┟烙凉B透點
通過本節(jié)課的學(xué)習(xí),滲透方程恒等變形的數(shù)學(xué)美,以及方程組解的奇異美.
二、學(xué)法引導(dǎo)
1. 教學(xué) 方法:觀察法、討論法、練習(xí)法.
2.學(xué)生學(xué)法:三元一次方程組比二元一次方程組要復(fù)雜些,有些題的解法技巧性較強,因此在解題前必須認(rèn)真觀察方程組中各個方程的系數(shù)特點,選擇好先消去的“元”,這是決定解題過程繁簡的關(guān)鍵.一般來說應(yīng)先消去系數(shù)最簡單的`未知數(shù).
三、重點?難點?疑點及解決辦法
。ㄒ唬┲攸c
使學(xué)生會解簡單的三元一次方程組,經(jīng)過本課 教學(xué) 進(jìn)一步熟悉解方程組時“消元”的基本思想和靈活運用代入法、加減法等重要方法.
。ǘ╇y點
針對方程組的特點,選擇最好的解法.
。ㄈ┮牲c
如何進(jìn)行消元.
。ㄋ模┙鉀Q辦法
加強理解二元及三元一次方程組的解題思想是“消元”,故在求解中為便于計算應(yīng)選擇系數(shù)較簡單的未知數(shù)將它消去.
四、課時安排
一課時.
五、教具學(xué)具準(zhǔn)備
投影儀、自制膠片.
六、師生互動活動設(shè)計
1. 教師 先復(fù)習(xí)解二元一次方程組的解題思想及辦法,讓學(xué)生充分理解方程組的消元思想及方法.
2. 教師 由引例引出三元一次方程組,由學(xué)生思考、討論后解決如何消三元變二元, 教師 講解、小結(jié).
3.由學(xué)生嘗試,解決例題.
4.學(xué)生練習(xí),教師 小結(jié)、講評.
七、 教學(xué) 步驟
。ㄒ唬┟鞔_目標(biāo)
本節(jié)課將學(xué)習(xí)如何求三元一次方程組的解.
(二)整體感知
通過復(fù)習(xí)二元一次方程組的解題思想,從而類推出三元一次方程組的解題思想及解題方法,讓學(xué)生牢牢抓住利用消元的思想化三元為二元,再化二元為一元的辦法來求解.
(三) 教學(xué) 過程
1.復(fù)習(xí)導(dǎo)入、探索新知
。1)解二元一次方程組的基本方法有哪幾種?
。2)解二元一次方程組的基本思想是什么?
甲、乙、丙三數(shù)的和是26,甲數(shù)比乙數(shù)大1,甲數(shù)的兩倍與丙數(shù)的和比乙數(shù)大18,求這三個數(shù).
題目中有幾個未知數(shù)?含有幾個相等關(guān)系?你能根據(jù)題意列出幾個方程?
學(xué)生活動:回答問題、設(shè)未知數(shù)、列方程.
這個問題必須三個條件都滿足,因此,我們把三個方程合在一起,寫成下面的形式:
這個方程組有三個未知數(shù),每個方程的未知數(shù)的次數(shù)都是1,并且一共有三個方程,像這樣的方程組,就是我們要學(xué)的三元一次方程組.
怎樣解這個三元一次方程組呢?你能不能設(shè)法消云一個或兩個未知數(shù),把它化成二元一次方程組或一元一次方程?
學(xué)生活動:思考、討論后說出消元方案.
教師 對學(xué)生的回答給予肯定或否定,糾正后說出消元方案:依照代入法,由較簡單的方程②,可得 ④,進(jìn)一步將④分別代入①和③中,就可消去 ,得到只含 、 的二元一次方程組.
解:由②,得 、
把④代入①,得 、
把④代入③,得 、
、菖c⑥組成方程組
解這個方程組得
把 代入④,得
∴
∴
注意:a.得二元一次方程組后,解二元一次方程的過程在練習(xí)本上完成.
b.得 , 后,求 ,要代入前面最簡單的方程④.
c.檢驗.
這道題也可以用加減法解,②中不含 ,那么可以考慮將①與③結(jié)合消去,與②組成二元一次方程組.
學(xué)生活動:在練習(xí)本上用加減法解方程組.
【教法說明】通過一題多解,不僅能開闊學(xué)生的思維,培養(yǎng)學(xué)生的興趣,而且,可以鞏固解方程組時通過“消元”把未知轉(zhuǎn)化為已知的基本思想.
2.學(xué)生嘗試解決例題
例1? 解方程組
學(xué)生活動:獨立分析、思考,嘗試解題,有的學(xué)生可能用代入法解,有的學(xué)生可能用加減法解,選一個用加減法解的學(xué)生板演,然后,讓用代入法的學(xué)生比較哪種方法簡單.
解:②×3+③,得? ④
、倥c④組成方程組
解這個方程組,得
把 , 代入②,得
∴
∴
歸納:這個方程組的特點是方程①不含 ,而②、③中 的系數(shù)絕對值成整數(shù)倍關(guān)系,顯然用加減法從②、③中消去 后,再與①組成只含 、 的二元一次方程組的解法最為合理.而用代入法由①得到的式子含有分母,代入②、③較繁.
【教法說明】有了前例的基礎(chǔ),讓學(xué)生獨立嘗試解題,可以培養(yǎng)他們分析問題、解決問題的能力;在解題后歸納題目的特點為,點明消元方法和消元對象,更有助于學(xué)生探索方法、掌握技巧.
3.嘗試反饋,鞏固知識
練習(xí):P30 (1)
學(xué)生活動:獨立完成練習(xí)后,同桌、前后桌之間按不同解法的同學(xué)交換,看哪種方法最簡單.
4.變式訓(xùn)練要,培養(yǎng)能力
補例:解方程組
學(xué)生活動:獨立完成.
【教法說明】此方程組中方程①、③中 、 的系數(shù)完全相同,用③-①可直接得到 ,再把 代入②可求 ,代入①可求 .這道題直接化三元為一元,能使學(xué)生體會到解法技巧的重要性,覺得數(shù)學(xué)問題真是奧妙無窮!
。ㄋ模┛偨Y(jié)、擴(kuò)展
1.解三元一次方程組的基本思想是什么?方法有哪些?
2.解題前要認(rèn)真觀察各方程的系數(shù)特點,選擇最好的解法,當(dāng)方程組中某個方程只含二元時,一般的,這個方程中缺哪個元,就利用另兩個方程用加減法消哪個元;如果這個二元方程系數(shù)較簡單,也可以用代入法求解.
3.注意檢驗.
【教法說明】這樣總結(jié),既突出了本課重點,又突出了本節(jié)內(nèi)容中例題、習(xí)題的特點?某個方程只含兩元,使學(xué)生在以后解題時有很強的針對性.
八、布置作業(yè)
。ㄒ唬┍刈鲱}:P31 A組1.
。ǘ┻x做題:解方程組
。ㄈ┧伎碱}:課本第32頁“想一想”.
【教法說明】作業(yè)
。ㄒ唬┦菫榱遂柟瘫竟(jié)所學(xué)知識;作業(yè)
。ǘ┯泻軓姷募记尚,可培養(yǎng)學(xué)生興趣;作業(yè)
(三)培養(yǎng)學(xué)生分析問題、解決問題的能力.
七年級數(shù)學(xué)教案3
教學(xué)目的
1、了解一元一次方程的概念。
2、掌握含有括號的一元一次方程的解法。
重點、難點
1、重點:解含有括號的一元一次方程的解法。
2、難點:括號前面是負(fù)號時,去括號時忘記變號。
教學(xué)過程
一、復(fù)習(xí)提問
1、解下列方程:
(1)5x—2=8(2)5+2x=4x
2、去括號法則是什么?“移項”要注意什么?
二、新授
一元一次方程的概念。
如44x+64=328 3+x=(45+x)y—5=2y+1問:它們有什么共同特征?
只含有一個未知數(shù),并且含有未知數(shù)的.式子都是整式,未知數(shù)的次數(shù)是1,這樣的方程叫做一元一次方程。
例1、判斷下列哪些是一元一次方程
x= 3x—2 x—=—1
5x2—3x+1=0 2x+y=1—3y =5
例2、解方程(1)—2(x—1)=4
(2)3(x—2)+1=x—(2x—1)
強調(diào)去括號時把括號外的因數(shù)分別乘以括號內(nèi)的每一項,若括號前面是“—”號,注意去掉括號,要改變括號內(nèi)的每一項的符號。
補充:解方程3x—[3(x+1)—(1+4)]=1
說明:方程中有多重括號時,一般應(yīng)按先去小括號,再去中括號,最后去大括號的方法去括號,每去一層括號合并同類項一次,以簡便運算。
三、鞏固練習(xí)
教科書第9頁,練習(xí),1、2、3。
四、小結(jié)
學(xué)習(xí)了一元一次方程的概念,含有括號的一元一次方程的解法。用分配律去括號時,不要漏乘括號中的項,并且不要搞錯符號。
五、作業(yè)
1、教科書第12頁習(xí)題6。
2、第1題。
七年級數(shù)學(xué)教案4
【教學(xué)目標(biāo)】
知識與技能:了解并掌握數(shù)據(jù)收集的基本方法。
過程與方法:在調(diào)查的過程中,要有認(rèn)真的態(tài)度,積極參與。
情感、態(tài)度與價值觀:體會統(tǒng)計調(diào)查在解決實際問題中的作用,逐步養(yǎng)成用數(shù)據(jù)說話的良好習(xí)慣。
【教學(xué)重難點】
重點:掌握統(tǒng)計調(diào)查的基本方法。
難點:能根據(jù)實際情況合理地選擇調(diào)查方法。
【教學(xué)過程】
講授新課
像前面提到的收集數(shù)據(jù)的活動中,全班同學(xué)是我們要考察的對象,我們采用問卷對全體同學(xué)作了逐一調(diào)查,像這樣對全體對象進(jìn)行的調(diào)查叫做全面調(diào)查。
調(diào)查、試驗如采用普查可以收集到較全面、準(zhǔn)確的數(shù)據(jù),但普查的工作量比較大,有時受客觀條件(人力、財力等)的限制難以進(jìn)行,有時由于調(diào)查具有破壞性,不允許采用。在這些情況下,常常采用抽樣調(diào)查,即從被考察的全體對象中抽出一部分對象進(jìn)行考察的調(diào)查方式。
在一個統(tǒng)計問題中,我們把所要考察對象的全體叫做總體,其中的每一個考察對象叫做個體,從總體中所抽取的一部分個體叫做總體的一個樣本(sample),樣本中個體的數(shù)目叫做樣本容量。
例如,在通過試驗考察500只新工藝生產(chǎn)的燈泡的'使用壽命時,從中抽取50只進(jìn)行試驗。這500只燈泡的使用壽命的全體是總體,其中每只燈泡的使用壽命是個體,抽取的50只燈泡的使用壽命是一個樣本,50是這個樣本的樣本容量。
為了使抽取的50只燈泡能很好地反映500只燈泡的情況,抽取時要使每只燈泡逐一進(jìn)行編號,再把編號寫在小紙片上,將小紙片揉成團(tuán),放在一個不透明的容器內(nèi),充分?jǐn)嚢韬,從中一個個地抽取50個號簽。
上面抽取樣本的過程中,總體中的各個個體都有相等的機(jī)會被抽到,像這樣的抽樣方法是一種簡單隨機(jī)抽樣。
師:以“你知道父母的生日嗎?”為題在班級進(jìn)行調(diào)查,請設(shè)計一張問卷調(diào)查表。
學(xué)生小組合作、討論,學(xué)生代表展示結(jié)果。
教師指導(dǎo)、評論。
師:除了問卷調(diào)查外,我們還有哪些方法收集到數(shù)據(jù)呢?
學(xué)生小組討論、交流,學(xué)生代表回答。
師:收集數(shù)據(jù)的直接方法有訪問、調(diào)查、觀察、測量、試驗等,間接方法有查閱資料、上網(wǎng)查詢等。就以下統(tǒng)計的數(shù)據(jù),你認(rèn)為選擇何種方法去收集比較合適?
(1)你班中的同學(xué)是如何安排周末時間的?
(2)我國瀕臨滅絕的植物數(shù)量;
(3)某種玉米種子的發(fā)芽率;
(4)學(xué)校門口十字路口每天7:00~7:10時的車流量。
七年級數(shù)學(xué)教案5
教學(xué)目標(biāo)
1.使學(xué)生掌握代數(shù)式的值的概念,會求代數(shù)式的值;
2.培養(yǎng)學(xué)生準(zhǔn)確地運算能力,并適當(dāng)?shù)貪B透對應(yīng)的思想.
教學(xué)重點和難點
重點:當(dāng)字母取具體數(shù)字時,對應(yīng)的代數(shù)式的值的求法及正確地書寫格式.
難點:正確地求出代數(shù)式的值.
課堂教學(xué)過程設(shè)計
一、從學(xué)生原有的認(rèn)識結(jié)構(gòu)提出問題
1.用代數(shù)式表示:(投影)
(1)a與b的和的平方;(2)a,b兩數(shù)的平方和;
(3)a與b的和的50%.
2.用語言敘述代數(shù)式2n+10的意義.
3.對于第2題中的代數(shù)式2n+10,可否編成一道實際問題呢?(在學(xué)生回答的基礎(chǔ)上,教師打出投影)
某學(xué)校為了開展體育活動,要添置一批排球,每班配2個,學(xué)校另外留10個,如果這個學(xué)校共有n個班,總共需多少個排球?
若學(xué)校有15個班(即n=15),則添置排球總數(shù)為多少個?若有20個班呢?
最后,教師根據(jù)學(xué)生的回答情況,指出:需要添置排球總數(shù),是隨著班數(shù)的確定而確定的;當(dāng)班數(shù)n取不同的數(shù)值時,代數(shù)式2n+10的計算結(jié)果也不同,顯然,當(dāng)n=15時,代數(shù)式的值是40;當(dāng)n=20時,代數(shù)式的值是50.我們將上面計算的結(jié)果40和50,稱為代數(shù)式2n+10當(dāng)n=15和n=20時的值.這就是本節(jié)課我們將要學(xué)習(xí)研究的內(nèi)容.
二、師生共同研究代數(shù)式的值的意義
1.用數(shù)值代替代數(shù)式里的字母,按代數(shù)式指明的運算,計算后所得的結(jié)果,叫做代數(shù)式的值.
2.結(jié)合上述例題,提出如下幾個問題:
(1)求代數(shù)式2n+10的值,必須給出什么條件?
(2)代數(shù)式的值是由什么值的確定而確定的?
當(dāng)教師引導(dǎo)學(xué)生說出:“代數(shù)式的值是由代數(shù)式
里字母的'取值的確定而確定的”之后,可用圖示幫助
學(xué)生加深印象.
然后,教師指出:只要代數(shù)式里的字母給定一個確定的值,代數(shù)式就有唯一確定的值與它對應(yīng).
(3)求代數(shù)式的值可以分為幾步呢?在“代入”這一步,應(yīng)注意什么呢?
下面教師結(jié)合例題來引導(dǎo)學(xué)生歸納,概括出上述問題的答案.(教師板書例題時,應(yīng)注意格式規(guī)范化)
例1?當(dāng)x=7,y=4,z=0時,求代數(shù)式x(2x-y+3z)的值.
解:當(dāng)x=7,y=4,z=0時,
x(2x-y+3z)=7×(2×7-4+3×0)
=7×(14-4)
=70.
注意:如果代數(shù)式中省略乘號,代入后需添上乘號.
解:(1)當(dāng)a=4,b=12時,
a2-=42-=16-3=13;
注意(1)如果字母取值是分?jǐn)?shù),作乘方運算時要加括號;
(2)注意書寫格式,“當(dāng)……時”的字樣不要丟;
(3)代數(shù)式里的字母可取不同的值,但是所取的值不應(yīng)當(dāng)使代數(shù)式或代數(shù)式所表示的數(shù)量關(guān)系失去實際意義,如此例中a不能為零,在代數(shù)式2n+10中,n是代數(shù)班的個數(shù),n不能取分?jǐn)?shù).
最后,請學(xué)生總結(jié)出求代數(shù)值的步驟:
、俅霐(shù)值?②計算結(jié)果
三、課堂練習(xí)
1.(1)當(dāng)x=2時,求代數(shù)式x2-1的值;
2.填表:(投影)
(1)(a+b)2;?(2)(a-b)2.
四、師生共同小結(jié)
首先,請學(xué)生回答下面問題:
1.本節(jié)課學(xué)習(xí)了哪些內(nèi)容?2.求代數(shù)式的值應(yīng)分哪幾步?
3.在“代入”這一步應(yīng)注意什么?
其次,結(jié)合學(xué)生的回答,教師指出:(1)求代數(shù)式的值,就是用數(shù)值代替代數(shù)式里的字母,按照代數(shù)式的運算順序,直接計算后所得的結(jié)果就叫做代數(shù)式的值;(2)代數(shù)式的值是由代數(shù)式里字母所取值的確定而確定的.
五、作業(yè)
1.當(dāng)a=2,b=1,c=3時,求下列代數(shù)式的值:
2.填表
3.填表
七年級數(shù)學(xué)教案6
教學(xué)目標(biāo):
1、使學(xué)生在現(xiàn)實情境中初步認(rèn)識負(fù)數(shù),了解負(fù)數(shù)的作用,感受運用負(fù)數(shù)的需要和方便。
2、使學(xué)生知道正數(shù)和負(fù)數(shù)的讀法和寫法,知道0既不是正數(shù),又不是負(fù)數(shù)。正數(shù)都大于0,負(fù)數(shù)都小于0。
3、使學(xué)生體驗數(shù)學(xué)和生活的密切聯(lián)系,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,培養(yǎng)學(xué)生應(yīng)用數(shù)學(xué)的能力。
教學(xué)重點:
初步認(rèn)識正數(shù)和負(fù)數(shù)以及讀法和寫法。
教學(xué)難點:
理解0既不是正數(shù),也不是負(fù)數(shù)。
教學(xué)具準(zhǔn)備:
多媒體課件、溫度計、練習(xí)紙、卡片等。
教學(xué)過程:
一、游戲?qū)耄ǜ惺苌钪械南喾船F(xiàn)象)
1、游戲:我們來玩?zhèn)游戲輕松一下,游戲叫做《我反我反我反反反》。游戲規(guī)則:老師說一句話,請你說出與它相反意思的話。
①向上看(向下看)
、谙蚯白200米(向后走200米)
、垭娞萆仙15層(下降15層)。
2、下面我們來難度大些的,看誰反應(yīng)最快。
、傥以阢y行存入了500元(取出了500元)。
、谥R競賽中,五(1)班得了20分(扣了20分)。
、10月份,學(xué)校小賣部賺了500元。(虧了500元)。
、芰闵10攝氏度(零下10攝氏度)。
說明什么是相反意義的量(意義正好相反)
3、談話:周老師的一位朋友喜歡旅游,11月下旬,他又打算去幾個旅游城市走一走。我呢,特意幫他留意了一下這幾個地方在未來某天的最低氣溫,以便做好出門前衣物的準(zhǔn)備。下面就請大家一起和我走進(jìn)天氣預(yù)報。(天氣預(yù)報片頭)
二、教學(xué)例1
1、認(rèn)識溫度計,理解用正負(fù)數(shù)來表示零上和零下的溫度。
課件出示地圖:點擊南京出示溫度計和南京的圖片。首先來看一下南京的氣溫。
這里有個溫度計。我們先來認(rèn)識溫度計,請大家仔細(xì)觀察:這樣的一小格表示多少攝氏度呢?5小格呢?10小格呢?
B、現(xiàn)在你能看出南京是多少攝氏度嗎?(是0℃。)你是怎么知道的?(那里有個0,表示0攝氏度)。
。2)上海的氣溫:上海的最低氣溫是多少攝氏度呢?(在溫度計上撥一撥)撥的時候是怎樣想的呢?(在零刻度線以上四格)
指出:上海的氣溫比0℃要高,是零上4攝氏度。(教師結(jié)合課件,突出上海的氣溫在零刻度線以上)。
。3)了解首都北京的最低氣溫:北京又是多少攝氏度呢?與南京的0℃比起來,又怎樣了呢?(比南京的0℃要低)你能用一個手勢來表示它和0℃的關(guān)系嗎?(對,北京的氣溫比0度低,是零下4攝氏度)你能在溫度計上撥出來嗎?
(4)比較:“4℃”和“—4℃”的'意義相同嗎?有什么不同?(不一樣,一個在0℃以上,一個在0℃以下)。
、偕虾5臍鉁乇0℃高,是零上4攝氏度,我們可以記作+4℃,讀作正四攝氏度,寫的時候先寫一個正號(指出是正號不是加號,意義和讀法都不同了)再寫一個4(板書),大家跟我一起來比劃一下。+4也可以直接寫成4,把正號省略了。所以同學(xué)們所說的4℃也就是+4℃。(板書)
負(fù)號能不能省略不寫?為什么?
、诒本┑臍鉁乇0℃低,是零下4攝氏度。我們可以用—4℃來表示零下4攝氏度(板書—4)。跟老師一起來讀一下。寫的時候可以先寫一個負(fù)號(指出是負(fù)號不是減號)再寫一個4就可以了,同桌互相比劃一下。
(5)小結(jié):通過剛才對三個城市的溫度的了解,我們知道記錄溫度時,以0℃為界線,用象+4或4這些數(shù)可以來表示零上溫度,用—4這樣的數(shù)可以表示零下溫度。
2、試一試:學(xué)生看溫度計,寫出各地的溫度,并讀一讀。(寫在卡片上)
3、聽一段中央臺的天氣預(yù)報,將你聽到城市的最低和溫度記錄下來。
4、小結(jié):通過剛才的學(xué)習(xí),我們得出:以零攝氏度為界線,零上溫度用正幾或直接用幾來表示,零下溫度用負(fù)幾來表示。
三、學(xué)習(xí)珠峰、吐魯番盆地的海拔表達(dá)方法(P4第2題)
1、同學(xué)們你們知道嗎?世界第一高峰——珠穆朗瑪峰從山腳到山頂,氣溫相差很大,這是和它的海拔高度有關(guān)的。最近經(jīng)國家測繪局公布了珠峰的最新海拔高度。老師把有關(guān)網(wǎng)頁帶來了。(課件出現(xiàn)網(wǎng)頁,上面有簡單的文字介紹)。誰來讀一讀這段介紹。
2、今天老師還帶來一張珠穆朗瑪峰的海拔圖,請看。(課件動態(tài)地演示珠穆朗瑪峰的海拔圖)。從圖上,你看懂了些什么?
3、我們再來看新疆的吐魯番盆地的海拔圖。(動態(tài)演示吐魯番盆地的海拔情況)。
你又能從圖上看懂些什么呢?(引導(dǎo)學(xué)生交流,回答珠穆朗瑪峰比海平面高8844。43米;吐魯番盆地比海平面低155米)。
4、珠穆朗瑪峰比海平面高,吐魯番盆地比海平面低。大家再想想:你能用一種簡單的方法來記錄一下這兩個地方的海拔嗎?
(1)交流:珠穆朗瑪峰的海拔可以記作:+8844。43米或8844。43米。
吐魯番盆地的海拔可以記作:—155米。(板書)
。2)小結(jié):以海平面為界線,+8844。43米或8844。43米這樣的數(shù)可以表示海平面以上的高度,—155米這樣的數(shù)可以表示海平面以下的高度。
四、小組討論,歸納正數(shù)和負(fù)數(shù)。
1、通過剛才的學(xué)習(xí),我們收集到了一些數(shù)據(jù)(課件顯示)我們可以用這些數(shù)來表示零上溫度和零下溫度,還可以表示海平面以上的高度和海平面以下的高度。那么你們觀察一下這些數(shù),它們一樣嗎?你們想幫它們分分類嗎?
2、學(xué)生交流、討論。
3、指出:因為+8844。43也可以寫成8844。43米,所以有正號和沒正號都可以歸于一類。提出疑問:0到底歸于哪一類?(引導(dǎo)學(xué)生爭論,各自發(fā)表意見)
、偃绻纪夥秩惖,老師可以出難題:我覺得0可以分在4它們一類啊,你們怎么來說服我?
、谌绻袑W(xué)生發(fā)表分三類的,有的分兩類的,可以引導(dǎo)他們互相爭論。
4、小結(jié):什么是正數(shù)、負(fù)數(shù)?
師:(結(jié)合圖)我們從溫度計上觀察,以0℃為界限線,0℃以上的溫度用正幾表示,0℃以下的溫度用負(fù)幾表示。同樣,以海平面為界線,高于海平面的高度我們用正幾來表示,低于海平面我們用負(fù)幾表示。0是正負(fù)數(shù)的分界點,把正數(shù)和負(fù)數(shù)分開了,它誰都不屬于。但對于正數(shù)和負(fù)數(shù)來說,它卻必不可少。我們把以前學(xué)過的,象+4、16、3/8、0。5、+8844。43等這樣的數(shù)叫做正數(shù);象—4、—155等這樣的數(shù)我們叫做負(fù)數(shù);而0既不是正數(shù),也不是負(fù)數(shù)。(板書)這節(jié)課我們就和大家一起來認(rèn)識正數(shù)和負(fù)數(shù)。(板書:認(rèn)識正數(shù)和負(fù)數(shù))
五、聯(lián)系生活,鞏固練習(xí)
1、練習(xí)一第2、3題
2、你知道嗎:水沸騰時的溫度是xxxx。水結(jié)冰時的溫度是xxxx。地球表面的最低溫度是。
3、討論生活中的正數(shù)和負(fù)數(shù)
(1)存折:這里的—800表示什么意思?(以原來的錢為標(biāo)準(zhǔn),取出了800元記作—800;存入了1200元記作1200元,還可以記作+1200元)
。2)電梯:這里的1和—1表示什么意思?(以地平面為界線,地平面以上一層我們用1或+1來表示,—1就表示地下一層)。老師現(xiàn)在要到33層應(yīng)該按幾啊?要到地下3層呢?
六、課堂小結(jié)
這節(jié)課我們一起認(rèn)識了正數(shù)和負(fù)數(shù)。在我們的生活中,零攝氏度以上和零攝氏度以下,海平面以上和海平面以下,得分與失分等都具有相反的意義,我們都可以用正數(shù)和負(fù)數(shù)來表示。
七年級數(shù)學(xué)教案7
教學(xué)設(shè)計思路
以小組討論的形式在教師的指導(dǎo)下通過回顧與反思前三章所學(xué)內(nèi)容,領(lǐng)悟新舊知識之間的內(nèi)在聯(lián)系,總結(jié)知識結(jié)構(gòu)及主要知識點,側(cè)重對重點知識內(nèi)容、數(shù)學(xué)思想和方法、思維策略的總結(jié)與反思,再通過練習(xí)鞏固這些知識點。
教學(xué)目標(biāo)
知識與技能
對前三章所學(xué)知識作一次系統(tǒng)整理,系統(tǒng)地把握這三章的知識要點;
通過回顧與反思這三章所學(xué)內(nèi)容,領(lǐng)悟新舊知識之間的內(nèi)在聯(lián)系;
通過練習(xí),對所學(xué)知識的認(rèn)識深化一步,以有利于掌握;
發(fā)展觀察問題、分析問題、解決問題的能力;
提高對所學(xué)知識的概括整理能力;
進(jìn)一步發(fā)展有條理地思考和表達(dá)的能力。
過程與方法
在老師的引導(dǎo)下逐張復(fù)習(xí)每張的知識要點,通過練習(xí)來鞏固這些知識點。
情感態(tài)度價值觀
進(jìn)一步體會知識點之間的聯(lián)系;
進(jìn)一步感受數(shù)形結(jié)合的.思想。
教學(xué)重點和難點
重點是這三章的重點內(nèi)容;
難點是能靈活利用這三章的知識來解決問題。
教學(xué)方法
引導(dǎo)、小組討論
課時安排
3課時
教具學(xué)具準(zhǔn)備
多媒體
教學(xué)過程設(shè)計
通過每一章的知識結(jié)構(gòu)及一些相關(guān)問題引導(dǎo)學(xué)生總結(jié)出每一章的知識點。
七年級數(shù)學(xué)教案8
一、教學(xué)目標(biāo)
1、知識目標(biāo):掌握數(shù)軸三要素,會畫數(shù)軸。
2、能力目標(biāo):能將已知數(shù)在數(shù)軸上表示,能說出數(shù)軸上的點表示的數(shù),知道有理數(shù)都可以用數(shù)軸上的點表示;
3、情感目標(biāo):向?qū)W生滲透數(shù)形結(jié)合的思想。
二、教學(xué)重難點
教學(xué)重點:數(shù)軸的三要素和用數(shù)軸上的點表示有理數(shù)。
教學(xué)難點:有理數(shù)與數(shù)軸上點的對應(yīng)關(guān)系。
三、教法
主要采用啟發(fā)式教學(xué),引導(dǎo)學(xué)生自主探索去觀察、比較、交流。
四、教學(xué)過程
(一)創(chuàng)設(shè)情境激活思維
1.學(xué)生觀看鐘祥二中相關(guān)背景視頻
意圖:吸引學(xué)生注意力,激發(fā)學(xué)生自豪感。
2.聯(lián)系實際,提出問題。
問題1:鐘祥二中學(xué)校大門南75米是鐘祥市統(tǒng)計局,100米是中國建設(shè)銀行,在她北75米是海韻藝術(shù)學(xué)校,200米處是中百倉儲,請同學(xué)們畫圖表示這一情景。
師生活動:學(xué)生思考解決問題的方法,學(xué)生代表畫圖演示。
學(xué)生畫圖后提問:
1.馬路用什么幾何圖形代表?(直線)
2.文中相關(guān)地點用什么代表?(直線上的點)
3.學(xué)校大門起什么作用?(基準(zhǔn)點、參照物)
4.你是如何確定問題中各地點的位置的?(方向和距離)
設(shè)計意圖:“三要素”為定向,用直線、點、方向、距離等幾何符號表示實際問題,這是實際問題的第一次數(shù)學(xué)抽象。
問題2:上面的問題中,“南”和“北”具有相反意義。我們知道,正數(shù)和負(fù)數(shù)可以表示兩種具有相反意義的量,我們能不能直接用數(shù)來表示這些地理位置和學(xué)校大門的相對位置關(guān)系呢?
師生活動:
學(xué)生思考后回答解決方法,學(xué)生代表畫圖。
學(xué)生畫圖后提問:
1.0代表什么?
2.數(shù)的符號的實際意義是什么?
3.-75表示什么?100表示什么?
設(shè)計意圖:繼續(xù)以三要素為定向,將點用數(shù)表示,實現(xiàn)第二次抽象,為定義數(shù)軸概念提供直觀基礎(chǔ)。
問題3:生活中常見的溫度計,你能描述一下它的結(jié)構(gòu)嗎?
設(shè)計意圖:借助生活中的常用工具,說明正數(shù)和負(fù)數(shù)的作用,引導(dǎo)學(xué)生用三要素表達(dá),為定義數(shù)軸的概念提供直觀基礎(chǔ)。
問題4:你能說說上述2個實例的共同點嗎?
設(shè)計意圖:進(jìn)一步明確“三要素”的意義,體會“用點表示數(shù)”和“用數(shù)表示點的思想方法,為定義數(shù)軸概念提供又一個直觀基礎(chǔ)。
(二)自主學(xué)習(xí)探究新知
學(xué)生活動:帶著以下問題自學(xué)課本第8頁:
1.什么樣的直線叫數(shù)軸?它具備什么條件。
2.如何畫數(shù)軸?
3.根據(jù)上述實例的經(jīng)驗,“原點”起什么作用?
4.你是怎么理解“選取適當(dāng)?shù)腵長度為單位長度”的?
師生活動:
學(xué)生自學(xué)完后,請代表上黑板畫一條數(shù)軸,講解畫數(shù)軸的一般步驟。
設(shè)計意圖:明確畫數(shù)軸的步驟,使數(shù)軸的三要素在同學(xué)們的頭腦中留下更深刻的印象,同時得到數(shù)軸的定義。
至此,學(xué)生已會畫數(shù)軸,師生共同歸納總結(jié)(板書)
、贁(shù)軸的定義。
、跀(shù)軸三要素。
練習(xí):(媒體展示)
1.判斷下列圖形是否是數(shù)軸。
2.口答:數(shù)軸上各點表示的數(shù)。
3.在數(shù)軸上描出下列各點:1.5,-2,-2.5,2,2.5,0,-1.5。
(三)小組合作交流展示
問題:觀察數(shù)軸上的點,你有什么發(fā)現(xiàn)?
數(shù)軸上表示3的點在原點的哪一側(cè)?與原點的距離是多少個單位長度?表示-2的點在原點的哪一側(cè)?與原點的距離是多少個單位長度?設(shè)a是一個正數(shù),對表示a的點和-a的點進(jìn)行同樣的討論。
設(shè)計意圖:通過從特殊到一般的方法歸納出數(shù)軸上不同位置點的特點,培養(yǎng)學(xué)生的抽象概括能力。
(四)歸納總結(jié)反思提高
師生共同回顧本節(jié)課所學(xué)主要內(nèi)容,回答以下問題:
1.什么是數(shù)軸?
2.數(shù)軸的“三要素”各指什么?
3.數(shù)軸的畫法。
設(shè)計意圖:梳理本節(jié)課內(nèi)容,掌握本節(jié)課的核心――數(shù)軸“三要素”。
(五)目標(biāo)檢測設(shè)計
1.下列命題正確的是()
A.數(shù)軸上的點都表示整數(shù)。
B.數(shù)軸上表示4與-4的點分別在原點的兩側(cè),并且到原點的距離都等于4個單位長度。
C.數(shù)軸包括原點與正方向兩個要素。
D.數(shù)軸上的點只能表示正數(shù)和零。
2.畫數(shù)軸,在數(shù)軸上標(biāo)出-5和+5之間的所有整數(shù),列舉到原點的距離小于3的所有整數(shù)。
3.畫數(shù)軸,表示下列有理數(shù)數(shù)的點中,觀察數(shù)軸,在原點左邊的點有_______個。4.在數(shù)軸上點A表示-4,如果把原點O向負(fù)方向移動1.5個單位,那么在新數(shù)軸上點A表示的數(shù)是_______。
五、板書
1.數(shù)軸的定義。
2.數(shù)軸的三要素(圖)。
3.數(shù)軸的畫法。
4.性質(zhì)。
六、課后反思
附:活動單
活動一:畫一畫
鐘祥二中學(xué)校大門南75米是鐘祥市統(tǒng)計局,100米是中國建設(shè)銀行,在她北75米是海韻藝術(shù)學(xué)校,200米處是中百倉儲,請同學(xué)們畫圖表示這一情景。
思考:如何簡明地用數(shù)表示這些地理位置與學(xué)校大門的相對位置關(guān)系?
活動二:讀一讀
帶著以下問題閱讀教科書P8頁:
1.什么樣的直線叫數(shù)軸?
定義:規(guī)定了_______、_______、_______的直線叫數(shù)軸。
數(shù)軸的三要素:_______、_______、_______。
2.畫數(shù)軸的步驟是什么?
3.“原點”起什么作用?_______
4.你是怎么理解“選取適當(dāng)?shù)拈L度為單位長度”的?
練習(xí):
1.畫一條數(shù)軸
2.在你畫好的數(shù)軸上表示下列有理數(shù):1.5,-2,-2.5,2,2.5,0,-1.5
活動三:議一議
小組討論:觀察你所畫的數(shù)軸上的點,你有什么發(fā)現(xiàn)?
歸納:一般地,設(shè)a是一個正數(shù),則數(shù)軸上表示數(shù)a在原點的_______邊,與原點的距離是_______個單位長度;表示數(shù)-a的點在原點的_______邊,與原點的距離是_______個單位長度.
練習(xí):
1.數(shù)軸上表示-3的點在原點的_______側(cè),距原點的距離是_______;表示6的點在原點的_______側(cè),距原點的距離是_______;兩點之間的距離為_______個單位長度。
2.距離原點距離為5個單位的點表示的數(shù)是_______。
3.在數(shù)軸上,把表示3的點沿著數(shù)軸負(fù)方向移動5個單位長度,到達(dá)點B,則點B表示的數(shù)是_______。
附:目標(biāo)檢測
1.下列命題正確的是( )
A.數(shù)軸上的點都表示整數(shù)。
B.數(shù)軸上表示4與-4的點分別在原點的兩側(cè),并且到原點的距離都等于4個單位長度。
C.數(shù)軸包括原點與正方向兩個要素。
D.數(shù)軸上的點只能表示正數(shù)和零。
2.畫數(shù)軸,在數(shù)軸上標(biāo)出-5和+5之間的所有整數(shù).列舉到原點的距離小于3的所有整數(shù)。
3.畫數(shù)軸,觀察數(shù)軸,在原點左邊的點有_______個。
4.在數(shù)軸上點A表示-4,如果把原點O向負(fù)方向移動1.5個單位,那么在新數(shù)軸上點A表示的數(shù)是_______。
七年級數(shù)學(xué)教案9
一、教學(xué)目標(biāo)
1、知識目標(biāo):掌握數(shù)軸三要素,會畫數(shù)軸。
2、能力目標(biāo):能將已知數(shù)在數(shù)軸上表示,能說出數(shù)軸上的點表示的數(shù),知道有理數(shù)都可以用數(shù)軸上的點表示;
3、情感目標(biāo):向?qū)W生滲透數(shù)形結(jié)合的思想。
二、教學(xué)重難點
教學(xué)重點:數(shù)軸的三要素和用數(shù)軸上的點表示有理數(shù)。
教學(xué)難點:有理數(shù)與數(shù)軸上點的對應(yīng)關(guān)系。
三、教法
主要采用啟發(fā)式教學(xué),引導(dǎo)學(xué)生自主探索去觀察、比較、交流。
四、教學(xué)過程
。ㄒ唬﹦(chuàng)設(shè)情境激活思維
1。學(xué)生觀看鐘祥二中相關(guān)背景視頻
意圖:吸引學(xué)生注意力,激發(fā)學(xué)生自豪感。
2。聯(lián)系實際,提出問題。
問題1:鐘祥二中學(xué)校大門南75米是鐘祥市統(tǒng)計局,100米是中國建設(shè)銀行,在她北75米是海韻藝術(shù)學(xué)校,200米處是中百倉儲,請同學(xué)們畫圖表示這一情景。
師生活動:學(xué)生思考解決問題的方法,學(xué)生代表畫圖演示。
學(xué)生畫圖后提問:
1。馬路用什么幾何圖形代表?(直線)
2。文中相關(guān)地點用什么代表?(直線上的點)
3。學(xué)校大門起什么作用?(基準(zhǔn)點、參照物)
4。你是如何確定問題中各地點的位置的?(方向和距離)
設(shè)計意圖:“三要素”為定向,用直線、點、方向、距離等幾何符號表示實際問題,這是實際問題的第一次數(shù)學(xué)抽象。
問題2:上面的問題中,“南”和“北”具有相反意義。我們知道,正數(shù)和負(fù)數(shù)可以表示兩種具有相反意義的量,我們能不能直接用數(shù)來表示這些地理位置和學(xué)校大門的相對位置關(guān)系呢?
師生活動:
學(xué)生思考后回答解決方法,學(xué)生代表畫圖。
學(xué)生畫圖后提問:
1。0代表什么?
2。數(shù)的符號的實際意義是什么?
3。—75表示什么?100表示什么?
設(shè)計意圖:繼續(xù)以三要素為定向,將點用數(shù)表示,實現(xiàn)第二次抽象,為定義數(shù)軸概念提供直觀基礎(chǔ)。
問題3:生活中常見的溫度計,你能描述一下它的結(jié)構(gòu)嗎?
設(shè)計意圖:借助生活中的常用工具,說明正數(shù)和負(fù)數(shù)的作用,引導(dǎo)學(xué)生用三要素表達(dá),為定義數(shù)軸的概念提供直觀基礎(chǔ)。
問題4:你能說說上述2個實例的共同點嗎?
設(shè)計意圖:進(jìn)一步明確“三要素”的意義,體會“用點表示數(shù)”和“用數(shù)表示點的思想方法,為定義數(shù)軸概念提供又一個直觀基礎(chǔ)。
。ǘ┳灾鲗W(xué)習(xí)探究新知
學(xué)生活動:帶著以下問題自學(xué)課本第8頁:
1。什么樣的直線叫數(shù)軸?它具備什么條件。
2。如何畫數(shù)軸?
3。根據(jù)上述實例的經(jīng)驗,“原點”起什么作用?
4。你是怎么理解“選取適當(dāng)?shù)拈L度為單位長度”的?
師生活動:
學(xué)生自學(xué)完后,請代表上黑板畫一條數(shù)軸,講解畫數(shù)軸的一般步驟。
設(shè)計意圖:明確畫數(shù)軸的步驟,使數(shù)軸的三要素在同學(xué)們的頭腦中留下更深刻的印象,同時得到數(shù)軸的定義。
至此,學(xué)生已會畫數(shù)軸,師生共同歸納總結(jié)(板書)
①數(shù)軸的定義。
、跀(shù)軸三要素。
練習(xí):(媒體展示)
1。判斷下列圖形是否是數(shù)軸。
2?诖穑簲(shù)軸上各點表示的數(shù)。
3。在數(shù)軸上描出下列各點:1。5,—2,—2。5,2,2。5,0,—1。5。
。ㄈ┬〗M合作交流展示
問題:觀察數(shù)軸上的點,你有什么發(fā)現(xiàn)?
數(shù)軸上表示3的點在原點的哪一側(cè)?與原點的距離是多少個單位長度?表示—2的點在原點的哪一側(cè)?與原點的距離是多少個單位長度?設(shè)a是一個正數(shù),對表示a的點和—a的`點進(jìn)行同樣的討論。
設(shè)計意圖:通過從特殊到一般的方法歸納出數(shù)軸上不同位置點的特點,培養(yǎng)學(xué)生的抽象概括能力。
(四)歸納總結(jié)反思提高
師生共同回顧本節(jié)課所學(xué)主要內(nèi)容,回答以下問題:
1。什么是數(shù)軸?
2。數(shù)軸的“三要素”各指什么?
3。數(shù)軸的畫法。
設(shè)計意圖:梳理本節(jié)課內(nèi)容,掌握本節(jié)課的核心――數(shù)軸“三要素”。
。ㄎ澹┠繕(biāo)檢測設(shè)計
1。下列命題正確的是()
A。數(shù)軸上的點都表示整數(shù)。
B。數(shù)軸上表示4與—4的點分別在原點的兩側(cè),并且到原點的距離都等于4個單位長度。
C。數(shù)軸包括原點與正方向兩個要素。
D。數(shù)軸上的點只能表示正數(shù)和零。
2。畫數(shù)軸,在數(shù)軸上標(biāo)出—5和+5之間的所有整數(shù),列舉到原點的距離小于3的所有整數(shù)。
3。畫數(shù)軸,表示下列有理數(shù)數(shù)的點中,觀察數(shù)軸,在原點左邊的點有_______個。4。在數(shù)軸上點A表示—4,如果把原點O向負(fù)方向移動1。5個單位,那么在新數(shù)軸上點A表示的數(shù)是________。
五、板書
1。數(shù)軸的定義。
2。數(shù)軸的三要素(圖)。
3。數(shù)軸的畫法。
4。性質(zhì)。
六、課后反思
附:活動單
活動一:畫一畫
鐘祥二中學(xué)校大門南75米是鐘祥市統(tǒng)計局,100米是中國建設(shè)銀行,在她北75米是海韻藝術(shù)學(xué)校,200米處是中百倉儲,請同學(xué)們畫圖表示這一情景。
思考:如何簡明地用數(shù)表示這些地理位置與學(xué)校大門的相對位置關(guān)系?
活動二:讀一讀
帶著以下問題閱讀教科書P8頁:
1。什么樣的直線叫數(shù)軸?
定義:規(guī)定了_________、________、_________的直線叫數(shù)軸。
數(shù)軸的三要素:_________、_________、__________。
2。畫數(shù)軸的步驟是什么?
3!霸c”起什么作用?__________
4。你是怎么理解“選取適當(dāng)?shù)拈L度為單位長度”的?
練習(xí):
1。畫一條數(shù)軸
2。在你畫好的數(shù)軸上表示下列有理數(shù):1。5,—2,—2。5,2,2。5,0,—1。5
活動三:議一議
小組討論:觀察你所畫的數(shù)軸上的點,你有什么發(fā)現(xiàn)?
歸納:一般地,設(shè)a是一個正數(shù),則數(shù)軸上表示數(shù)a在原點的____邊,與原點的距離是____個單位長度;表示數(shù)—a的點在原點的____邊,與原點的距離是____個單位長度。
練習(xí):
1。數(shù)軸上表示—3的點在原點的_______側(cè),距原點的距離是______;表示6的點在原點的______側(cè),距原點的距離是______;兩點之間的距離為_______個單位長度。
2。距離原點距離為5個單位的點表示的數(shù)是________。
3。在數(shù)軸上,把表示3的點沿著數(shù)軸負(fù)方向移動5個單位長度,到達(dá)點B,則點B表示的數(shù)是________。
附:目標(biāo)檢測
1。下列命題正確的是()
A。數(shù)軸上的點都表示整數(shù)。
B。數(shù)軸上表示4與—4的點分別在原點的兩側(cè),并且到原點的距離都等于4個單位長度。
C。數(shù)軸包括原點與正方向兩個要素。
D。數(shù)軸上的點只能表示正數(shù)和零。
2。畫數(shù)軸,在數(shù)軸上標(biāo)出—5和+5之間的所有整數(shù)。列舉到原點的距離小于3的所有整數(shù)。
3。畫數(shù)軸,觀察數(shù)軸,在原點左邊的點有_______個。
4。在數(shù)軸上點A表示—4,如果把原點O向負(fù)方向移動1。5個單位,那么在新數(shù)軸上點A表示的數(shù)是________。
七年級數(shù)學(xué)教案10
一、教學(xué)目標(biāo)
1.了解推理、證明的格式,理解判定定理的證法.
2.掌握平行線的第二個判定定理,會用判定公理及定理進(jìn)行簡單的推理論證.
3.通過第二個判定定理的推導(dǎo),培養(yǎng)學(xué)生分析問題、進(jìn)行推理的能力.
4.使學(xué)生了解知識來源于實踐,又服務(wù)于實踐,只有學(xué)好文化知識,才有解決實際問題的本領(lǐng),從而對學(xué)生進(jìn)行學(xué)習(xí)目的的教育.
二、學(xué)法引導(dǎo)
1.教師教法:啟發(fā)式引導(dǎo)發(fā)現(xiàn)法.
2.學(xué)生學(xué)法:積極參與、主動發(fā)現(xiàn)、發(fā)展思維.
三、重點·難點及解決辦法
(一)重點
判定定理的推導(dǎo)和例題的解答.
(二)難點
使用符號語言進(jìn)行推理.
(三)解決辦法
1.通過教師正確引導(dǎo),學(xué)生積極思維,發(fā)現(xiàn)定理,解決重點.
2.通過教師指導(dǎo),學(xué)生自行完成推理過程,解決難點及疑點.
四、課時安排
1課時
五、教具學(xué)具準(zhǔn)備
三角板、投影儀、自制膠片.
六、師生互動活動設(shè)計
1.通過設(shè)計練習(xí),復(fù)習(xí)基礎(chǔ),創(chuàng)造情境,引入新課.
2.通過教師指導(dǎo),學(xué)生探索新知,練習(xí)鞏固,完成新授.
3.通過學(xué)生自己總結(jié)完成小結(jié).
七、教學(xué)步驟
(一)明確目標(biāo)
掌握平行線的第二個定理的推理,并能運用其進(jìn)行簡單的證明,培養(yǎng)學(xué)生的'邏輯思維能力.
(二)整體感知
以情境創(chuàng)設(shè),設(shè)計懸念,引出課題,以引導(dǎo)學(xué)生的思維,發(fā)現(xiàn)新知,以變式訓(xùn)練鞏固新知.
(三)教學(xué)過程
創(chuàng)設(shè)情境,復(fù)習(xí)引入
師:上節(jié)課我們學(xué)習(xí)了平行線的判定公理和一種判定方法,根據(jù)所學(xué)看下面的問題(出示投影).
學(xué)生活動:學(xué)生口答第1、2題.
師:你能說出有什么條件,就可以判定兩條直線平行呢?
學(xué)生活動:由第l、2題,學(xué)生思考分析,只要有同位角相等或內(nèi)錯角相等,就可以判定兩條直線平行.
教師將第3題圖形畫在黑板上.
學(xué)生活動:學(xué)生口答理由,同角的補角相等.
師:要求學(xué)生寫出符號推理過程,并板書.
【教法說明】
本節(jié)課是前一節(jié)課的繼續(xù),是在前一節(jié)課的基礎(chǔ)上進(jìn)行學(xué)習(xí)的,所以通過第1、2兩題復(fù)習(xí)上節(jié)課所學(xué)平行線判定的兩個方法,使學(xué)生明確,只要有同位角相等或內(nèi)錯角相等,就可以判定兩條直線平行.第3題是為推導(dǎo)本節(jié)到定定理做鋪墊,即如果同旁內(nèi)角互補,則可以推出同位角相等,也可以推出內(nèi)錯角相等,為定理的推理論證,分散了難點.
師:第4題是一個實際問題,題目中已知的兩個角是什么位置關(guān)系角?
學(xué)生活動:同分內(nèi)角.
師:它們有什么關(guān)系.
學(xué)生活動:互補.
師:這個問題就是知道同分內(nèi)角互補了,那么兩條直線是不是平行的呢?這就是這節(jié)課我們要研究的問題.
七年級數(shù)學(xué)教案11
學(xué)習(xí)目標(biāo)
1. 理解有序數(shù)對的應(yīng)用意義,了解平面上確定點的常用方法
2. 培養(yǎng)用數(shù)學(xué)的意識,激發(fā)學(xué)習(xí)興趣.
學(xué)習(xí)重點: 理解有序數(shù)對的意義和作用
學(xué)習(xí)難點: 用有序數(shù)對表示點的位置
學(xué)習(xí)過程
一.問題導(dǎo)入
1.一位居民打電話給供電部門:"衛(wèi)星路第8根電線桿的路燈壞了,"維修人員很快修好了路燈同學(xué)們欣賞下面圖案.
2.地質(zhì)部門在某地埋下一個標(biāo)志樁,上面寫著"北緯44.2°,東經(jīng)125.7°"。
3.某人買了一張8排6號的電影票,很快找到了自己的座位。
分析以上情景,他們分別利用那些數(shù)據(jù)找到位置的。
你能舉出生活中利用數(shù)據(jù)表示位置的例子嗎?
二.概念確定
有序數(shù)對:用含有兩個數(shù)的詞表示一個確定的位置,其中各個數(shù)表示不同的含義,我們把這種有順序的兩個數(shù)a與b組成的數(shù)對,叫做有序數(shù)對,記作(a,b)
利用有序數(shù)對,可以很準(zhǔn)確地表示出一個位置。
1.在教室里,根據(jù)座位圖,確定數(shù)學(xué)課代表的.位置
2.教材40頁練習(xí)
三.方法歸類
常見的確定平面上的點位置常用的方法
。1)以某一點為原點(0,0)將平面分成若干個小正方形的方格,利用點所在的行和列的位置來確定點的位置。
。2)以某一點為觀察點,用方位角、目標(biāo)到這個點的距離這兩個數(shù)來確定目標(biāo)所在的位置。
1.如圖,A點為原點(0,0),則B點記為(3,1)
2.如圖,以燈塔A為觀測點,小島B在燈塔A北偏東45,距燈塔3km 處。
例2 如圖是某次海戰(zhàn)中敵我雙方艦艇對峙示意圖,對我方艦艇來說:
。1)北偏東方向上有哪些目標(biāo)?要想確定敵艦B的位置,還需要什么數(shù)據(jù)?
。2)距我方潛艇圖上距離為1cm處的敵艦有哪幾艘?
。3)要確定每艘敵艦的位置,各需要幾個數(shù)據(jù)?
[鞏固練習(xí)]
1. 如圖是某城市市區(qū)的一部分示意圖,對市政府來說:
北偏東60的方向有哪些單位?要想確定單位的位置。還需要哪些數(shù)據(jù)?火車站與學(xué)校分別位于市政府的什么方向,怎樣確定他們的位置?
結(jié)合實際問題歸納方法
學(xué)生嘗試描述位置
2. 如圖,馬所處的位置為(2,3).
。1) 你能表示出象的位置嗎?
。2) 寫出馬的下一步可以到達(dá)的位置。
[小結(jié)]
1. 為什么要用有序數(shù)對表示點的位置,沒有順序可以嗎?
2. 幾種常用的表示點位置的方法.
[作業(yè)]
必做題:教科書44頁:1題
七年級數(shù)學(xué)教案12
第一章 有理數(shù)
單元教學(xué)內(nèi)容
1.本單元結(jié)合學(xué)生的生活經(jīng)驗,列舉了學(xué)生熟悉的用正、負(fù)數(shù)表示的實例,?從擴(kuò)充運算的角度引入負(fù)數(shù),然后再指出可以用正、負(fù)數(shù)表示現(xiàn)實生活中具有相反意義的量,使學(xué)生感受到負(fù)數(shù)的引入是來自實際生活的需要,體會數(shù)學(xué)知識與現(xiàn)實世界的聯(lián)系.
引入正、負(fù)數(shù)概念之后,接著給出正整數(shù)、負(fù)整數(shù)、正分?jǐn)?shù)、負(fù)分?jǐn)?shù)集合及整數(shù)、分?jǐn)?shù)和有理數(shù)的概念.
2.通過怎樣用數(shù)簡明地表示一條東西走向的馬路旁的樹、?電線桿與汽車站的相對位置關(guān)系引入數(shù)軸.?dāng)?shù)軸是非常重要的數(shù)學(xué)工具,它可以把所有的有理數(shù)用數(shù)軸上的點形象地表示出來,使數(shù)與形結(jié)合為一體,揭示了數(shù)形之間的內(nèi)在聯(lián)系,從而體現(xiàn)出以下4個方面的作用:
(1)數(shù)軸能反映出數(shù)形之間的對應(yīng)關(guān)系.
。2)數(shù)軸能反映數(shù)的性質(zhì).
(3)數(shù)軸能解釋數(shù)的某些概念,如相反數(shù)、絕對值、近似數(shù).
。4)數(shù)軸可使有理數(shù)大小的比較形象化.
3.對于相反數(shù)的概念,?從“數(shù)軸上表示互為相反數(shù)的兩點分別在原點的兩旁,且離開原點的距離相等”來說明相反數(shù)的幾何意義,同時補充“零的相反數(shù)是零”作為相反數(shù)意義的一部分.
4.正確理解絕對值的概念是難點.
根據(jù)有理數(shù)的絕對值的兩種意義,可以歸納出有理數(shù)的絕對值有如下性質(zhì):
。1)任何有理數(shù)都有唯一的.絕對值.
(2)有理數(shù)的絕對值是一個非負(fù)數(shù),即最小的絕對值是零.
。3)兩個互為相反數(shù)的絕對值相等,即│a│=│-a│.
。4)任何有理數(shù)都不大于它的絕對值,即│a│≥a,│a│≥-a.
。5)若│a│=│b│,則a=b,或a=-b或a=b=0.
三維目標(biāo)
1.知識與技能
。1)了解正數(shù)、負(fù)數(shù)的實際意義,會判斷一個數(shù)是正數(shù)還是負(fù)數(shù).
。2)掌握數(shù)軸的畫法,能將已知數(shù)在數(shù)軸上表示出來,?能說出數(shù)軸上已知點所表示的解.
(3)理解相反數(shù)、絕對值的幾何意義和代數(shù)意義,?會求一個數(shù)的相反數(shù)和絕對值.
。4)會利用數(shù)軸和絕對值比較有理數(shù)的大小.
2.過程與方法
經(jīng)過探索有理數(shù)運算法則和運算律的過程,體會“類比”、“轉(zhuǎn)化”、“數(shù)形結(jié)合”等數(shù)學(xué)方法.
3.情感態(tài)度與價值觀
使學(xué)生感受數(shù)學(xué)知識與現(xiàn)實世界的聯(lián)系,鼓勵學(xué)生探索規(guī)律,并在合作交流中完善規(guī)范語言.
重、難點與關(guān)鍵
1.重點:正確理解有理數(shù)、相反數(shù)、絕對值等概念;會用正、?負(fù)數(shù)表示具有相反意義的量,會求一個數(shù)的相反數(shù)和絕對值.
2.難點:準(zhǔn)確理解負(fù)數(shù)、絕對值等概念.
3.關(guān)鍵:正確理解負(fù)數(shù)的意義和絕對值的意義.
課時劃分
1.1 正數(shù)和負(fù)數(shù) 2課時
1.2 有理數(shù) 5課時
1.3 有理數(shù)的加減法4課時
1.4 有理數(shù)的乘除法5課時
1.5 有理數(shù)的乘方 4課時
第一章有理數(shù)(復(fù)習(xí)) 2課時
1.1正數(shù)和負(fù)數(shù)
第一課時
三維目標(biāo)
一.知識與技能
能判斷一個數(shù)是正數(shù)還是負(fù)數(shù),能用正數(shù)或負(fù)數(shù)表示生活中具有相反意義的量.
二.過程與方法
借助生活中的實例理解有理數(shù)的意義,體會負(fù)數(shù)引入的必要性和有理數(shù)應(yīng)用的廣泛性.
三.情感態(tài)度與價值觀
培養(yǎng)學(xué)生積極思考,合作交流的意識和能力.
教學(xué)重、難點與關(guān)鍵
1.重點:正確理解負(fù)數(shù)的意義,掌握判斷一個數(shù)是正數(shù)還是負(fù)數(shù)的方法.
2.難點:正確理解負(fù)數(shù)的概念.
3.關(guān)鍵:創(chuàng)設(shè)情境,充分利用學(xué)生身邊熟悉的事物,?加深對負(fù)數(shù)意義的理解. 教具準(zhǔn)備
投影儀.
教學(xué)過程
四、課堂引入
我們知道,數(shù)是人們在實際生活和生活需要中產(chǎn)生,并不斷擴(kuò)充的.人們由記數(shù)、排序、產(chǎn)生數(shù)1,2,3,?;為了表示“沒有物體”、“空位”引進(jìn)了數(shù)“0”,?測量和分配有時不能得到整數(shù)的結(jié)果,為此產(chǎn)生了分?jǐn)?shù)和小數(shù).
在生活、生產(chǎn)、科研中經(jīng)常遇到數(shù)的表示與數(shù)的運算的問題,例如課本第2?頁至第3頁中提到的四個問題,這里出現(xiàn)的新數(shù):-3,-2,-2.7%在前面的實際問題中它們分別表示:零下3攝氏度,凈輸2球,減少2.7%.
五、講授新課
。1)、像-3,-2,-2.7%這樣的數(shù)(即在以前學(xué)過的0以外的數(shù)前面加上負(fù)號“-”的數(shù))叫做負(fù)數(shù).而3,2,+2.7%在問題中分別表示零上3攝氏度,凈勝2球,增長2.7%,?它們與負(fù)數(shù)具有相反的意義,我們把這樣的數(shù)(即以前學(xué)過的0?以外的數(shù))叫做正數(shù),有時在正數(shù)前
11面也加上“+”(正)號,例如,+3,+2,+0.5,+,?就是3,2,0.5,,?一個數(shù)前面33
的“+”、“-”號叫做它的符號,這種符號叫做性質(zhì)符號.
(2)、中國古代用算籌(表示數(shù)的工具)進(jìn)行計算,紅色算籌表示正數(shù),黑色算籌表示負(fù)數(shù).
(3)、數(shù)0既不是正數(shù),也不是負(fù)數(shù),但0是正數(shù)與負(fù)數(shù)的分界數(shù).
(4) 、0可以表示沒有,還可以表示一個確定的量,如今天氣溫是0℃,是指一個確定的溫度;海拔0表示海平面的平均高度.
用正負(fù)數(shù)表示具有相反意義的量
。5)、 把0以外的數(shù)分為正數(shù)和負(fù)數(shù),起源于表示兩種相反意義的量.?正數(shù)和負(fù)數(shù)在許多方面被廣泛地應(yīng)用.在地形圖上表示某地高度時,需要以海平面為基準(zhǔn),通常用正數(shù)表示高于海平面的某地的海拔高度,負(fù)數(shù)表示低于海平面的某地的海拔高度.例如:珠穆朗瑪峰的海拔高度為8844m,吐魯番盆地的海拔高度為-155m.記錄賬目時,通常用正數(shù)表示收入款額,負(fù)數(shù)表示支出款額.
。6)、 請學(xué)生解釋課本中圖1.1-2,圖1.1-3中的正數(shù)和負(fù)數(shù)的含義.
。7)、 你能再舉一些用正負(fù)數(shù)表示數(shù)量的實際例子嗎?
。8)、例如,通常用正數(shù)表示汽車向東行駛的路程,用負(fù)數(shù)表示汽車向西行駛的路程;用正數(shù)表示水位升高的高度,用負(fù)數(shù)表示水位下降的高度;用正數(shù)表示買進(jìn)東西的數(shù)量,用負(fù)數(shù)表示賣出東西的數(shù)量.
六、鞏固練習(xí)
課本第3頁,練習(xí)1、2、3、4題.
七、課堂小結(jié)
為了表示現(xiàn)實生活中的具有相反意義的量,我們引進(jìn)了負(fù)數(shù).正數(shù)就是我們過去學(xué)過的數(shù)(除0外),在正數(shù)前放上“-”號,就是負(fù)數(shù),?但不能說:“帶正號的數(shù)是正數(shù),帶負(fù)號的數(shù)是負(fù)數(shù)”,在一個數(shù)前面添上負(fù)號,它表示的是原數(shù)意義相反的數(shù).如果原數(shù)是一個負(fù)數(shù),那么前面放上“-”號后所表示的數(shù)反而是正數(shù)了,另外應(yīng)注意“0”既不是正數(shù),也不是負(fù)數(shù).
八、作業(yè)布置
1.課本第5頁習(xí)題1.1復(fù)習(xí)鞏固第1、2、3題.
九、板書設(shè)計
1.1正數(shù)和負(fù)數(shù)
第一課時
1、像-3,-2,-2.7%這樣的數(shù)(即在以前學(xué)過的0以外的數(shù)前面加上負(fù)號“-”的數(shù))叫做負(fù)數(shù).而3,2,+2.7%在問題中分別表示零上3攝氏度,凈勝2球,增長2.7%,?它們與負(fù)數(shù)具有相反的意義,我們把這樣的數(shù)(即以前學(xué)過的0?以外的數(shù))叫做正數(shù),有時在正數(shù)前面
11也加上“+”(正)號,例如,+3,+2,+0.5,+,?就是3,2,0.5,,?一個數(shù)前面的33
“+”、“-”號叫做它的符號,這種符號叫做性質(zhì)符號.
2、隨堂練習(xí)。
3、小結(jié)。
4、課后作業(yè)。
十、課后反思
1.1正數(shù)和負(fù)數(shù)
第二課時
三維目標(biāo)
一.知識與技能
進(jìn)一步鞏固正數(shù)、負(fù)數(shù)的概念;理解在同一個問題中,用正數(shù)與負(fù)數(shù)表示的量具有相同的意義.
二.過程與方法
經(jīng)歷舉一反三用正、負(fù)數(shù)表示身邊具有相反意義的量,進(jìn)而發(fā)現(xiàn)它們的共同特征.
三.情感態(tài)度與價值觀
鼓勵學(xué)生積極思考,激發(fā)學(xué)生學(xué)習(xí)的興趣.
教學(xué)重、難點與關(guān)鍵
1.重點:正確理解正、負(fù)數(shù)的概念,能應(yīng)用正數(shù)、?負(fù)數(shù)表示生活中具有相反意義的量.
2.難點:正數(shù)、負(fù)數(shù)概念的綜合運用.
3.關(guān)鍵:通過對實例的進(jìn)一步分析,?使學(xué)生認(rèn)識到正負(fù)數(shù)可以用來表示現(xiàn)實生活中具有相反意義的量.
教具準(zhǔn)備
投影儀.
教學(xué)過程
四、復(fù)習(xí)提問課堂引入
1.什么叫正數(shù)?什么叫負(fù)數(shù)?舉例說明,?有沒有既不是正數(shù)也不是負(fù)數(shù)的數(shù)?
2.如果用正數(shù)表示盈利5萬元,那么-8千元表示什么?
五、新授
例1.一個月內(nèi),小明體重增加2kg,小華體重減少1kg,小強體重?zé)o變化,寫出他們這個月的體重增長值.
2.20xx年下列國家的商品進(jìn)出口總額比上年的變化情況是:
美國減少6.4%,德國增長1.3%,法國減少2.4%,英國減少3.5%,意大利增長0.2%,?中國增長7.5%.
寫出這些國家20xx年商品進(jìn)出口總額的增長率.
分析:在一個數(shù)前面添上負(fù)號,它表示的是與原數(shù)具有意義相反的數(shù).?“負(fù)”與“正”是相對的,增長-1,就是減少1;增長-6.4%就是減少6.4%,那么什么情況下增長率是0?當(dāng)與上年持平,既不增又不減時增長率是0.
七年級數(shù)學(xué)教案13
教學(xué)目標(biāo):
1、知識與技能:會解含分母的一元一次方程,掌握解一元一次方程的基本步驟和方法,能根據(jù)方程的特點靈活地選擇解法。
2、過程與方法:經(jīng)歷一元一次方程一般解法的探究過程,理解等式基本性質(zhì)在解方程中的作用,學(xué)會通過觀察,結(jié)合方程的特點選擇合理的思考方向進(jìn)行新知識探索。
3、情感、態(tài)度與價值觀:通過嘗試從不同角度尋求解決問題的方法,體會解決問題策略的多樣性;在解一元一次放的過程中,體驗“化歸”的`思想。
教學(xué)重難點:
重點:解一元一次方程的基本步驟和方法。
難點:含有分母的一元一次方程的解題方法。
教學(xué)過程:
一、新課導(dǎo)入:
請同學(xué)們和老師一起解方程:
并回答:解一元一次方程的一般步驟和最終的目的是什么?
二、講授新課
請給同學(xué)們介紹紙草書(P95)。
問題:一個數(shù),它的三分之二,它的一半,它的七分之一,它的全部,加起來總共是33.試問這個
數(shù)是多少?
并引入讓同學(xué)運用設(shè)未知數(shù)的方法,列出相應(yīng)的方程。
并回答:這個方程和我們以前學(xué)習(xí)的方程有什么不同?
同學(xué)們和老師一起完成解上述方程,并引入去分母。
例1、
例2、
活動:同學(xué)們,解一元一次方程的步驟有哪些?要注意哪些?
看一看你會不會錯:
(1)解方程:
(2)解方程:
典型例題:解方程:
想一想:去分母時要注意什么問題?
(1)方程兩邊每一項都要乘以各分母的最小公倍數(shù)
(2)去分母后如分子中含有兩項,應(yīng)將該分子添上括號
選一選:
練一練:當(dāng)m為何值時,整式和的值相等?
議一議:如何解方程:
注意區(qū)別:
1、把分母中的小數(shù)化為整數(shù)是利用分?jǐn)?shù)的基本性質(zhì),是對單一的一個分?jǐn)?shù)的分子分母同乘或除以一個不為0的數(shù),而不是對于整個方程的左右兩邊同乘或除以一個不為0的數(shù)。
2、而去分母則是根據(jù)等式性質(zhì)2,對方程的左右兩邊同乘或除以一個不為0的數(shù),而不是對于一個單一的分?jǐn)?shù)。
課堂小結(jié):
。1)怎樣去分母?應(yīng)在方程的左右兩邊都乘以各分母的最小公倍數(shù)。
有沒有疑問:不是最小公倍數(shù)行不行?
。2)去分母的依據(jù)是什么?
等式性質(zhì)2
。3)去分母的注意點是什么?
1、去分母時等式兩邊各項都要乘以最小公倍數(shù),不可以漏乘。
2、如果分子是含有未知數(shù)的代數(shù)式,其分子為一個整體應(yīng)加括號。
(4)解一元一次方程的一般步驟:
布置作業(yè):P98,習(xí)題3.3第3題
補充作業(yè):解方程:
。1)
(2)
板書設(shè)計:
教學(xué)反思:
七年級數(shù)學(xué)教案14
教學(xué)目標(biāo)
1, 掌握有理數(shù)的概念,會對有理數(shù)按照一定的標(biāo)準(zhǔn)進(jìn)行分類,培養(yǎng)分類能力;
2, 了解分類的標(biāo)準(zhǔn)與分類結(jié)果的相關(guān)性,初步了解“集合”的含義;
3, 體驗分類是數(shù)學(xué)上的常用處理問題的方法。
教學(xué)難點 正確理解分類的標(biāo)準(zhǔn)和按照一定的標(biāo)準(zhǔn)進(jìn)行分類
知識重點 正確理解有理數(shù)的概念
教學(xué)過程(師生活動) 設(shè)計理念
探索新知 在前兩個學(xué)段,我們已經(jīng)學(xué)習(xí)了很多不同類型的數(shù),通過上兩節(jié)課的學(xué)習(xí),又知道了現(xiàn)在的數(shù)包括了負(fù)數(shù),現(xiàn)在請同學(xué)們在草稿紙上任意寫出3個數(shù)(同時請3個同學(xué)在黑板上寫出).
問題1:觀察黑板上的9個數(shù),并給它們進(jìn)行分類.
學(xué)生思考討論和交流分類的情況.
學(xué)生可能只給出很粗略的分類,如只分為“正數(shù)”和“負(fù)數(shù)”或“零”三類,此時,教師應(yīng)給予引導(dǎo)和鼓勵.
例如,
對于數(shù)5,可這樣問:5和5. 1有相同的類型嗎?5可以表示5個人,而5. 1可以表示人數(shù)嗎?(不可以)所以它們是不同類型的數(shù),數(shù)5是正數(shù)中整個的數(shù),我們就稱它為“正整數(shù)”,而5. 1不是整個的數(shù),稱為“正分?jǐn)?shù),,.…(由于小數(shù)可化為分?jǐn)?shù),以后把小數(shù)和分?jǐn)?shù)都稱為分?jǐn)?shù))
通過教師的引導(dǎo)、鼓勵和不斷完善,以及學(xué)生自己的概括,最后歸納出我們已經(jīng)學(xué)過的5類不同的數(shù),它們分別是“正整數(shù),零,負(fù)整數(shù),正分?jǐn)?shù),負(fù)分?jǐn)?shù),’.
按照書本的說法,得出“整數(shù)”“分?jǐn)?shù)”和“有理數(shù)”的概念.
看書了解有理數(shù)名稱的由來.
“統(tǒng)稱”是指“合起來總的名稱”的意思.
試一試:按照以上的分類,你能作出一張有理數(shù)的分類表嗎?你能說出以上有理數(shù)的分類是以什么為標(biāo)準(zhǔn)的`嗎?(是按照整數(shù)和分?jǐn)?shù)來劃分的) 分類是數(shù)學(xué)中解決問題的常用手段,這個引入具有開放的特點,學(xué)生樂于參與
學(xué)生自己嘗試分類時,可能會很粗略,教師給予引導(dǎo)和鼓勵,劃分?jǐn)?shù)的類型要從文字所表示的意義上去引導(dǎo),這樣學(xué)生易于理解。
有理數(shù)的分類表要在黑板或媒體上展示,分類的標(biāo)準(zhǔn)要引導(dǎo)學(xué)生去體會
練一練 1,任意寫出三個有理數(shù),并說出是什么類型的數(shù),與同伴進(jìn)行交流.
2,教科書第10頁練習(xí).
此練習(xí)中出現(xiàn)了集合的概念,可向?qū)W生作如下的說明.
把一些數(shù)放在一起,就組成了一個數(shù)的集合,簡稱“數(shù)集”,所有有理數(shù)組成的數(shù)集叫做有理數(shù)集.類似地,所有整數(shù)組成的數(shù)集叫做整數(shù)集,所有負(fù)數(shù)組成的數(shù)集叫做負(fù)數(shù)集……;
數(shù)集一般用圓圈或大括號表示,因為集合中的數(shù)是無限的,而本題中只填了所給的幾個數(shù),所以應(yīng)該加上省略號.
思考:上面練習(xí)中的四個集合合并在一起就是全體有理數(shù)的集合嗎?
也可以教師說出一些數(shù),讓學(xué)生進(jìn)行判斷。
集合的概念不必深入展開。
創(chuàng)新探究 問題2:有理數(shù)可分為正數(shù)和負(fù)數(shù)兩大類,對嗎?為什么?
教學(xué)時,要讓學(xué)生總結(jié)已經(jīng)學(xué)過的數(shù),鼓勵學(xué)生概括,通過交流和討論,教師作適當(dāng)?shù)闹笇?dǎo),逐步得到如下的分類表。
有理數(shù) 這個分類可視學(xué)生的程度確定是否有必要教學(xué)。
應(yīng)使學(xué)生了解分類的標(biāo)準(zhǔn)不一樣時,分類的結(jié)果也是不同的,所以分類的標(biāo)準(zhǔn)要明確,使分類后每一個參加分類的象屬于其中的某一類而只能屬于這一類,教學(xué)中教師可舉出通俗易懂的例子作些說明,可以按年齡,也可以按性別、地域來分等
小結(jié)與作業(yè)
課堂小結(jié) 到現(xiàn)在為止我們學(xué)過的數(shù)都是有理數(shù)(圓周率除外),有理數(shù)可以按不同的標(biāo)準(zhǔn)進(jìn)行分類,標(biāo)準(zhǔn)不同,分類的結(jié)果也不同。
本課作業(yè)
1, 必做題:教科書第18頁習(xí)題1.2第1題
2, 教師自行準(zhǔn)備
本課教育評注(課堂設(shè)計理念,實際教學(xué)效果及改進(jìn)設(shè)想)
1,本課在引人了負(fù)數(shù)后對所學(xué)過的數(shù)按照一定的標(biāo)準(zhǔn)進(jìn)行分類,提出了有理數(shù)的概念.分類是數(shù)學(xué)中解決問題的常用手段,通過本節(jié)課的學(xué)習(xí)使學(xué)生了解分類的思想并進(jìn)行簡單的分類是數(shù)學(xué)能力的體現(xiàn),教師在教學(xué)中應(yīng)引起足夠的重視.關(guān)于分類標(biāo)準(zhǔn)與分類結(jié)果的關(guān)系,分類標(biāo)準(zhǔn)的確定可向?qū)W生作適當(dāng)?shù)臐B透,集合的概念比較抽象,學(xué)生真正接受需要很長的過程,本課不要過多展開。
2,本課具有開放性的特點,給學(xué)生提供了較大的思維空間,能促進(jìn)學(xué)生積極主動地參加學(xué)習(xí),親自體驗知識的形成過程,可避免直接進(jìn)行分類所帶來的枯燥性;同時還體現(xiàn)合作學(xué)習(xí)、交流、探究提高的特點,對學(xué)生分類能力的養(yǎng)成有很好的作用。
3,兩種分類方法,應(yīng)以第一種方法為主,第二種方法可視學(xué)生的情況進(jìn)行。
七年級數(shù)學(xué)教案15
一、教學(xué)內(nèi)容分析
1。2有理數(shù)1。2。2數(shù)軸。這一節(jié)是初中數(shù)學(xué)中非常重要的內(nèi)容,從知識上講,數(shù)軸是數(shù)學(xué)學(xué)習(xí)和研究的重要工具,它主要應(yīng)用于絕對值概念的理解,有理數(shù)運算法則的推導(dǎo),及不等式的求解。同時,也是學(xué)習(xí)直角坐標(biāo)系的基礎(chǔ),從思想方法上講,數(shù)軸是數(shù)形結(jié)合的起點,而數(shù)形結(jié)合是學(xué)生理解數(shù)學(xué)、學(xué)好數(shù)學(xué)的方法。日常生活中帶見的用溫度計度量溫度,已為學(xué)習(xí)數(shù)軸概念打下了一定的基礎(chǔ)。通過問題情境類比得到數(shù)軸的概念,是這節(jié)課的主要學(xué)習(xí)方法。同時,數(shù)軸又能將數(shù)的分類直觀的表現(xiàn)出來,是學(xué)生領(lǐng)悟分類思想的基礎(chǔ)。
二、學(xué)生學(xué)習(xí)情況分析
。1)知識掌握上,七年級的學(xué)生剛剛學(xué)習(xí)有理數(shù)中的正負(fù)數(shù),對正負(fù)數(shù)的概念理解不一定很深刻,許多學(xué)生容易造成知識遺忘,所以應(yīng)全面系統(tǒng)的去講述;
。2)學(xué)生學(xué)習(xí)本節(jié)課的知識障礙。學(xué)生對數(shù)軸概念和數(shù)軸的三要素,學(xué)生不易理解,容易造成畫圖中掉三落四的現(xiàn)象,所以教學(xué)中教師應(yīng)予以簡單明白、深入淺出的分析;
(3)由于七年級學(xué)生的理解能力和思維特征和生理特征,學(xué)生的好動性,注意力容易分散,愛發(fā)表見解,希望得到老師的表揚等特點,所以在教學(xué)中應(yīng)抓住學(xué)生這一生理心理特點,一方面要運用直觀生動的形象,一發(fā)學(xué)生的興趣,使他們的注意力始終集中在課堂上;另一方面要創(chuàng)造條件和機(jī)會,讓學(xué)生發(fā)表見解,發(fā)揮學(xué)生的主動性。
三、設(shè)計思想
從學(xué)生已有知識、經(jīng)驗出發(fā)研究新問題,是我們組織教學(xué)的一個重要原則。小學(xué)里曾學(xué)過利用射線上的點來表示數(shù),為此我們可引導(dǎo)學(xué)生思考:把射線怎樣做些改進(jìn)就可以用來表示有理數(shù)?伴以溫度計為模型,引出數(shù)軸的概念。教學(xué)中,數(shù)軸的三要素中的每一要素都要認(rèn)真分析它的作用,使學(xué)生從直觀認(rèn)識上升到理性認(rèn)識。直線、數(shù)軸都是非常抽象的數(shù)學(xué)概念,當(dāng)然對初學(xué)者不宜講的過多,但適當(dāng)引導(dǎo)學(xué)生進(jìn)行抽象的思維活動還是可行的。例如,向?qū)W生提問:在數(shù)軸上對應(yīng)一億萬分之一的點,你能畫出來嗎?它是不是存在等。
四、教學(xué)目標(biāo)
(一)知識與技能
1、掌握數(shù)軸的三要素,能正確畫出數(shù)軸。
2、能將已知數(shù)在數(shù)軸上表示出來,能說出數(shù)軸上已知點所表示的數(shù)。
(二)過程與方法
1、使學(xué)生受到把實際問題抽象成數(shù)學(xué)問題的訓(xùn)練,逐步形成應(yīng)用數(shù)學(xué)的意識。
2、對學(xué)生滲透數(shù)形結(jié)合的思想方法。
(三)情感、態(tài)度與價值觀
1、使學(xué)生初步了解數(shù)學(xué)來源于實踐,反過來又服務(wù)于實踐的辯證唯物主義觀點。
2、通過畫數(shù)軸,給學(xué)生以圖形美的教育,同時由于數(shù)形的結(jié)合,學(xué)生會得到和諧美的享受。
五、教學(xué)重點及難點
1、重點:正確掌握數(shù)軸畫法和用數(shù)軸上的點表示有理數(shù)。
2、難點:有理數(shù)和數(shù)軸上的點的對應(yīng)關(guān)系。
六、教學(xué)建議
1、重點、難點分析
本節(jié)的重點是初步理解數(shù)形結(jié)合的思想方法,正確掌握數(shù)軸畫法和用數(shù)軸上的點表示有理數(shù),并會比較有理數(shù)的大小。難點是正確理解有理數(shù)與數(shù)軸上點的對應(yīng)關(guān)系。數(shù)軸的概念包含兩個內(nèi)容,一是數(shù)軸的三要素:原點、正方向、單位長度缺一不可,二是這三個要素都是規(guī)定的。另外應(yīng)該明確的是,所有的有理數(shù)都可用數(shù)軸上的點表示,但數(shù)軸上的.點所表示的數(shù)并不都是有理數(shù)。通過學(xué)習(xí),使學(xué)生初步掌握用數(shù)軸解決問題的方法,為今后充分利用“數(shù)軸”這個工具打下基礎(chǔ)。
2、知識結(jié)構(gòu)
有了數(shù)軸,數(shù)和形得到了初步結(jié)合,這有利于對數(shù)學(xué)問題的研究,數(shù)形結(jié)合是理解數(shù)學(xué)、學(xué)好數(shù)學(xué)的方法,本課知識要點如下:
定義規(guī)定了原點、正方向、單位長度的直線叫數(shù)軸
三要素原點正方向單位長度
應(yīng)用數(shù)形結(jié)合
七、學(xué)法引導(dǎo)
1、教學(xué)方法:根據(jù)教師為主導(dǎo),學(xué)生為主體的原則,始終貫穿“激發(fā)情趣—手腦并用—啟發(fā)誘導(dǎo)—反饋矯正”的教學(xué)方法。
2、學(xué)生學(xué)法:動手畫數(shù)軸,動腦概括數(shù)軸的三要素,動手、動腦做練習(xí)。
八、課時安排
1課時
九、教具學(xué)具準(zhǔn)備
電腦、投影儀、三角板
十、師生互動活動設(shè)計
講授新課
。ǔ鍪就队1)
問題1:三個溫度計。其中一個溫度計的液面在0上2個刻度,一個溫度計的液面在0下5個刻度,一個溫度計的液面在0刻度。
師:三個溫度計所表示的溫度是多少?
生:2℃,—5℃,0℃。
問題2:在一條東西向的馬路上,有一個汽車站,汽車站東3m和7。5m處分別有一棵柳樹和一棵楊樹,汽車站西3m和4。8m處分別有一棵槐樹和一根電線桿,試畫圖表示這一情境。(小組討論,交流合作,動手操作)
師:我們能否用類似的圖形表示有理數(shù)呢?
師:這種表示數(shù)的圖形就是今天我們要學(xué)的內(nèi)容—數(shù)軸(板書課題)。
師:與溫度計類似,我們也可以在一條直線上畫出刻度,標(biāo)上讀
數(shù),用直線上的點表示正數(shù)、負(fù)數(shù)和零。具體方法如下
。ㄟ呎f邊畫):
1。畫一條水平的直線,在這條直線上任取一點作為原點(通常取適中的位置,如果所需的都是正數(shù),也可偏向左邊)用這點表示0(相當(dāng)于溫度計上的0℃);
2。規(guī)定直線上從原點向右為正方向(箭頭所指的方向),那么從原點向左為負(fù)方向(相當(dāng)于溫度計上0℃以上為正,0℃以下為負(fù));
3。選取適當(dāng)?shù)拈L度作為單位長度,在直線上,從原點向右,每隔一個長度單位取一點,依次表示為1,2,3,…從原點向左,每隔一個長度單位取一點,依次表示為—1,—2,—3,…
師問:我們能不能用這條直線表示任何有理數(shù)?(可列舉幾個數(shù))
讓學(xué)生觀察畫好的直線,思考以下問題:
。ǔ鍪就队2)
。1)原點表示什么數(shù)?
。2)原點右方表示什么數(shù)?原點左方表示什么數(shù)?
。3)表示+2的點在什么位置?表示—1的點在什么位置?
。4)原點向右0。5個單位長度的A點表示什么數(shù)?
原點向左1。5個單位長度的B點表示什么數(shù)?
根據(jù)老師畫圖的步驟,學(xué)生思考在一條水平的直線上都畫出什么?然后歸納出數(shù)軸的定義。
師:在此基礎(chǔ)上,給出數(shù)軸的定義,即規(guī)定了原點、正方向和單
位長度的直線叫做數(shù)軸。
進(jìn)而提問學(xué)生:在數(shù)軸上,已知一點P表示數(shù)—5,如果數(shù)軸上的原點不選在原來位置,而改選在另一位置,那么P對應(yīng)的數(shù)是否還是—5?如果單位長度改變呢?如果直線的正方向改變呢?
通過上述提問,向?qū)W生指出:數(shù)軸的三要素——原點、正方向和單位長度,缺一不可。
【教法說明】通過“觀察—類比—思考—概括—表達(dá)”展現(xiàn)知識的形成是從感性認(rèn)識上升到理性認(rèn)識的過程,讓學(xué)生在獲取知識的過程中,領(lǐng)會數(shù)學(xué)思想和思維方法,并有意識地訓(xùn)練學(xué)生歸納概括和口頭表達(dá)能力。
師生同步畫數(shù)軸,學(xué)生概括數(shù)軸三要素,師出示投影,生動手動腦練習(xí)
嘗試反饋,鞏固練習(xí)
。ǔ鍪就队3)。畫出數(shù)軸并表示下列有理數(shù):
1、1。5,—2。2,—2。5,,,0。
2。寫出數(shù)軸上點A,B,C,D,E所表示的數(shù):
請大家回答下列問題:
。ǔ鍪就队4)
(1)有人說一條直線是一條數(shù)軸,對不對?為什么?
。2)下列所畫數(shù)軸對不對?如果不對,指出錯在哪里?
【教法說明】此組練習(xí)的目的是鞏固數(shù)軸的概念。
十一、小結(jié)
本節(jié)課要求同學(xué)們能掌握數(shù)軸的三要素,正確地畫出數(shù)軸,在此還要提醒同學(xué)們,所有的有理數(shù)都可用數(shù)軸上的點來表示,但是反過來不成立,即數(shù)軸上的點并不是都表示有理數(shù),至于數(shù)軸上的哪些點不能表示有理數(shù),這個問題以后再研究。
十二、課后練習(xí)習(xí)題1。2第2題
十三、教學(xué)反思
1、數(shù)軸是數(shù)形轉(zhuǎn)化、結(jié)合的重要媒介,情境設(shè)計的原型來源于生活實際,學(xué)生易于體驗和接受,讓學(xué)生通過觀察、思考和自己動手操作、經(jīng)歷和體驗數(shù)軸的形成過程,加深對數(shù)軸概念的理解,同時培養(yǎng)學(xué)生的抽象和概括能力,也體出了從感性認(rèn)識,到理性認(rèn)識,到抽象概括的認(rèn)識規(guī)律。
2、教學(xué)過程突出了情竟到抽象到概括的主線,教學(xué)方法體了特殊到一般,數(shù)形結(jié)合的數(shù)學(xué)思想方法。
3、注意從學(xué)生的知識經(jīng)驗出發(fā),充分發(fā)揮學(xué)生的主體意識,讓學(xué)生主動參與學(xué)習(xí)活,并引導(dǎo)學(xué)生在課堂上感悟知識的生成,發(fā)展與變化,培養(yǎng)學(xué)生自主探索的學(xué)習(xí)方法。
【七年級數(shù)學(xué)教案】相關(guān)文章:
七年級數(shù)學(xué)教案07-22
初中七年級的數(shù)學(xué)教案02-02
七年級下冊數(shù)學(xué)教案04-18
七年級上冊數(shù)學(xué)教案02-01
七年級數(shù)學(xué)教案15篇08-19